A NIST effort towards the quantification and benchmarking of Density Functional Theory (DFT) uncertainty

F. Tavazza (NIST), T. Allison (NIST), Y. Congo (NIST), J. Gabriel (UFL), R. G. Hennig (UFL)

Motivation

• DFT values are often used in the literature as **reference values** (to compare to, to fit to, etc.)

Table 5

NiC (NaCl structure): physical constants from GGA and MEAM calculation.

Materials	DFT	MEAM
Lattice constant (Å)	4.08	4.08
Cohesive energy (eV)	10.54	9.89
Bulk modulus (GPa)	249	250
C ₁₁ (GPa)	296	512
C ₁₂ (GPa)	228	121
C ₄₄ (GPa)	48	6.6

- They are always reported **without uncertainties**
- They are often reported with very **few technical specifications**

however Is DFT exact ?

Density Functional Theory (DFT)

- Atomistic modeling
- Based on quantum-mechanics (both ions and electrons)
- **Simulation cell**, often periodic boundary conditions

National I Standards and T

Uncertainties in DFT

1) **controlled approximations**, whose errors can be made arbitrarily small through adjustable parameters typically at the expense of increased computational cost (Ex: k-points, real space or energy cutoff)

k-point convergence

2) **uncontrolled approximations**, whose errors are unknown exactly and can't be reduced by increasing the computation Ex: exchange, correlation, pseudopotential

DFT Basics

The ground state (GS) energy of a molecule/crystal can be determined from the electron density (3 d.o.f.) instead of a wave function (3N d.o.f., N= # of electrons)

* Variational problem:

the GS energy (E) and density (ρ) correspond to the **minimum of some universal functional E**[ρ] subject to the constrain that the density contains the correct number of electrons (Hohenburg-Kohn theorems)

Because $E = E[\rho]$ and ρ is unknown, the above minimization is performed selfconsistently (SCF)

*****Basis sets:

electronic structure methods rely on **expanding the unknown wave function** in terms of a set of basis functions

Some of possible **types**:

- atom centered localized basis sets
- "Parameters" for \square plane waves.

basis set expansion Materials Science and Engineering Division

Energy Functional E[ρ]

♦ Schrödinger eq. (+time independence, non relativistic, Born-Oppenheimer approximations) → energy functional of a system of interacting electrons:

E [ρ] = energy functional = T [ρ] + V_{ext}[ρ] + V_{ee}[ρ]

where: T=kinetic en. (unknown), V_{ext} = electron-ion interaction, V_{ee} = electron-electron interaction (unknown)

★ Kohn- Sham introduced a fictitious system of N non-interacting electrons moving in an effective potential with density = to the true density → the energy functional is:

$$E[\rho] = T_s[\rho] + V_{ext}[\rho] + V_{Coulomb}[\rho] + E_{xc}[\rho]$$

where $\mathbf{E}_{\mathbf{xc}} = \mathbf{exchange} - \mathbf{correlation functional} = \mathbf{error}$ due to using a non-interacting kinetic energy + error due to treating the electron-electron interaction classically

 $\mathbf{E}_{\mathbf{xc}}$ not known exactly and contains all the many-body quantum effects

T "Parameter "= E_{xc} functional form choice

More questions

- What are the parameters that more strongly affect the result? **Do they depend on computed physical quantity**?
- How much do **different DFT codes** (periodic or molecular codes, local orbit basis or plane waves based codes or all-electron (augmented methods) codes) affect the results?

How much does doing computations in a **non completely converged mode** affect the results?

- How can **uncertainties** be estimated?
- How systematic are they (by structure type, by material type, etc.)?
- How can they be propagated?

How much is the **average user of DFT "numbers"** aware of DFT limitations/systematic problems etc.2

DFT production codes Periodic codes (principally) Local orbital basis codes QUEST: SeqQuest - gaussian basis pseudopotential code SIESTA - numerical atom-centered basis pseudopotential code CRYSTAL - CSE - gaussian basis all-electron code AIMPRO FPLO OpenMX - GPL - numerical atom-centered basis PP code (Ozaki group) electron (augmented methods) codes ELK - GPL - FP-LAPW (one branch from the old EXCITING code) EXCITING - FP-LAPW, focus on excited state properties (TDDFT, MBPT) [license not apparent on website, probably open source] (another branch from the old EXCITING code) FLEUR - "freely available" - FLAPW code RSPt - "Open Source" - FP-LMTO • WEN2k - modest fee - full potential LAPW ne wave and related (real space, wavelet, etc.) methods VASP - although check out its (trial?) spiffy new site CASTEP and CETEP CPMD ABINIT - GPL BigDFT - wavelets Quantum-Espresso (formerly PWscf) - GPI PEtot - GPL DACAPO - GPL Socorro - GPL DFT++ - GPL Octopus - GPL - real space TDDFT code Paratec DoD Planewave PARSEC - GPL - real space, pseudopotential CP2K - GPL (mixed basis DFT) GPAW - GPL - real-space multigrid PAW code SPHINX QBOX - GPL - plane wave pseudopotential, large parallel Relum to Top Molecular codes (principally) Gaussian.com (unless, of course, you have been "banned") NWChem o Jaquar - Schrodinger, Inc. GAMESS or GAMESS-UK O QCHEM NRLMOL MondoSCF (Matt Challacombe's Home Page) ADF - SCM deMon CADPAC - The Cambridge Analytic Derivatives Package PYQUANTE - GPL - python-based development toolset for DFT/HF TURBOMOLE - DFT and HF for large molecular systems Relum to Top DFT atomic pseudopotential codes fhi98PP pseudopotential program This is a well engineered, freely available package to generate pseudopotentia http://dft.sandia.gov/Quest/ DFT_codes.html

National Institute Standards and Technolo

Materials Science and Engineering Division

We are not alone

The Kohn-Sham equation of state for elemental solids: a solved problem

Kurt Lejaeghere,¹ Chandler Becker,² Gustav Bihlmayer,³ Torbjörn Björkman,⁴ Peter Blaha,⁵ Stefan Blügel,³
Volker Blum,⁶ Damien Caliste,⁷ Ivano Eligio Castelli,⁸ Stewart J. Clark,⁹ Andrea Dal Corso,^{10, 11} Stefano de Gironcoli,^{10, 11} Thierry Deutsch,^{7, 12} Igor Di Marco,¹³ Claudia Draxl,^{14, 15} Marcin Dułak,¹⁶ Olle Eriksson,¹³ Kevin F. Garrity,² Luigi Genovese,^{7, 12} Paolo Giannozzi,^{11, 17} Matteo Giantomassi,¹⁸ Stefan Goedecker,¹⁹
Xavier Gonze,¹⁸ Oscar Grånäs,^{13, 20} Andris Gulans,^{14, 15} Donald R. Hamann,^{21, 22} Phil J. Hasnip,²³ Nathalie Holzwarth,²⁴ François Jollet,²⁵ Georg Kresse,²⁶ Klaus Koepernik,^{27, 28} Emine Küçükbenli,^{10, 11} Yaroslav O. Kvashnin,¹³ Inka Locht,¹³ Sven Lubeck,¹⁴ Martijn Marsman,²⁶ Nicola Marzari,⁸ Jens Jørgen Mortensen,¹⁶ Taisuke Ozaki,²⁹ Lorenzo Paulatto,³⁰ Chris J. Pickard,³¹ Ward Poelmans,¹ Matt I. J. Probert,²³ Keith Refson,^{32, 33} Manuel Richter,^{27, 28} Gian-Marco Rignanese,¹⁸ Matthias Scheffler,⁶ Francesca Tavazza,⁹ Patrick Thunström,³⁴ Alexandre Tkatchenko,¹⁵ Marc Torrent,²⁵ David Vanderbilt,²¹ Michiel van Setten,¹⁸ Veronique Van Speybroeck,¹ John M. Wills,³⁵ Jonathan R. Yates,³⁶ Guo-Xu Zhang,³⁷ and Stefaan Cottenier^{1, 38}

¹Center for Molecular Modeling, Ghent University, Technologiepark 903, BE-9052 Zwijnaarde, Belgium

²Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Stop 8553, Gaithersburg, MD 20899, USA

³Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich and JARA, D-52425 Jülich, Germany

NIST approach

- ***** Systematic computation of
 - basic structural properties (lattice and elastic constants, formation energies) of

(sc)

- single elements (starting from Si, Fe, Ni, Cu, Al, C, Zr, W)
- In stable and METASTABLE structures

using as many as possible different

- Codes (→ basis set expansions);
- Exchange-correlation choices;
- Thermal smearing, K-points convergence;
-
- Estimate of: uncertainties/trends using these data - uncertainties propagation
- ***** Estimate of the effect of **not complete convergence**
- To make these findings easily accessible to non expert users

Physical properties versus **k point integration** and **smearing method**

Experimental values (T room):

Lattice constant: 4.049 Å

National Insti Standards and Techr

- Aluminum
- **PBE** exchange-correlation functional
- DMol3 code

- The onset of the k-point convergence depends on the physical quantity
- The smearing method controls: the onset of k-point convergence (computation time)
 the value of the physical quantity

Does it depend of the **code**?

- Bulk Modulus
- Aluminum
- **PBE** exchange-correlation functional

Experimental value (T room): 76 GPa

NOT significantly

Does it depend of the **element?**

• Bulk Modulus, PBE exchange-correlation functional, DMol3 code, c=5.0

Does it depend of the **exchange-correlation** functional?

Lattice constant for various elements vs E_{xc} (at converged kp)

Materials Science and Engineering Division

Energy for various elements (metals)

Energy for various non-metallic elements

DFT Benchmarking WEB-INTERFACE

NIST Scientist(s):

- 1. Computing data
- 2. Posting data/curating database:
 - Access using the web browser to custom manage users: data, meta-data and a discussions forum with users.
 - Upload new data using a tool that will synchronize the scientist's local repository with the curator and, therefore, updates the platform in real time
 - Create custom access for collaborators if needed.

Users:

Users will be able to:

- access the platform only from a web browser.
- query, filter, visualize and access the benchmark data.

Large MULTIDIMENTIONAL space:

Using the platform the user can virtual cross-filter/plot/download any combination of parameters \rightarrow huge number of combinations and plots

- Search options:
- 1) defaults parameter sets are provided for non-expert users or quicker investigations;
- 2) it is **possible to specify every single** computational **parameter**, if so desired;
- 3) default configuration can be overwritten by the user (combination of 1) and 2));
- 4) parameter combinations that don't make sense for the chosen domain are restrained

Conclusions

• DFT needs uncertainties

- To estimate/predict such uncertainties is definitely not trivial:
 - Large multidimensional parameter-space needs to be explored
 - Certain "parameters" have a much larger effect than others
 - Material dependent
- Future: to extend the scope from:
 - single elements to (at least) binary compounds
 - mechanical to electronic properties
 - We are collecting data
 - We are showing the need for UQ in DFT
 - We **need help** with the next steps:
 - to compute the uncertainties
 - how to propagate uncertainties

