USEFULNESS OF CURRENT BIOMETRIC DATASETS

Biometrics and Forensics Data Symposium Elham Tabassi NIST / ITL / Image group January 26, 2015

OUTLINE

- » Current landscape
 - Issues + gap
- » Synthetic
- » Laboratory collection
- » Operational
- » Wish list

CURRENT LANDSCAPE :: DATA ORIGINS

Synthetic

- Software generated
- Mostly not in use!
- Reproducible
- Possibly large amount of data
- Highest control on design
- Ex. FVC 2002

Laboratory

- Designed collection
- Mostly publicly available
- Hardly reproducible
- Medium-to-small amount of data
- Medium control on design
- Ex. FVC, ICE, QFire

operational

- A (small) subset of a deployment
 - Mostly sequestered
- Not reproducible
- Large amount of data
- No control on design
- Ex. NIST Sequestered evaluation data POE

CURRENT LANDSCAPE :: ISSUES + GAPS

- » Non-uniform usage of publicly available data prevents reproducible research
 - Selective subset of dataset
 - Removal of some images or subjects without reporting
 - Selection of enrolled (gallery) + search (probe) sets
 - Are comparison scores independent?
 - Varying number of representations per source
- » Non-intended purpose
 - e.g., reporting accuracy on a unusually low quality dataset or goat study on frequent travelers.
- » Legacy vs. emerging technologies

SYNTHETIC DATA :: SOFTWARE GENERATED DATA FROM SCRATCH OR MANIPULATING A PRISTINE IMAGE.

Advantages

- Making images with specific controlled defects, where the type and exact amount of the impairment are known.
- » Ground-truth known and traceable.
- » Can generate many many images
 - Repeatable
- » Mostly public + no privacy issues
 - Can promote reproducible research
- Most useful for developing or evaluating algorithms for detecting specific defects (i.e., quality algorithms)

Issues

- The world is too complex to be synthesized.
 - Synthetically impaired images would not be a fair representation of the real-world low-quality images.
- Fails to capture the interaction of several simultaneous defects in an image, as is the case in real-world non-laboratory data.
- Metric for assessing the representativeness of the synthetic data to real-sensed fingerprints.

LABORATORY DATA :: DESIGNED DATA COLLECTION

VARYING CAPTURE DEVICE SETTINGS, OR ENVIRONMENT CONDITIONS, OR SUBJECTS' BEHAVIOR BY DESIGN.

Advantages

- Producing real-world (or realsensed) images.
- Allows for designing the type and amount of impairments – to some extent.
- Can support ongoing collection if subjects can be brought back
- » Mostly public
 - Can promote reproducible research
- » Can be used as a proxy for real data

Issues

- Precise control of acquisition is challenging, so inevitably ground truth will be noisy.
- » Keeping the confounding variables, i.e., subject/acquisition parameters, uniform is unattainable.
 - Over or under representation of subpopulation or image characteristic
- Solution Care must be taken to account for data integrity and balance
 - Correct subject IDs + Equal number of representation per source
- » Cost grows very quickly with size
- » Human subject review + approval

OPERATIONAL DATA :: REAL-WORLD DATA COLLECTED AT OPERATIONAL DEPLOYMENTS

Advantages

- » True representation
 - Capture technology, capture environments
- » Real defects or impairments
 - or several simultaneous defects
- » Possibly large number of data available
- » Ultimate target for all research / development / evaluation

Issues

- » Ground-truth of subject IDs
 - Same source different ID
 - Different source same ID
- » None or very limited ground truth on source or cause of low quality
- » Possible sampling issue
 - Over or under representation of subpopulation or image characteristic
- » May or may not be diverse
- » Often sequestered
 - Cannot promote reproducible research

WISH LIST

FOR AN ALL-PURPOSE DATA COLLECTION

General

- » Representative of real-world operational data
- » Large number of subjects/sources
- » Multiple representations
- » Reliable meta data
 - sex, date of birth, date of capture, capture technology, resolution, finger position, nationality or race, pressure, moisture, rotation, etc.
- » Diverse
 - Age, sex, capture technology, race, etc.
- » Ongoing, extendable
 - Longitudinal studies
 - Emerging technologies, e.g., contactless fingerprints

The devil is in the details!

- » What do real-world operational data look like?
 - How to sample to get a true representative?
- » How large is large?
- » How to assure data integrity?
 - Reliable ground-truth IDs
 - Reliable ground-truth image characteristics
- » Mark-up or annotating data
 - E.g., minutia location

WE CAN/SHOULD DO

- » Accurate characterization of operational real-world data
 - To learn `clusters' of data
 - Design data collection to target the learnt `clusters'
 - Perhaps via uniform data collection protocol
- » Better understanding of required sample size
 - And the associated uncertainty in measuring the error rates
- > Improve uniformity of reporting
 - Improving data integrity in laboratory collection
 - Guidance document on consolidation
 - Guidance on enrolled (gallery) and search (probe) compositions

THANK YOU.

tabassi@nist.gov

301 975 5292