

Solids

optical and radiative properties of metallic, polymer and ceramic materials in solid, powder and molten states at temperatures up to 3300 K at static as well as dynamic conditions of the heated zone.

Emissivity Realization Options

	Advantages	Disadvantages
Direct Method Compare Spectral Radiance to that of a Blackbody $\varepsilon(\lambda, T) = \frac{L(\lambda, T)}{L_{Planck}(\lambda, T)}$	 Easier(better S/N) at High Temperatures where emitted flux is greater than background Angle dependence straightforward No need for hemispherical input or output geometry 	 Requires accurate sample T measurement Requires stable blackbody sources with similar range in T or other method of equivalent accuracy
Indirect Method Measure Reflectance and Transmittance Energy Conservation $1 - \rho(\lambda, T) - \tau(\lambda, T)$ $= \alpha(\lambda, T) = \varepsilon(\lambda, T)$ Kirchhoffe Law**	 Easier at Low Temperatures where sample emitted and background reflected fluxes are low compared to measurement source Less need for accurate T measurement Theoretical (e.g. solid state) models could be used 	 Requires hemispherical detection or illumination for non-specular samples Requires reference standard or absolute reflectance measurement Imperfections of the sample may restrict validity of theoretical assumptions
Kirchhoff's Law**	** requires "thermal equilibrium	n"

Earlier Facility Limitations and New Opportunities

- Limited T Range (resistive heating) -Use Laser Heating
- Sample Containment

 \bullet

 \bullet

 \bullet

LIMITATIONS

• T uniformity across FoV

• Plume effects

• Triggering and integration

• Imaging is very demanding

• Highly reflective materials

- -Use local heating (variation of a "Cold Skull")
- Long Dwell Time at High T (sample degradation) -Use Scanning Laser Beam + Fast Spectrometer
- Only Solid Samples (no melts or powders) -Use center-mount virtual sphere reflectometer

Plate,

Anticipated Impact and Beneficiaries

Promote Innovation via better Non-Contact Thermometry, Radiative Transfer Analysis and Process/Target Engagement Control in:

- Laser-Based Additive Manufacturing and Material Processing Technologies
- Refractory and Composite Materials for aerospace, nuclear reactors and thermionic systems

- INDIRECTLY measure EMITTANCE (reflectance) at a SINGLE λ^* (a) Measure RADIANCE T at λ^* (b) Calculate TRUE SURFACE TEMPERATURE at λ^* - DIRECTLY Measure EMITTANCE across the spectral range

HYBRID METHOD (Pierluigi Testa, Rome University, 1975):

- **Dynamic Meltpool Emissometry (DyME)**
- Treats moving melt pool or hot spot as a static target; reduces contamination & evaporation due to the small heat affected zone
- Reflectance and emittance measurements utilize a shared optical path with heating and probing lasers.
- Path integration leads to several seconds of total measurement time and enables good signal-to-noise ratio

ADVANTAGES		
w model	assumptions	

- Very few model assumptions
- Polymers, ceramics and metals
- Powders, solids and melts
- Very high T's possible
- Wide spectral coverage

- Limited T Range for Reference Sources -Use Solid State / Laser Sources
- Directed Energy Systems and their counter-measures

Hybrid Method: New Realization

Virtual Integrating Sphere Reflectometer (VIS)

Directional-Hemispherical Reflectance (DHR):

- Probe laser light incident on sample at near-normal
- Reflected light is sampled by radiometers viewing VIS wall

> S/N Advantage: sample emitted light has same throughput as probe laser reflected light

Probing Light Hemisphere ON and OFF is AWAY is AWAY

Heating Laser OFF Heating Laser OFF

1A-1B Measure reflectance/emittance at single wavelength with filter radiometer 2A – 2B Measure radiance at same wavelength with filter radiometer, Calculate T

3A-3B Measure spectral radiance with spectrometer, Calculate spectral emittance

Implementation Features

Key TEMPS Components:

Future Studies for Uncertainty Evaluation

- Scanning Laser Emissometer with Inline Broadband Metrology (DyME Method)
- Novel Center-Mount Reflectometer (folded virtual sphere) VIS
- Constant Optical Path Trajectory (maintain imaging quality \bullet across the spectrum)
- Separate Sample Tray/Heater for large laser beam and long interaction mode (sub-seconds and longer)

Standards Module and Reflectometer

Evaluation Setup

• Imaging artifacts due to out-of-field scatter

- Temperature distribution across the FoV
- Plume, surface layer ablation, plasma absorption effects
- Thermodynamic equilibrium conditions

Radiometric Module and Light Path

AMMT Optical Path and Performance

The optical system for laser injection and in-line process monitoring within the system control module is shown on the top right diagram.

TEMPS Optical Path and Performance

Imager is aligned co-axially with the laser to capture 'stationary' images of the melt pool.

System Optimization

Objective: Optimize imager performance at 850 nm <u>Constraints</u>: Attain <150 µm FWHM laser spot at 1070 nm Variables: LTZ, CLP, and CIL lens curvature, glass type, distance <u>Result</u>: MTF 64 cycle/mm

Left to Right: Coordinates in optical model, spot diagram for modeled imager performance, and modeled imager MTF estimating 64 cycle/mm resolution.

- Reflective mirrors with protected silver coating to avoid chromatic aberrations
- diffraction limited performance on-axis over the full wavelength range (.38 μ m to 10 μ m)
- Near-diffraction limited performance over a 2 mm diameter field of view.

Three flat BaF₂ plates:

- nearest to the scanner acts as a beamsplitter with a front surface reflecting the fiber laser;
- The 2nd provides a gas seal and partial compensation for the chromatic aberration caused by the beamsplitter plate
- The 3rd provides the remainder of the chromatic aberration compensation.