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Abstract—This paper describes the Tallinn University of
Technology systems built for the OpenASR21 challenge. We
participated in the constrained and constrained-plus data track
for all fifteen languages of the challenge, focusing only on the
case-insensitive subtracks. QOur models use the hybrid DNN-
HMM architecture. For all languages, the final systems of the
constrained track rely on three acoustic models that use the
Kaldi “chain” architecture, trained using LF-MMI. We also
use adapted maximum entropy language models, transformer-
based language models and recurrent neural network language
models for rescoring the results from the first pass. For most
languages, we use IARPA BABEL data for language modeling.
In the constrained-plus track, we use an additional acoustic model
that uses input features generated by the XLSR-53 wav2vec2.0
model, reduced to 80 dimensions using a language-specific LDA
transform.

Index Terms—OpenASR21, speech recognition

I. INTRODUCTION

Th OpenASR (Open Automatic Speech Recognition) Chal-
lenge [?] is organized by NIST. The goal of the challenge is to
evaluate speech recognition technologies under low resource
constraints.

The 2021 edition of the challenge (OpenASR20) con-
sists of speech recognition tasks for 15 languages. There
are three training conditions for all languages: Constrained,
Constrained-plus, and Unconstrained. The Constrained condi-
tion restricts the acoustic training data only to the provided
10 hour subset of the Build dataset. Additional text data from
any public sources may be used for training. The Constrained-
plus condition has the same training data restrictions as the
Constrained condition, but additionally allows the use of
publicly available and previously existing speech pretrained
models. The Unconstrained training condition allows using
additional publicly available speech and text training data from
any language for training the models. In general, the test
data for all languages includes conversational telephone speech
that is scored (where applicable) case-insensitively. For thee
languages, there is also a additional multi-genre tests sets that
are scored case-sensitively.

The Tallinn University of Technology (TalTech) team par-
ticipated in the Constrained and Constrained-plus training
condition of all 15 languages and in the Unconstrained con-
dition for one language. We submitted the results only of
the case-insensitive scoring track. Our systems for different
languages are very similar. Our models are based on the hybrid
DNN-HMM approach. We use Kaldi [1] for training acoustic

models. For each language, we use three acoustic models —
two with a CNN-TDNNF architecture and one with a CNN-
BLSTM architecture. The lattices generated using the three
acoustic models are rescored using adapted maximum entropy
language models, a Transformer-based language model and
a backward recurrent neural network model. The rescored
lattices originating from the two acoustic models are finally
combined and decoded to one-best hypotheses. We use IARPA
BABEL data for additional language model training data for
most languages, with the exception of Somali and Farsi. In the
Constrained-plus track, we use an additional CNN-TDNNF
acoustic model that uses input features generated by the
pretraine multilingual XLSR-53 wav2vec2.0 model, reduced
to 80 dimensions using a language-specific LDA transform.

II. DESCRIPTION OF THE SYSTEM FOR THE CONSTRAINED
CONDITION

A. Training data

In the Constrained condition, the only acoustic data that we
used was the 10-hour subset of the Build dataset provided for
the language being processed.

For language modeling, we used additional training data
for all languages. For all languages except Somali and Farsi,
we use the speech transcripts from IARPA BABEL language
packs as additional textual training data (see Table I), together
with the pronunciation lexicon in the language packs.

For Somali, we used the Somali Web Corpus [2] as ad-
ditional textual training data for this language. We used the
corpus only to extend the language model vocabulary by
500000 most frequent words. Using the corpus for training
the actual language models did not improve language model
performance.

B. Decoding pipeline

Figure 1 gives a visual representation of the decoding
pipeline. Some certain rescoring steps are omitted for some
of the languages (see below).

C. Acoustic Modelling

We uses the hybrid DNN-HMM approach using Kaldi as
the main software tool. We trained three acoustic models for
each language in the Constrained condition. Two models use
the TDNN-F topolology [3] and are trained according to the
Kaldi “chain” model training approach [4]. There are three



TABLE I
IARPA BABEL LANGUAGE PACKS USED FOR ADDITIONAL TEXTUAL
TRAINING DATA.

Language Language pack LDC ID

Ambharic TARPA-babel307b-v1.0b LDC2019S22
Cantonese TARPA-babel101b-v0.4c LDC2016S02
Guarani IARPA-babel305b-v1.0c LDC2019S08
Georgian TARPA-babel404b-v1.0a LDC2016S12
Javanese IARPA-babel402b-v1.0b LDC2020S07
Kazakh IARPA-babel302b-v1.0a LDC2018S13
Kurmanji-Kurdish ~ TARPA-babel205b-v1.0a LDC2017S22
Mongolian IARPA-babel401b-v2.0b LDC2020S10
Pashto IARPA-babel104b-v0.4bY  LDC2016S09
Swahili TARPA-babel202b-v1.0d LDC2017S05
Tagalog TARPA-babel106-v0.2g LDC2016S13
Tamil IARPA-babel204b-v1.1b LDC2017S13
Vietnamese IARPA-babel107b-v0.7 LDC2017S01
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Fig. 1. Workflow of the decoding pipeline.

input feature streams: 40-dimensional filterbank features, 100-
dimensional i-vectors (updated every 10 milliseconds) and 3-
dimensional pitch features. The i-vector and pitch features
are transformed into spatial 40-dimensional planes (five for
i-vector features, one for pitch features) using learned linear
layers and combined with the filterbank features. The resulting
seven 40 x T planes (where T corresponds to the time
dimension) are first processed using six 3 X 3 convolutional
layers, each using the ReLU activation function. The output
from the convolutional block is processed by nine TDNN-F

layers. We used i-vectors extracted in online mode for training
and decoding. The “backstitch” regularization method [5] was
used during training.

For each language, we trained two CNN-TDNNF acoustic
models: one on clean speed-perturbed data and the other on
noise-augmented data. SpecAugment [6] was used during the
training of the first model, and the model was trained for 30
epochs. For noise augmentation, we used the standard multi-
condition training approach implemented in Kaldi [7]: four
copies were made from the clean speed-perturbed data, and
the copies were reverberated, mixed with background noise,
music, or babble noise, respectively. Noises from the MUSAN
corpus [8] were used for augmentation. Since there was now
four times more training data, the second model was trained
for only eight epochs.

The third acoustic model (CNN-LSTM) replaces TDNN-F
blocks with two LSTM layers and an attention-based local
pooling layer, each separated by three fully connected layers.
The CNN-LSTM model is trained on noise augmented training
data for four epochs.

For the 13 languages that had IJARPA BABEL language
packs, the pronunciation lexicons are produced from the
corresponding language pack lexicons. We used the provided
lexicons with the following minor changes:

o Ambharic: all the labialized consonants were split into two:

the main phoneme and a labial pseudo-phoneme (e.g.,
P — pw);

o Kurmanji-Kurdish: we removed the distiction between

phonemes in stressed and unstressed syllables.

For Somali, we used the provided pronunciation lexicon in
the Build dataset for training a grapheme-to-phoneme model
using Phonetisaurus [9] which was then used for generating
pronunciations for words from the external text corpus. For
Farsi, we used the pronunciation lexicon that was provided
with the Build dataset.

D. Language Modelling

Language model used for decoding is a maximum entropy
4-gram model trained using SRILM [10], [11].

The lattices from the first decoding pass are rescored using
language models adapted to the given conversation side. This
is done similarly to the method described in [12]. The language
model training data is divided into “documents”, representing
one conversation side. Then, the hypotheses from the first
decoding pass are used to find conversations in the training
data that are most useful for increasing the unigram perplexity
of the first pass hypotheses of the individual conversations.
In other words, we look for such documents in the training
corpus that produce a language model that improve perplexity
of the conversation transcripts, when applied in interpolation
with the background model. For each conversation side being
processed, we select all such documents from the training
corpus that increase the perplexity of the first pass transcripts.
The set of selected documents is then used for adapting the
“background” unadapted maximum entropy 4-gram language
model for each conversation side. The adaptation is performed



as described in [13]: during optimization of the parameters for
a certain conversation, the parent model was taken as a prior.
This method encourages the domain-specific models to have
feature weights close to the prior model using regularization,
if there is little evidence to change them. This was done using
the SRILM extension for maximum entropy language models
[11].

The lattices that rescored using adapted language models are
further rescored using two neural network language models.
The first one used the Transformer encoder architecture and
is trained using Pytorch. It constists of 6 Transformer layers.
Word embedding and Transformer hidden layer dimensional-
ities are set to 512. The number of “heads” in the multi-head
attention layers is two. Dropout (0.3) and label smoothing
(0.1) are used for regularization. The other neural network
LM is a recurrent neural network language model trained
using Kaldi [14] and it is applied in backward direction.
It consist of two LSTM layers with the cell dimensionality
of 200. Word embedding dimensionality is also 200. The
“backstitch” regularization method [5] was used for training
RNNLMs, with the exception of some languages (Mongolian
and Vietnamese) for which Backstitch caused the RNNLMs
not to converge. For those languages, RNNLMs were trained
without Backstitch. For Amharic, the neural network LMs did
not improve the recognition results at all on development data
and we didn’t use them for rescoring evaluation data.

E. Speech Activity Detection

Since the evaluation data is not segmented into utterances,
we trained a speech activity detection model to detect regions
of speech in the test data, using the implementation in Kaldi.
This approach first trains a GMM speech recognition model on
the provided clean training data, and then combines the labels
from the alignment with the GMM model with default non-
speech labels for unlabeled regions of the training data. The
resulting training data is augmented with reverberation and
noise perturbation, and the final TDNN-based speech activity
detection model is trained. The model uses statistics pooling
for incorporating long-range information.

F. Runtime Performance

We performed all the training on a single server with
44 CPUs, 384 GB of RAM and seven NVidia P100 GPUs.
Training all the models of the Constrained track for a single
language is done in around 15 hours, and we never use more
than 3 GPUs in parallel. It should be possible to complete
the training in only a few hours after modifying the training
pipeline to train all models in parallel.

Running the decoding pipeline on the 10-hour evaluation
sets of different languages took from 32 minutes (Swabhili)
to two hours (Somali), measured in wall clock time. The total
CPU time per decoding run ranged from 10 to 40 hours. Those
numbers however are not exactly comparable since there were
other processes running on the same server. Nevertheless, the
large differences turn out to be mostly caused by the different
densities of the first pass decoding lattices: the lattices of the

Guarani evaluation data are more than two times smaller than
the Vietnamese lattices. The differences in lattice densities
have a large effect on the complexities of the rescoring steps,
resulting different execution speeds. The large differences in
lattice densities are probably caused by multiple factors, such
as the choice of language modeling units (e.g., Vietnamese
transcripts in the BABEL data use a tokenization scheme with
short morpheme-like units) and acoustic conditions of the test
data. The maximum memory consumption per process during
decoding run was around 4.6 GB. GPUs were not used during
decoding.

ITI. RESULTS
A. Impact of Individual Decoding Steps

Table II shows the word error rate (WER) after each
decoding step for Georgian. For most languages, the trend
was similar to this language: first pass decoding using either of
the CNN-TDNNF acoustic models resulted in similar WERs,
although the absolute WERs across languages were very dif-
ferent. The CNN-LSTM model resulted in consistently higher
WERs than CNN-TDNNF on all languages, yet it improved
the combined results. Lattice rescoring and combination re-
sulted in 5-10% relative improvement, with regard to the first
pass results.

B. Final results

Table III lists WERs for development and evaluation sets
across all languages, together with our results from the 2020
challenge. Development set results are taken from our internal
decoding and scoring runs, while the results on the evaluation
data originate from the official leaderboards.

It can be seen that the absolute differences between the
WERSs of the individual languages are big, with Georgian and
Swahili giving the best results and Tamil and Farsi giving
worst results.

The improvement with regard to our 2020 results range from
0.9 (Tamil) to 2.7 (Cantonese) percentage points. The main
differences of our current system to the 2020 system are the
use of three acoustic models (instead of two), the application
of backstitch regularization when training acoustic models, and
the replacement of a forward RNNLM with a Transformer LM.

IV. DESCRIPTION OF THE SYSTEM FOR THE
CONSTRAINED-PLUS CONDITION

The Constrained-plus training condition allows the use of
publicly available pretrained models, given that they were
not trained on labelled speech of the target language. We
experimented with the XLSR-53 wav2vec2.0 model [15].
XLSR-53 is a large pretrained model trained on unlabeled
multilingual data. The model is trained by jointly solving a
contrastive task over masked latent speech representations and
learning a quantization of the latents shared across languages.
The model contains a convolutional feature encoder that maps
raw audio to latent speech representations which are fed to
a Transformer network that outputs context representations.
XLSR-53 is pretrained on 56 000 hours of speech data from



TABLE II
WORD ERROR RATES (%) FOR GEORGIAN AFTER DIFFERENT DECODING PHASES

Acoustic model CNN-TDNNF  CNN-TDNNF  CNN-LSTM
Augmentation SpecAugment Multi-condition
Ist pass 41.3 41.7 443
+ Language model adaptation 40.9 41.4 43.9

+ Transformer LM (forward) 40.7 41.2 43.8

+ RNNLM (backward) 40.6 40.9 43.5
Combination 38.5
TABLE III utterance. The overhead of using the XLSR-53 based model,

FINAL WORD ERROR RATES (%) FOR DEVELOPMENT AND EVALUATION
DATA OF DIFFERENT LANGUAGES. OUR 2020 WERS ARE GIVEN FOR

COMPARISON.
Constrained Constrained-plus
2020 2021 2021
Language Dev  Eval | Dev Eval | Dev Eval
Ambaric 37.0 451 | 355 432 | 332 41.5
Cantonese 472 454 | 43.6 427 | 42.1 41.0
Georgian 38.5 41.6 38.9
Farsi 523 819 79.1
Guarani 403  46.6 | 39.7 452 43.7
Javanese 537 53.8 | 522 527 | 50.0 50.6
Kazakh 452 530 50.6
Kurmanji-Kurdish | 63.5 653 | 634 644 | 61.1 62.1
Mongolian 48.0 473 | 45.6 453 43.7
Pashto 43.6 457 | 435 453 425
Somali 57.1  59.1 | 565 587 | 54.7 56.9
Swahili 332 350 38.9
Tagalog 40.5 419 40.2
Tamil 625 65.1 | 61.7 642 62.8
Vietnamese 452 451 | 435 431 40.1

53 languages. Pretraining data includes 650 hours of BA-
BEL training data from 10 languages (Bengali, Canotonese,
Kazakh, Haitian, Kurmanji-Kurdish, Pashto, Tamil, Turkish,
Tok Pisin and Vietnamese).

Usually, XLSR-53 is used in speech recognition by finetun-
ing it on labelled training data using the CTC objective. We
took an alternative approach: the 1024-dimensional outputs of
the non-finetuned XLSR-53 model were first transformed to 80
dimensions, using an LDA transform trained on a very small
subset (1000 utterances) of training data together with the
corresponding senone alignments. Then, the 80-dimensional
XLSR-53 features of the noise-augmented ans speed-perturbed
training data were dumped to disk and a Kaldi CNN-TDNNF
model was trained on top of the features. This model didn’t
use i-vectors.

The lattices generated based on the XLSR-53 features were
postprocessed by the same rescoring steps as in our Con-
strained system. Finally, the lattices from the CNN-TDNNF
models of the Constrained system were combined with the
lattice of the XLLSR-53 based system, using a weight of 0.5
for the latter.

The results of our submission in the Constrained-plus con-
dition are also listed in Table III.

The decoding using the XLSR-56 based model is done on
the CPU. The computationally most expensive part of this
process is the extraction of XLSR-53 features which runs
in roughly realtime speed with regard to the duration of an

in comparison to the Constrained system, is thus around 15
hours in total CPU time, given the evaluation set of 10 hours.

V. DESCRIPTION OF THE SYSTEM FOR THE
UNCONSTRAINED CONDITION

In the Unconstrained training condition, we submitted a
result only for Amharic. The system is described in detail
in [16]. It is a combination of two models trained on the
BABEL Ambharic data: a Kaldi CNN-TDNNF system, together
with language model adaptation and rescoring steps, and the
XLSR-53 model, finetuned to Ambharic using CTC. The output
is obtained by optimized N-best list combination of the two
systems. It resulted in a WER of 28.9% on the development
set and 35.2% on the evaluation data.

VI. CONCLUSION

This paper described the TalTech systems developed for
the OpenASR21 challenge. We participated in the Constrained
and Constrained-plus training conditions of all challenge lan-
guages. For most languages, we used the IARPA BABEL lan-
guage packs as additional sources of language modeling data.
For decoding, three Kaldi “chain” models (2x CNN-TDNNF
and 1x CNN-LSTM) were used, trained with different data
augmentation strategies. Language model adaptation, rescoring
with Transformer and (backward) RNNLM and combining the
lattices from three decoding acoustic models was found to
improve the first pass results of a single acoustic model by 5
to 10% relative.
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