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Technology Implications of  Moore’s Law

Bill Holt, Intel @ ISSCC 2016

• Accelerated Density Scaling Pressure – Push for more Complex Device Structures 

• Power non-scalability – Motivates search for Low-Energy Switch (Beyond CMOS?)

Power Non-Scalability

Lower
Cost/
transistor

Increasing 
process 
cost

Accelerate density 
scaling !!!
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Outline

• Complex Structures

• Complex Material Systems: Beyond Silicon

• Emerging Material Systems: Beyond CMOS

• Messages
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Complex Structures
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Low-Dimensional Structures –

Interesting Solid-State Physics

Quantum Point Contact

Coulomb Blockage in Quantum Dots
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Low-Dimensional Structures –

Meet Transistor Technology Device structures 
toward 1D

0D systems: Present in todays’ devices in the 
form of isolated atomic/bond defects
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After: J.P. Colinge, “Multigate transistors: Pushing Moore's law to 
the limit “  SISPAD Page(s): 313 - 316 

• Electrostatic control of channel improves as L/l ratio increases
• l decreases with decreasing tsi

• l decreases with increasing gate wrap
• l decreases with reducing e(channel) or increasing e(gate ox)

Low-Dimensional Structures –

Meet Transistor Technology

tsi

“Steepness” of switch

Gate-All-Around (GAA)Nanowire R Vs.Fin tsi
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The Role of the Low-Energy Transistor

• Circuit performance loss & variability limits Vdd scaling

• Process & Transistor capability play critical roles 
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1. Enhance Drive:
High Mobility, Low Raccess Ceff

2. Improve Electrostatics
Sub-Vt swing (S) & DIBL

Rapid performance loss at 
low Voltage

Increased variability at 
low Voltage

3. Reduce process & material variations
Random & Systematic 
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Enhancing Drive of the Circuits – Tall Fins 

Y-Scaling: Cell Height Scaling – “Fin De-population with Taller Fins”

3Fins/FET
7.5 Track cell

2 Fins
/FET
6 Track

Taller fin
Height~65-70nm

+30% 
height

1 Fin

n

p

+50% 
height?

Very Tall fin
Height~90-100nm

• Reduce the number of fins per transistor

• Need to make the drive (effective width) loss with taller devices

• Commensurate fin pitch scaling an offset the burden of  Y scaling as well

Tall fin
Height ~ 50nm

Today’s Fin
Height ~35-40 nm
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Fins Tomorrow (for 2020)

IMEC 2015Intel Processes

Fins Today

3nm Fins ~ 10-12 Si atoms
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• Method to characterize large number of repetitive sub-optical dimension structures

Advanced in-line optical metrology of sub-10nm structures for gate all around devices (GAA) -
Muthinti, Raja; et. al. Proceedings of SPIE    Volume:  9778      Article Number:  977810    Published:  
2016 

Structural by Scatterometry - Optical Critical Dimension (OCD)
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Self-Aligned Spacer Patterns Monitor by Scatterometry

Scatterometry-based metrology for SAQP pitch walking using virtual reference  
By: Kagalwala, Taher; et. al. (Nova & Globalfoundries, 30th Conference on Metrology, Inspection, and Process Control for 
Microlithography  Location:  San Jose, CA  Date:  FEB 22-25, 2016  
Proceedings of SPIE    Volume:  9778      Article Number:  97781W    Published:  2016

Fin Pitch walking Issue: a≠b≠g

Self-Aligned Quadruple Patterning (SAQP) Using Virtual-Reference OCD to correlate 
the pitch variation 

Reference information from actual CD-SEM measurements 
collected at the same process step as the OCD measurements
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End of FinFET Scaling – The Advent of Nanowires?

FinW=7-10nm

Tapered Fin

Lmin~ 28nm

Straight Fin

FinW=7-8nm

Lmin~ 22-24nm

Ultra-Thin Fin

FinW=5nm

Lmin~ 18nm

Nanowire =7nm

Gate-All-Around Nanowire

Lmin~ 15nm

• FinFETs offered a Low-Voltage transistor option wrt bulk planar.

•To maintain electrostatics, simple FinFETs will hit limits   

28-32nm

Bulk Planar

(Vdd ~ 0.9-1.0V)

FinFETs

(Vdd ~ 0.7-0.8V)

Device Simulations
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•Increase complexity as we transition to the next device architecture

8 nm

45nm

Si 

NW

RMG-HK

H. Mertens, et. al. Imec. VLSI’2016

End of fin scaling: Nanowires (Target 2022-2024)
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Advanced in-line optical metrology of sub-10nm structures for gate all around devices (GAA)  
By: Muthinti, Raja; et. al. Proceedings of SPIE    Volume:  9778      Article Number:  977810    Published:  2016 

X-Ray Photoelectron Spectroscopy (XPS) & Low Energy X-Ray Fluorescence (LE-XRF),

• Scatterometry: Structure & Ge composition from volume data 
• XPS: Accurate material anaysis
• XRF Benefit: “materials of the measured structure are transparent to the 

fluoresced (emitted) X-rays, so atoms can be easily “counted” with the technique”

Structural & Material Analyses (Scatterometry+XPS+XRF)

Based on n&k matching parameters:
Infer that  Si in superlattic different from 
Bulk Si
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N x CGP (X)

Transistor-Influenced Approaches to scaling X-Y
X-Scaling: Cell Width Scaling – “Contacted Gate Pitch Scaling”

• Need to scale Lg and Contact width to maintain CGP scaling

• Lg scaling limited by transistor electrostatics

• Contact width limited by transistor drive performance
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CMOS Technology Nodes

FinFET
GAA
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P. Eyben et. al. “Accurate prediction of device performance in sub-10nm WFIN FinFETs using scalpel SSRM-based calibration of 
process simulations,”, 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 287 –
290, 2016

High-Resolution 2-D Carrier Mapping in Scaled 
Devices

• Scalpel scanning spreading resistance (5 orders resolution) microscopy (s-SSRM) 
(sub-2nm resolution)

• To calibrate TCAD models, necessary for the design of highly scaled devices
• Possible as models for fault isolation in failure analysis as well
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• Vertical GAA Fins may alleviate the drive constraints of vertical nanowires

• Need to trade off between Fin Height (FinH) and pitch Vs. Lgate

• Need to account for wire or Fin current direction & conduction orientation

Best Electrostatics Capability 

but drive limited by NW density 

Per Foot Print 

FinH

Lesser Electrostatics 

Capability but can provide 

more current per foot print 

vNW vFin

Vertical GAA-FETs (Beyond 2025)

Longer Lgate 

for Better 

Electrostatics

More Contact 

Room

More Contact 

Room



Rising influence of Material Defects

19

• Planar FETs Random 

Dopants, Gate-stack 
• Decreasing body volume 

Increase Surface traps/defects 

influence

• RTN-Vt instabilities

• Mostly /All 

surface/Interface

defect dominated 

Random Telegraph Noise + BTI + 1/f Random Dopants + BTI +1/f

• Increasing surface-to-volume ratio inc. influence of trap/defect-based variability

Single-electron 
charging
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Complex Material Systems 
Beyond Silicon
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel

State variable

Mechanism

C
h
ar

ge
N

o
n
-c

h
ar

ge

After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET

FD-SOI

FinFET

III-V/Ge CNT FET

h-GAA-NW

v-GAA-NW

Spin FET

All spin logic STT logic

Wave Comp.

BiSFET Exciton FET

Nanomagnet Logic

Quantum 

Comp.

CMOS Scaling : Scaling 

electrostatics, drive, & 

minimizing parasitics
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel
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After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET

FD-SOI

FinFET

III-V/Ge CNT FET

h-GAA-NW

v-GAA-NW

Spin FET

All spin logic STT logic

Wave Comp.

BiSFET Exciton FET

Nanomagnet Logic

Quantum 

Comp.

New charge-based 

switching mechanism or 

beyond Semiconductor 

materials 
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel
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After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET

FD-SOI

FinFET

III-V/Ge CNT FET

h-GAA-NW

v-GAA-NW

Spin FET

All spin logic STT logic

Wave Comp.

BiSFET Exciton FET

Nanomagnet Logic

Quantum 

Comp.Beyond charge-based 

switching. May be 

dramatically different from 

CMOS logic.
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Conventional Novel
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After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

FD-SOI

FinFET

III-V/Ge CNT FET

h-GAA-NW

v-GAA-NW

Established Vs. Exploratory: Many Research Device Options
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C. Merckling & IIIV Epi Team

• Unique defect trapping Innovation allows for InGaAs to be  
integrated in tight geometry in proximity to Si & other materials 

Defect Engineering
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Alloy Composition, Nanostructures,  & Defects

Composition analysis of III-V materials grown in 
nanostructures: The self-focusing-SIMS approach  
By: Franquet, Alexis; Douhard, Bastien; Conard, Thierry; et al.
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B 
Volume:  34    Issue:  3      Article Number:  03H127    

Published:  MAY-JUN 2016

Atom Probe Tomography 

Reprint of: Electron channelling contrast imaging for III-nitride 
thin film structures  
By: Naresh-Kumar, G.; Thomson, D.; Nouf-Allehiani, M.; et al.
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING 
Volume:  55    Special Issue:  SI    Pages:  19-25    Published:  

NOV 15 2016 

Electron channeling contrast imaging
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• Record performance for InGaAs GAA devices on 300mm substrates achieved at 
scaled dimensions

• Reduction of bulk defects & atomic passivation of interface are key factors  

Record InGaAs channel 

performances for Vdd=0.5V

Lg ~ 36nm-46nm (NEW)

Wfin ~ 16nm (NEW)

Gmsat > 2000 mS/mm

SS ~ 90-100mV/dec

Scaled III-V Gate-Around devices

sub-10nm
InGaAs
channel

W
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel
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After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET
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FinFET
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v-GAA-NW

Spin FET

All spin logic STT logic

Wave Comp.

BiSFET Exciton FET

Nanomagnet Logic

Quantum 

Comp.
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel

State variable

Mechanism

C
h
ar

ge
N

o
n
-c

h
ar

ge

After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET
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VDD Scaling & Super-Steep Slope Devices

Lo
g 

(I
d

s)

Ioff

Planar FET

Vgs (V)
0 Vdd

FinFET

Beyond FinFET
Electrostatics

Nanowire
FET

New Switching Physics
Sub-60mV/dec@300K

Beyond
MOSFET

• Gate-All-Around Nanowire FET is the limit to MOSFET Subthreshold Swing Scaling

• Need new transistor options
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Tunnel-FET (TFET)

31

TFET = reverse biased p-i-n diode with gate

drain

gate

source
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E 
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V
]

source channel drain

Ec

Ltun

source channel drain

Promise of subthreshold swing < 60mV/dec
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TFET Swing & leakage Detractors

drain

gate

source

gate

p i n

Ambipolar Leakage: 

Low Eg limitesVgd

Dit: Interference & Fermi pinning 

due to interface defect states

SRH: Thermal Gen. & 

Recomb.


















kT

E

CJ

g

SRH
2exp1

TAT: Trap-Assisted-Tunneling

Phonon-assisted Tunneling



















kT

E
E

CJ
T

g

trap
2exp2

Lateral (Point) Vs. Vertical (Line) 

Tunneling & resultant DOS
















F

E
CJ

g

BTBT

2/3

exp



33

“Gentle” High p+ box-like Zn 

doped source by SOG diffusion

SI-InP

50nm 
N++

3nm InP
Mo

Mo

100nm InGaAs channel

Gate

p+

(Work follows approach of 
Noguchi (U. of Tokyo), IEDM 
2013)

Benchmark shows significantly 

lower TAT

Sharp BTBT-SRH

transition

Low-TAT III-V Homojunction TFET 
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Heterostructure Tunnel Junctions

Abrupt & Minimal
Band-to-Band Tunnel distance

After Eli Yablonovitch 2012, UC Berkeley  

Lower tunnel resistance with shorter tunnel distance
Conduction modulated by alignment of band-to-band 
states 
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Si InAs GaSb GaAs

Ec

Ge GaP InP InSb

Ev

a(A)=
5.43

5.65
6.06

5.45
6.1

5.87
5.65

6.48

0.6-0.7% 

Lattice 

mismatch

Start with InGaAs-GaAsSb

staggered gap by MBE

InGaAs

InP

Substrate

4% Lattice 

mismatch

GaAsSb

InP

Intrinsic layers: little 

to no defects by 

MBE

• Need abrupt low-defectivity junctions & bulk material

• Working on InAs/GaSb on GaAs and Si

In0.53Ga0.47As

GaSb0.5As0.5

InGaAs

GaAsSb

Atomically Abrupt

Hetero-structure Tunnel Junctions
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Increased BTBT confirmed

• Higher Doping increased TAT

Hetero-structure Tunnel Junctions

InGaAs-GaAsSb heterojunction
Higher band-to-band tunneling (BTBT)

InGaAs- homorojunction

Trap-assisted tunneling (TAT)
due to Increased doping 
destroys BTBT, under reversed 
bias.
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Defect Energy Level Important: DLTS needed  
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The Promise & Challenges of TFETs

TFETs

After Intel

A. Seabaug, Tunnel FETs: The promise and the reality, 2014 
ESSDERC/ESSCIRC Workshop

Currents are too low
to replace FInFETs

Sub-50mV/dec
Swing
for only a small 
range FinFETs

So far, TFETs key advantages for very low voltage – Difficult to drive any load 
– May need a system/circuit solution – TFET-MOSFET hybrid?

Bill Holt, Retired EVP Intel @ ISSCC 2016
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Negative-Capacitance Gate FET

MOSFET

Ec

Ev

Modulate barrier

to control diffusion into 

channel 

Tail distribution 

=source of diffusion 

Limited by 

efficiency of 

gate-source 

barrier coupling 

capacitance

Limited by 

temperature 

(S=60mV/dec @ 

T=300K) 

df/dE  soft

MOSFET or TFET gate-
channel coupling

Subthreshold swing

• Building in internal voltage gain (“voltage amplification”) in the gate capacitor

(Special Internal 
Capacitor that turns
negative to provide
Voltage gain)(Vin)

Introduce positive gain

After C-W Yeung, E3S 2013
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A. Rusu et al. IEDM 2010 pp. 16.3.1–
16.3.4. (Adrian Ionescu EPFL)

Ferroelectric
copolymer

Internal
“floating”
gate

Internal
“floating” gate

HfZrO Ferroelectric

Li et al. IEDM 2015 pp. 22.6.1–
22.6.4. (C.Hu & S. Salahudin Berkeley)

• Essentially a Ferroelectric Capacitor in series with metal-gate capacitor
• Internal gate introduced to (a) probe internal Fe-Cap (b) Equipotential interface to 

mitigate depolarization from transistor channel/SD regions, to achieve uniform field 
despite FE domain formation? Floating voltage node sensitive to leakage.

• No internal gate: Sensitive to FE-gate-Oxide trap density

Some device structures

Without Internal
“floating” gate

S. Dasgupta et. al. EEE Journal on Exploratory 

Solid-State Computational Devices and 

Circuits 

Year: 2015, Volume: 1 

Pages: 43 – 48 (S. Datta Penn State)

“Dielectric -on-Dielectric”
No internal gate 
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• Ferroelectric states determined by field-induced ion displacement
• Negative capacitance state is between stable ferroelectric states
• Needs special material & operation design to stabilize

Negative Capacitance by Ferroelectrics

Charge 
polarization 
due to ion 
displacement

Energy

Charge (Q)

Perovskites

Lead Zirconium Titanate (PZT)

Pb[ZrxTi1-x]O3 (0≤x≤1). 

Need to design device/stack 
negative cap regime
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• Unclear as to the practical trade-off available between minimizing hysteresis while 
improving SS significantly   

Ferro & Anti-Ferro
FE Thickness dependent

Smaller
Hysteresis loop

Gradual transition for low 
E: Limited benefit to 
subthreshold Vg range?

Large
Hysteresis loop

Difficult to contain within max Vg swing?

Steep 
transition over 
wide E-range: 
Benefit 
subthreshold 
Vg range

Modeling: 

(Left) S. Dasgupta et. al. EEE Journal 

on Exploratory Solid-State 

Computational Devices and Circuits 

Year: 2015, Volume: 1 

Pages: 43 – 48 (S. Datta Penn State)

(Right) C. Hu et. al. in Device 

Research Conference

(DRC), pp. 39-40, 2015.

Hence FE thickness 
dependence
of hysteresis

Engineering the Hysteresis
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Key factors for Logic Ferroelectric gate stack

1. Quality of FE material & Deposition/Integration process? – Crystalline Vs. Polycrystalline

4. Endurance of FE gate? 
Volume effect: defect dipoles due to vacancies. Domain 
effect: Defect diffusion to domain walls due to energy 
minimization. Grain boundary effect: ions, vacancy diffusion 
to grain boundaries. Genenkoa, at. al. Material Sciences & 
Engineering: B vol 192, Feb 2015, pp 52-82.

2. Temperature dependence
Asif Islam Khan, et. al. 
Appl. Phys. Lett. 99, 113501 (2011); 

3. Switching speed limitation?
- Fmax ~ 10-20GHz?
- limited by intermolecular forces of FE
- Need new FE or Novel system solution

F=10MHz F=100MHz

F=1GHz F=10GHz
Zhi Cheng Yuan;   et. al. IEEE 
Transactions on Electron Devices 
Year: 2016, Volume: 63, Issue: 10 
Pages: 4046 - 4052

Simulations

Damping force to 
impede polarization
switching

Yang Li; et. al. IEEE TED
Year: 2016, Volume: 63, Issue: 9 
Pages: 3636 – 3641 (NUS)
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Emerging Material Systems
Beyond CMOS
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel

State variable

Mechanism

C
h
ar

ge
N

o
n
-c

h
ar

ge

After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET
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Low-Dimensional Structures –

Interesting Solid-State Physics

Quantum Point Contact

Coulomb Blockage in Quantum Dots
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Beyond 3-D TFETs: Density of States Engineering

Soft Transition

3D-3D

Abrupt

Transition

2D-2D

After Eli Yablonovitch 2012, UC Berkeley  

• Steepness of swing over wide-Vg range limited by 3-D DOS 
• Investigate 2-D TFET options 
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Heterojunction (HJ) TFETs with 

New Material Systems

3-D HJ TFETs (Lattice-Matched

InGaAs-GaAsSb staggered gap by MBE)

InP

Intrinsic layers: little 

to no defects by 

MBE

• Important to investigate heterojunction defect limiter to TFET operations
• 3-D heterojunction to 2-D VdW heterojunction transition may offer unique advantages 

In0.53Ga0.47As

GaSb0.5As0.5

InGaAs

GaAsSb

Atomically Abrupt
# Interface Defects ?

2-D HJ TFETs (TMD 

Heterojunction)

No physical bonds (Van 
der Waals) = Reduced 
defects ?
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V
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VG

Left 

electrode

doped

+1013|e|/cm2

Right 

electrode

doped

-1013

|e|/cm2

2nm

Device model

▸ Evaluating the impact of the gate on the drive current Id in MoS2|HfS2

- How will the charge transfer impact on the I-V curves?

- Coupling NEGF and DFT (ballistic transport)

intrinsi

c

High-k

High-k

MoS2

HfS2

2-D TFETS with 2-D MX2 (TMD) heterostructures ? 

DFT

• Seeks broken gaps with large bandgaps 

• Lattice mismatch is no longer an issue vDW stacking
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UCSB

Nature  526, 91–95 (01 
October 2015)
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel

State variable

Mechanism

C
h
ar

ge
N

o
n
-c

h
ar

ge

After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

2D mat. FET

TFET

Atomic Switch

IMOS NEMS

Mott FET Neg-Cg FET

FD-SOI

FinFET

III-V/Ge CNT FET

h-GAA-NW

v-GAA-NW

Spin FET

All spin logic STT logic

Wave Comp.

BiSFET Exciton FET

Nanomagnet Logic

Quantum 

Comp.
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Established Vs. Exploratory: Many Research Device Options

Conventional Novel
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After ITRS

• Novel Device Architectures being explored: Charge Vs. Non-Charge based. 

Spin FET

All spin logic STT logic

Wave Comp.

BiSFET Exciton FET

Nanomagnet Logic

Quantum 

Comp.
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New devices that requires new computation system 

E.g. new material challenges
Like Magneto-electric effects
(Beyond scope of this presentation)

Chang et. al. (Intel, Ian Young), 
“Clocked Domain Wall Logic using 
Magnetoelectric Effects,” IEEE Journal 
on Exploratory Solid-State 
Computational Devices and Circuits 
Year: 2016, Volume: PP, Issue: 99 
Pages: 1 - 1

Bill Holt, Intel @ ISSCC 2016

After Intel 
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Write the states 
into NV-memory

Read states

Reduce Memory Access Energy by Nonvolatile Logic 

• Energy & time to retain the states by writing to NV 
memory is a large overhead that increase BET 

• Making it only useful for Normally-Off Applications
(i.e. long-sleep or long-idle systems)

• Unless we can build in NV elements very local to logic
to reduce memory access energy   

Non-Volatile Power Gating (NVPG) -SRAM

FinFETs with MTJs (NV elements)
(1) copy the states Q & QB when VSR is 

activated
(2) Restores Q & QB when SRAM wakes

Comparative study of power-gating architectures for nonvolatile 
FinFET-SRAM using spintronics-based retention technology
Shuto, Yusuke ; Yamamoto, Shuu'ichirou ; Sugahara, Satoshi Design, 
Automation & Test in Europe Conference & Exhibition (DATE), 2015 
Page(s): 866 - 871 
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Spin-torque Majority Gate – More efficient NV Gate

Shmoo Analysis

Need dense structures to encourage exchange 
type DW interactions 
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Messages

• Complex Structures   Towards vertical and “atomically-thin” structures 
more surface/interface than volume 
 Structural & Material Correlated analysis needed

• Complex Material Systems & The rising impact of defects 
 Their detection, characterization, & quantification 

become significant
 Added complexity of nanostructure

• New Materials Integration  Beyond Silicon & exotic Beyond CMOS Materials 
E.g. Ferroelectrics, Magnetics may make their way into CMOS

 Need multiple characterization methods integrated 
to support heterogeneous process integration

• Metrology and Advanced Characterization critical 
 Can’t steer if you can’t see!


