
Testing Environments for Assessing
Conformance and Interoperability

R. Snelick1 and L. Gebase1

1National Institute of Standards and Technology (NIST), Gaithersburg, MD, State, USA

Abstract - We present a classification framework of
testing environments that supports conformance and
interoperability testing of distributed systems. We
describe each testing environment and state the
applicability and requirements placed on a realization of
a testing tool. The broad categories identified include
data instance validation, isolated systems testing, and
peer-to-peer systems testing. Our targeted systems
include those that support data exchange standards. We
list and define the types of conformance and
interoperability testing that can be conducted and
associate the types that can be performed in a given
testing environment. We describe and illustrate a
conceptual test tool design for each testing environment.
The delineation of environments and their testing
capacity is intended to facilitate a more structured
approach to testing in which the relationship between
testing and test requirements is more clearly defined and
the capabilities and limitations of testing tools are better
understood. In broader terms, this approach should help
industry and testing bodies identify and describe the
depth and scope of their testing endeavors.

Keywords: Conformance; Data Exchange Standards;
Evaluation Criteria; Interoperability; Messaging
Systems; Testing Environments.

1 Introduction
 We consider testing environments that can be used to
support conformance and interoperability testing of
distributed messaging systems. We have identified three
distinct environments and for each we describe the
testing activities that can be performed within an
environment. Specifically, the environments are the Data
Instance Test Environment, the Isolated System Test
Environment, and the Peer-to-peer System Test
Environment. The delineation of environments and their
testing capacity is intended to facilitate a more structured
approach to testing in which the relationship between test
requirements and testing, along with an understanding of
the capabilities and limitations of testing tools, is more
clearly defined. In broader terms it is anticipated that this
approach will help industry and testing bodies identify
and describe the depth and scope of their testing events.

Recognizing that testing is a complex, multidimensional,
and often incremental problem leads us then to consider
the use of multiple environments for conducting testing.
In what follows, we will examine more closely each of
these testing environments. Each environment can be
used for conducting a—possibly overlapping—
component of conformance or interoperability testing.

Conformance testing is a multi faceted operation that can
range from a simple assessment of the validity of a
message value to a nuanced determination of a system's
reaction to a complex sequence of events. Testing the
full range of conformance requirements is not always
practical, but the evaluation of specific conformance
requirements such as data content may instead be of
interest. Ultimately, the goal of conformance testing is to
enable interoperability among different implementations.
Conducting interoperability testing adds another
dimension to the requirements for the testing
environment.

A key focus of this document is to provide a clear
explanation of what the objectives are in testing. We seek
to address the following questions:

• What are the testing objectives?
• What can be tested in each environment?
• What testing environments can be used to meet our

testing objectives?
• What requirements do testing environments place on

a test tool design and implementation?
• and maybe most importantly, what does testing

within an environment tell us about the
implementation that was tested?

In addition to addressing these issues, we define and
classify conformance and interoperability terms and
concepts. We then propose a test hierarchy that can be
used to guide and organize the testing plans and
environments. We list and define the types of
conformance and interoperability tests that can be
performed to assess an application. Next we present three
testing environments and for each describe the testing
activities that can be performed within an environment.
We describe each dimension of testing and document the

inter-relationships among each. Testing dimensions
include the test modes such as automated and inspection
testing, aspects of the test environment, e.g., are the
systems under test on-site or will testing be conducted
remotely over the Internet. These are important
considerations when conducting testing. Finally we
summarize with a brief overview of our plans to develop
a testing infrastructure for evaluating implementations of
healthcare data exchange standards. As a basis for
building the testing infrastructure we draw from the
structured and modular approach established in this
work.

2 Definition of Terms
Below we define a set of terms used in this document. In
some cases, these definitions may not be universally
agreed upon, but establishing common definitions for use
in this document will facilitate an understanding of the
concepts presented.

Conformance: Conformance is defined as the fulfillment

of a product, process, or service of specified
requirements [1,2]. The concept of conformance is
essential to any standard for providing an objective
measure of how closely implementations satisfy the
requirements defined in the standard.

Syntactic Interoperability: If two or more systems are

capable of communicating and exchanging data, they
are exhibiting syntactic interoperability. Syntactical
interoperability is required for any attempts of
further interoperability [3].

Semantic Interoperability: Beyond the ability of two or

more computer systems to exchange information,
semantic interoperability is the ability to
automatically communicate information and have
that information correctly interpreted by the
receiving system. To achieve semantic
interoperability, both sides must defer to a common
information exchange reference model [3].

Conformance Testing: The assessment of an

implementation to determine if its behavior is
consistent with the requirements for behavior
defined in a standard or other reference document.
The objective of conformance testing is to determine
how completely and correctly the requirements of
the standard have been met by the implementation.
Note that conformance cannot be definitively
determined; only a degree of confidence can be
derived based on the quantity and quality of tests
performed. Conformance testing is black box testing
in which the details of the implementation are
unknown, only the inputs and outputs of the
implementation are used for evaluation. [1].

Syntactic Interoperability Testing: The assessment of

an implementation to evaluate its capability to
syntactically interoperate with one or more distinct
systems.

Semantic Interoperability Testing: The assessment of

an implementation to evaluate its capability to
semantically interoperate with one or more distinct
systems.

Testing Environments: The testing environments

establish the method of operation in which a
conformance or interoperability test is being
conducted. We have identified three such testing
environments: Data Instance Test Environment,
Isolated System Test Environment, and Peer-to-peer
System Test Environment. For purposes here, we
only define the testing environment necessary to
enable interactions between the test system and the
SUT or test object—i.e., the underlying test model.
We don’t discuss the hardware or software
commonly associated with testing environments; this
is implementation dependent.

System-under-Test (SUT): The software system that is

being testing.

Test Object: The object that is being tested. The object

may or may not have been created by the SUT. For
example a message, document, or an application.

Test Artifact: Material used to test a test object. Testing

requirements are derived from the test artifacts. For
example, a standard, a specification, or
implementation guide.

3 Test Organization Hierarchy
An important aspect in test planning is the organization
and strategy that is administered by the tester. It is
advantageous to have a comprehensive and structured
testing plan to ensure that testing objectives are met, that
is, to ensure that testing covers the evaluation of all
aspects of the system that should be tested. Defining and
applying an established organizational hierarchy at the
outset of test suite development is important. It helps in
the creation, management, and maintenance of test cases.
In addition it can provide the necessary documentation
for demonstrating the purpose and traceability of test
cases. This is especially important when the SUT fails a
test. Figure 1 illustrates one such test organization
hierarchy. What follows is an explanation of each
component in the hierarchy.

Figure 1: Test Organization Hierarchy

Test Suite: A collection of test cases and the associated
machinery and process to execute the test cases. A
test suite may include documentation of the overall
testing strategy, configuration requirements, and may
control, via tooling, the invocation of test cases that
make up the test suite.

Test Plan: A plan that outlines the strategy and

systematic approach to be used to evaluate an SUT.
A test plan should minimally include test scope, test
methods, and test responsibilities.

Test Case: A test case is a sequence of test steps,

executed in the order in which they are listed unless
a control mechanism is present that alters the order.
Test steps are the smallest unit into which a test case
can be divided. Test steps include commands for
starting applications, changing state, or accessing
data. The most important test steps, though, define
assertions. Assertions may be used to evaluate SUT
behavior, or they may be used to ensure that all
actions necessary to carry out the next step in the test
case have completed. A test case should include a
test purpose, pre-conditions, and post conditions.
The test case language may support control
structures that allow the test case workflow to be
repeated.

A test case may, in general, be thought of as
consisting of procedure and verification information.
The procedure information describes how to get the
test items from the SUT during the test, while the
verification information determines whether or not
the SUT satisfies the test requirements by way of
processing the test items [4].

Test Script: A script is synonymous with test case

however it is sometimes distinguished from test case

by referring to the set of instructions for a particular
test that will be carried out by an automated test tool.

Test Scenario: A scenario is also synonymous with test

case and is often used when the test case involves a
multistep business workflow.

Testing Steps: Conformance and interoperability testing

can generally be conducted most effectively by
dividing the testing into a number of steps. Each
step in the testing process is designed to evaluate a
component of the application being tested or
advance the state of the test system. Test steps are
components of a test case.

Test Assertion: An atomic statement designed to

evaluate an element or state of the SUT. Assertions
are derived from the test criteria. For example, “the
application shall populate the administered code
element with a value identified in the vaccine
administered code value set described in the CVX
vocabulary.”

Test Criteria: Criteria used to construct test case

assertions that are designed to evaluate the SUT. The
test criteria are derived from the test specification
(i.e., the standard) that the system is being testing
against.

Test Configuration Information: Configuration data

necessary for executing the test cases that makes up
the test suite. Typically includes data sets, schema
definitions, generation and validation context files,
and actor definitions and addressing.

Test Tool: An application that can be used in conducting

conformance or interoperability testing. A test tool
can interact with users or the SUT. The test tool
executes the test scripts.

Test Agent: An implementation of functionality that—at

a minimum—enables all interactions necessary for
testing to be carried out with the SUT.

4 Test Evaluation Types
 Conformance and interoperability testing can be
effectively conducted by dividing the testing into a
number of categories based on the evaluation specific
criteria. The criteria address the evaluation of one or
more components of the application being tested or one
or more aspects of the application’s behavior.

The system components and behavioral aspects to be
tested include the following:

• Documents and messages.

• Transport protocol usage.
• Application behavior.
• Interoperability.
• Semantic interoperability.

Application behavior testing is designed to test
conformance to the data exchange standard requirements
and to test functional requirements. In the following, we
elaborate on the methods for evaluating each criterion
introduced above.

Data Content Validation: For validating documents and
messages, the data content of the message or document is
evaluated independently of the means that was used to
create the content. In other words, this is a procedure
that is strictly designed to assess data content, and does
not attempt to measure application conformance. Content
validation is designed to evaluate a test object for
adherence to the specification that defines valid instances
of the test object.

Data Content Conformance Testing: Documents and
messages produced by an application may also be
validated for adherence to a specification. The procedure
for content conformance testing does not differ from the
data content validation procedure. But since the data
content is associated with the application that produced
it, in this case, the application can also be evaluated.

Transport Protocol Usage Testing: To test the
application’s use of the transport protocol, an evaluation
of how an application packages and extracts messages
and documents is made. This type of testing assesses an
application's use of an allowed communications protocol.
That is, on sending, a check to ensure the application
correctly packages messages before sending them is
performed, and on receiving the application is checked to
make sure it correctly extracts the message content from
the package it was received in.

Testing Conformance to the Data Exchange Standard:
One element of evaluating application behavior is
evaluating an application's reaction to valid and invalid
variations in data content. This type of testing examines
application responses to received messages. For example,
an application's reaction to variations in message
structure and content are evaluated with this type of
testing. Messages or documents are sent with variations
in the encoding characters and valid and invalid content.
A valid response from the receiving application is an
indication that it processed a valid message (document)
or recognized an invalid message (document).

System Behavior Conformance Testing (from
Application Functional Requirements): To test
application behavior, an evaluation of the application's

interpretation of message content is made. The evaluation
is made based on the actions taken by the application
when new messages are received. The application’s
response to user requests is also evaluated. Generally this
type of testing consists of sending the application valid
messages and evaluating the responses returned by the
application for correct semantic content (when the SUT
is a server). When the SUT is a client application it will
be instructed to create a message or document, usually
via a user interface. In order to conduct System Behavior
Conformance Testing a test scenario is created in which a
sequence of orchestrated transactions are composed to
test adherence to specific functional requirements.

Syntactic Interoperability Testing: Interoperability
testing is designed primarily to establish that two
applications are able to successfully exchange data. No
evaluation of the application's processing of the data is
made with this type of testing.

Semantic Interoperability Testing: This type of testing is
the second phase of interoperability testing. If two
applications establish that they are capable of exchanging
data, semantic interoperability testing attempts to
determine if they correctly process the data exchanged as
intended.

5 Testing Environments
In the previous sections we introduced a set of distinct
testing types that can be used to evaluate the components
of an application essential to its overall functioning.
Below we introduce the conceptual models in which
these testing types can be carried out.

Data Instance Test Environment: This testing

environment is composed of one or more testing
tools and the test object. The test tool uses the
specification to evaluate the test object.

− Data Content Validation Testing

• No Context; not associated with an
application

• e.g., the content of an XML document
evaluated against a schema

− Data Content Conformance Testing
• Test object is evaluated and is identified as

having been produced by a specific
application

Isolated System Test Environment: This testing

environment consists of a SUT and testing tools
designed to interact with the system. The SUT may
interact with test agents or validation testing tools.

− Inherent Data Instance Testing Activities
− Transport Protocol Usage Testing

− Testing for Conformance to Data Exchange
Standard
• Test range of conformance requirements
• Valid and invalid instances
• Multiple test cases conducted

− System Behavior Conformance Testing (from
Application Functional Requirements)
• Test scenario is created to orchestrate a

sequence of transactions

Peer-to-Peer System Test Environment: This testing

environment consists of one or more vendor systems
and a testing infrastructure designed to interact with
and evaluate one or more of the vendor systems.

− Inherent Isolated System Testing Activities
− Syntactic Interoperability Testing
− Semantic Interoperability Testing

5.1 Data Instance Testing Environment

 In the Data Instance Testing Environment a test is
conducted with a test object and a testing tool. The goal
is to perform evaluation of data content against a set of
conformance rules. The tool may be a validation service.
An example of data instance testing is validating an HL7
message against an HL7 conformance profile [5].

The means of delivery is not important; any means by
which the object can be delivered to the testing tool is
satisfactory. That is, a file may be used to deliver the
data or the test object may be delivered using the
underlying transport protocol.

Figure 2: Data Instance Testing Environment

When no application is associated with a data object, no
application conformance evaluation can be made, only an
evaluation of the object's validity can be made. We
define this procedure as Data Content Validation; there
is no context and the test object is not associated with an
application. When the application that produced the
object is identified, a conformance evaluation of the

application can be rendered. We define this procedure as
Data Content Conformance Testing; in this case there is
context and the application that produced the object is
known.

The objective of data instance testing is to assess the
adherence of the test object to the conformance rules
defined by a specification. The specification will
typically include rules defining the structure or syntax of
the data, along with semantic rules for interpreting the
data. The syntax may be defined by a formal grammar
using a BNF (Backus-Naur Form) notation, an XML
schema, or another notation. In all cases, precise
evaluation of data items for compliance with the syntactic
requirements will be possible. If a less formal
mechanism is used for specifying the data syntax,
determining syntactic correctness should still be possible,
although ambiguous cases are possible. Generally, the
specification will also include allowed values for
instances of the data object and these will be evaluated
for compliance with the requirements of the specification.

Figure 2 depicts a test system environment for the Data
Instance Testing Environment. In this illustration the test
object is delivered manually (i.e., the user access point is
via an uploaded file or cut-and-paste of the test object).
Replacing the user icon with a system is another instance
of this test environment in which the test object is
delivered directly via the system that created the test
object. The Data Instance Testing Environment
validation component is leveraged and is an integral part
of the test environments to follow.

5.2 Isolated System Testing Environment

In the Isolated System Testing Environment a test is
conducted with the SUT and a test tool. The SUT may
interact with test agents and validation testing tools.
Since conformance testing is the main objective in using
this model, data content conformance testing is subsumed
in this model. Additionally, the Isolated System Testing
Environment supports Transport Protocol Usage Testing,
Testing for Conformance to the Data Exchange Standard
and System Behavior Conformance Testing (from
Application Functional Requirements).

Transport Protocol Usage Conformance Testing asserts
that an application correctly implements an allowed
communications protocol. That is, on sending, the
application correctly packages messages before sending
them, and on receiving the application correctly extracts
the message content from the package it was received in.

The Testing for Conformance to the Data Exchange
Standard evaluation type tests that an application
correctly sends messages and that the application
correctly responds to all messages, valid and invalid, that

the application receives. All responses are evaluated to
ensure that they adhere to the requirements defined in the
relevant specification. This type of testing evaluates an
application's reaction to variations in message structure
and content. Messages that the application is expected to
support are sent to the application, changes are made in
the encoding characters used, and valid and invalid
variations in content are sent; often boundary conditions
are tested and optional elements are included. The
criterion for evaluation is receipt of an application
response indicating that it processed a valid message or
recognized an invalid message. No semantic evaluation
of the response is made. These tests evaluate a range of
conformance requirements from a specification and
typically involve multiple test cases that can be executed
in a batch mode.

Figure 3: Isolated System Testing Environment

The objective of System Behavior Conformance Testing
(from Application Functional Requirements) is to
evaluate the behavior of an application. As with the
previous testing method, it generally consists of sending
the application valid messages and evaluating the
returned responses. In this case, though, the response
message is evaluated for their semantic content (when the
SUT is a server). When the SUT is a client application it
will be instructed to create a message or document,
usually via a user interface. In order to conduct System
Behavior Conformance Testing a test scenario is created
in which a sequence of orchestrated transactions are
composed to probe a certain functional requirement. In
the behavioral analysis, typically a few data values are
examined to determine validity.

Isolated system testing typically accounts for the majority
of testing that is conducted. Once a system has
successfully undergone conformance testing,
interoperability testing usually proceeds more easily.

Figure 3 depicts the Isolated System Testing Model in
which the testing methods described in this section are
conducted. The SUT interacts with a test tool designed to

assess conformance of the SUT. In this model there is
direct communication between the test tool and the SUT
via the communication protocol. The test tool may
include functionality of an application that an SUT would
typically interact with in an operational environment.
Often multistep tests are conducted in this environment
involving numerous interactive communications between
the test tool and the SUT.

5.3 Peer-to-peer System Testing Environment

Testing is conducted among a group of vendor systems.
A vendor system may interact with a test tool or other
vendor systems. Peer-to-peer system testing is designed
to test interoperability among one or more systems.
Conducting conformance testing prior to interoperability
testing can greatly facilitate the ease with which
interoperability testing can be performed. Peer-to-peer
system testing may include some or all of the
conformance testing described for isolated system
testing. When conformance testing is conducted in
advance, peer-to-peer testing then specifically targets
syntactic interoperability testing and semantic
interoperability testing.

Figure 4 : Peer-to-Peer System Testing Environment

The objective of syntactic interoperability testing is to
establish that two applications are able to successfully
exchange data. No evaluation of the application's
processing of the data is made with this type of testing.
Semantic interoperability testing is the second phase of
interoperability testing. If two applications establish that
they are capable of exchanging data, this type of testing
attempts to assess if they also correctly process the data
exchanged.

Figure 4 illustrates the Peer-to-peer System Testing
Environment. This environment poses different and
significant challenges in testing from what we have
examined earlier. In this environment data exchange is
made among a group of systems. The test environment no
longer has direct interaction with the systems under test.

Here an intermediary or a proxy can be employed to
intercept, log, and route messages to their intended
destination. The conformance test cases that were
developed for Isolated System testing can be leveraged in
Peer-to-peer testing. The abstract test cases could be
identical, however, execution of the test steps,
configuration requirements, and assertion assessment will
differ. By ascertaining that the conformance requirements
are now met in an environment where the SUTs are
interacting we can make a declaration of the
interoperability capabilities of the systems.

6 Additional Testing Considerations
An important aspect to consider in testing is the testing
mode. Automated testing, inspection testing, and hybrid
testing are orthogonal to the testing environment (model)
used. Automated testing mode implies that the evaluation
of the SUT’s behavior is automated. Inspection testing
involves a human monitor. The hybrid mode is a
combination of automated and inspection testing. The
goal is to achieve automated testing whenever possible.
However, in some circumstances it may not be possible
or the cost of automation is too high—for example, a test
case stating “display the patient’s medical record on your
EHR screen for the patient with id MR88408”. The
functional requirements of the SUT often will dictate the
testing method.

Another important consideration in the testing
environments is the operational environment. Tests can
be conducted on-site in a closed network or conducted
over the Internet. Network access and firewalls are a few
of the issues that need to be addressed in an environment
in which the SUTs are intended to communicate over the
Internet.

7 Summary
 We have examined a testing approach for evaluating an
application's adherence to requirements defined in a
standard or other specification. Our approach has been
to divide the testing requirements into a number of
categories that can be separately addressed. By
decomposing the requirements in this way, we have been
able to formulate a modular and structured approach to
comprehensively testing an application. To accomplish
this we have defined a testing strategy based on this
decomposition and the development of a testing plan,
which can be realized through the implementation of a
test suite built up of a number of test cases. We have
shown that by taking this approach it is possible to
effectively evaluate systems for both conformance and
interoperability.

To date, we have developed a number of tools for
supporting testing in these environments. Additionally,

as a basis for building a testing infrastructure for
evaluating implementations of healthcare data exchange
standards we draw from the structured and modular
approach established in this work. The testing
infrastructure will support a spectrum of healthcare data
exchange standards. It will be consist of a set of reusable
components that can be assembled to build out specific
test tools. Key functionality includes generation and
validation of test objects, test agents, and the
communication infrastructure [6, 7]. A test harness will
be employed to orchestrate the modules. Additional
components to support test case development will be
built. The concepts presented here will help shape the
testing infrastructure design. This will enable us to
further evaluate the techniques we have described with
the intention of refining and improving our evaluation
procedures. We also plan to investigate new techniques
to further automate the testing, thereby minimizing the
effort required to test wherever possible.

8 References

[1] ISO Reference - ISO/IEC 17000 Conformity
assessment - Vocabulary and general principles, first
edition 2004-11-02.

[2] Glossary of Conformance Terminology,
Interoperability and Conformance Technical Committee,
OASIS. http://www.oasis-
open.org/committees/ioc/glossary.htm

[3] Institute of Electrical and Electronics Engineers.
IEEE Standard Computer Dictionary: A Compilation of
IEEE Standard Computer Glossaries. New York, NY:
1990.

[4] Agile test framework for Business-to-Business
Interoperability. J. Woo, N. Ivezic, H. Cho. Internal
NIST draft paper—not yet published.

[5] Towards Interoperable Healthcare Information
Systems: The HL7 Conformance Profile Approach. R.
Snelick, P. Rontey, L. Gebase, L. Carnahan. Enterprise
Interoperability II: New Challenges and Approaches.
Springer-Verlag, London Limited 2007 pp. 659-670.

[6] “Conformance Testing and Interoperability: A
Case Study in Healthcare Data Exchange” L. Gebase, R.
Snelick, M. Skall. 2008 Software Engineering Research
and Practice (SERP08), WORLDCOMP’08 July 14-17,
2008, Las Vegas, NV.

[7] A Framework for testing Distributed Healthcare
Applications. R. Snelick, L. Gebase, G. O’Brien. 2009
Software Engineering Research and Practice (SERP09),
WORLDCOMP’09 July 13-16, 2009, Las Vegas, NV.

	1 Introduction
	2 Definition of Terms
	3 Test Organization Hierarchy
	4 Test Evaluation Types
	5 Testing Environments
	5.1 Data Instance Testing Environment
	5.2 Isolated System Testing Environment
	5.3 Peer-to-peer System Testing Environment

	6 Additional Testing Considerations
	7 Summary
	8 References

