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The Wildfire Problem
• Increasing number of people moving to 

areas in or near fire prone wildlands1

• Accurate predictive modeling of 
wildland fires can mitigate the risk that 
these fires pose

• Physics based models8 can better 
capture the controlling mechanisms of 
wildland fires, account for:
– Variations in fuel species
– Effect of fuel management (e.g., thinning)
– Variable environmental conditions
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Physics-based 
Modeling of Wildfires

• Comprehensive models require a large 
number of input parameters 

• Parameters may be obtained by
– Direct experiment 
– Literature search
– Optimization techniques

• Thermal decomposition measurements 
are not readily available for a variety of 
common vegetative fuels10

– Fuel properties that are available from such 
experiments can be subject to large uncertainty10
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Existing Measurements and 
Models of Vegetative Fuels

• Previous mg-scale measurements11-20

– Philpot: Plant mineral content vs. pyrolysis behavior 
(rate, onset temperature, and residue yields)

– Shafizadeh: Composition (cellulose, hemicellulose, 
and lignin) impact on thermal properties, 
decomposition pathways, species yields

– Sussot: Temperature range of decomposition, heat 
of pyrolysis, total energy released

• “Standard Fire Behavior Fuel Models” 6
– Heat content prescribed as 18.6 kJ g-1 for all 

but one (of 40 available) fuel models
• “Fuel Particle Heat Content” [BTU/lb]
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Focus of Study

• Perform thermal analysis experiments on 
a variety of common vegetative fuels
– Extract thermal decomposition mechanisms + 

associated kinetics and heats of combustion
– Store results in freely available database

• Conduct CFD simulations of wildfire flame 
spread using thermal decomposition 
models determined from experiments

• Quantify model sensitivity to measured 
variations in fuel decomposition behavior
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Vegetative Fuels

• Six species commonly found in Western 
United States
– Bulk sample (stems + leaves) picked from a 

series of randomly selected plants
– Obtained between May and July of 2017 
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Vegetative Fuels
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Pacific Southwest 
Research Station

(California)

Adenostoma 
Fasciculatum Chamise

Arctostaphylos Glauca Bigberry Manzanita
Ceanothus Greggii Desert Ceanothus

Ceanothus 
Leucodermis

Chaparral 
Whitethorn

Rocky Mountain 
Research Station

(Montana)

Pinus Contorta Lodgepole Pine

Pseudotsuga Menziesii Douglas-Fir
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Thermal Analysis Experiments
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• Thermogravimetric Analysis (TGA) 
– Degradation Reaction Mechanism
– Thermal Degradation Kinetics (Ai, Ei) 

• Microscale Combustion Calorimetry (MCC) 
– Heats of combustion of gaseous volatiles (ΔHc)
– Char Yields (μchar)



Thermogravimetric Analysis (TGA) 

• Furnace
– Continuously purged with N₂

– Well-defined temperature 
program

• Measure
– Mass of sample as a function 

of temperature

• Determine
– Thermal degradation 

reaction mechanism
– Associated kinetics (Ai, E i)

Furnace

Water-cooled 
Balance

Sample 
Carrier

Sample

N2 Purge
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Microscale Combustion 
Calorimetry (MCC)

10

• Pyrolyzer
– Continuously purged with N₂

– Well-defined temperature 
program

– Gaseous pyrolyzates flows to 
combustion chamber

• Combustor
– Gases react with excess O₂

– HRR measured by oxygen 
consumption calorimetry

• Determine
– Heats of Combustion of 

Gaseous pyrolyzates (ΔHc )

Pyrolyzer

Combustor

Interflam 201910



Milligram-Scale Experiments
• Vegetative Fuel Samples

– Stored in desiccator, minimum of 48 h
– Whole leaf / stem samples < 0.75 mm thick

• Test Conditions
– Sample mass: 4.5 to 6.5 mg
– Initial isotherm: 20 minutes at 75 °C 
– Heating Rate: 10 K min-1

– Max Temp: 700 °C 
– Environment: Pure N2
– Crucible Type: Alumina
– Replicate tests: TGA (5x), MCC (3x)

• Calibration 
– Temperature (156.6 to 961.8 °C): Within 3 months
– TGA baseline, MCC O2 sensor: Daily
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TGA Experiments

• Chamise Stem

• Big Berry Leaf

8/23/201912

Introduction
Background
Focus of Study

Experimental
Vegetative Fuels
TGA Experiments
MCC Experiments

Modeling
Simulations of Wildfire 
Spread

Conclusions and Future Work

Interflam 2019



TGA Experiments

– Higher peak mass loss rate, 
little mass loss above 400 °C

– Typically two distinct mass 
loss peaks
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– Decomposition occurs over 
a wider temperature range

– Multiple, overlapping 
reactions

Stems Leaves



Thermal Decomposition 
Mechanisms

• Assumed degradation mechanism12,14

– Parallel, first order, Arrhenius rate reactions
d𝑚

d𝑡
= − σ𝑖 1 − 𝜈𝑖 𝑚𝑖𝐴𝑖 exp

𝐸𝑖

𝑅𝑇

– 𝑚 Total sample mass
– 𝑚𝑖 Mass of component 𝑖
– 𝑇 Sample temperature
– 𝑅 Universal gas constant
– 𝐴𝑖 , 𝐸𝑖 Kinetic parameters describing the reaction
– 𝛥𝑚𝑖 Mass lost as volatiles in reaction step i
– 𝜇𝑐ℎ𝑎𝑟 Char yield 𝜇𝑐ℎ𝑎𝑟 = 1 − σ𝑖 𝛥𝑚𝑖

• Kinetic parameters (𝐴𝑖, 𝐸𝑖) and mass loss in each 
reaction step (𝛥𝑚𝑖) determined using the 
algorithm developed in previous presentation 26
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Experimentally-Measured and 
Model-Predicted TGA Data 

• Lodgepole Pine Stem

• Big Berry Leaf
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Experimentally-Measured and 
Model-Predicted TGA Data 
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Experimentally-Measured and 
Model-Predicted TGA Data 
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Kinetic Parameters Describing 
Decomposition of Vegetative Fuels
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MCC Experiments
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MCC Experiments
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MCC Experiments
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MCC Experiments
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Heats of Combustion

• Simple analysis of MCC Data:
– Heat of complete combustion, ΔHc,total

• Reaction-step specific heats of combustion, ΔHc,i
– Consider relative peaks of measured HRR/mvol and dm/dt

– Use these peak values (measured) + relative fraction of volatiles 
released by each reaction step at peak (model)
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Douglas-Fir Leaf

ተ

𝐻𝑅𝑅/𝑚𝑣𝑜𝑙 𝑒𝑥𝑝

𝑑𝑚
𝑑𝑡 𝑒𝑥𝑝

𝑝𝑒𝑎𝑘 𝑗

=

σ𝑖=1
𝑁𝑟𝑥𝑛𝑠 Δ𝐻𝑐,𝑖 × ฬ

𝑑𝑚𝑖
𝑑𝑡 𝑝𝑒𝑎𝑘 𝑗

σ
𝑖=1
𝑁𝑟𝑥𝑛𝑠 ฬ

𝑑𝑚𝑖
𝑑𝑡 𝑝𝑒𝑎𝑘 𝑗



Experimentally-Measured and 
Model-Predicted MCC Data 
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Experimentally-Measured and 
Model-Predicted MCC Data 
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Heats of Combustion and 
Char Yields of Vegetative Fuels
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• ΔHc, total varies between 8.9 and 14.4 kJ g-1

• ΔHc, total is 17% greater for leaves than for stems
– Excluding Lodgepole Pine stems for which ΔHc, total is 42% 

greater than the average of all other stems tested



Numerical Simulations of 
Wildland Fires
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• Simulations of wildfire spread conducted 
in the NIST Fire Dynamics Simulator (FDS) 
– FDS version 6.7.129

• Case study: 
– Controlled burn of a 100 m by 100 m plot of 

kerosene grasslands30

– Repeat simulations using the reaction 
mechanisms, associated kinetics (A, E), and 
heats of combustion (ΔHc,i) determined for all 
vegetative fuels tested in this work



Numerical Simulations of 
Wildland Fires
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• Computational domain
– 120 x 120 x 20 m 
– 36 meshes, 0.5 m cubic cells

• Lagrangian particles simulate grass
– Modeled as slender cylinders 
– Rigidly fixed, perpendicular to the wind and 

the source of thermal radiation
– One simulated blade of grass per cell; 

weighting factor applied to match measured 
bulk mass per unit area



Numerical Simulations of 
Wildland Fires
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• Ignition defined 
to match 
experimental 
conditions9

• All relevant soil, 
vegetation, and 
combustion 
parameters are 
taken from a 
recent modeling 
study9 are 
typical of wood 
or cellulosic fuels

Property Value 

Fuel Properties 

Chemical Composition C6H10O5 

Radiative Fraction 0.35 

Soot Yield 0.015 

Specific Heat 1.5 kJ kg-1 K-1 

Conductivity 0.1 W m-1 K-1 

Density 512 kg m-3 

Heat of Pyrolysis 418 kJ kg-1 

Soil Properties 

Soil Specific Heat 2.0 kg-1 K-1 

Soil Conductivity 0.25 W m-1 K-1  

Soil Density 1300 kg m-3 

 

Property Value 

Wind Speed 4.6 m s-1 
Ambient Temperature 32 °C 

Surface Area to Volume Ratio 9770 m-1 
Grass Height 0.21 m 

Bulk Mass per Unit Area 0.283 kg m-2 

Moisture Fraction 6.3% 

 

Measured properties of CSIRO 

Grassland Fire Case C064 30

Assumed Fuel and Soil Properties 

for Wildfire Simulations 9



Numerical Simulations of 
Wildland Fires
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Numerical Simulations of 
Wildland Fires
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Numerical Simulations of 
Wildland Fires
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Numerical Simulations of 
Wildland Fires
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Numerical Simulations of 
Wildland Fires
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Representative snapshot of FDS simulation 
of a CSIRO Grassland Fire

• Fire front location
– Location of the maximum gas temperature

• Propagation occurred at constant rate, R
– For all fuels: 0.50 ≤ R ≤ 1.11 m s-1

– Spread rate faster for leaves than stems
– ΔHc, total vs. ΔHc,i

• For each fuel, R changes by -27% to + 66%



Numerical Simulations of 
Wildland Fires
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Representative snapshot of FDS simulation 
of a CSIRO Grassland Fire

 Spread Rate (m s-1) 

Sample Name ΔHc, i  ΔHc, total 

Leaves  

Chamise 0.82 1.20 

Bigberry Manzanita 1.11 0.85 

Desert Ceanothus 0.91 0.66 

Chaparral Whitethorn 0.66 0.58 

Lodgepole Pine 0.74 0.51 

Douglas-Fir 0.50 0.83 

Average Leaf  0.53 

Stems  

Chamise 0.65 0.79 

Bigberry Manzanita 0.69 0.65 

Desert Ceanothus 0.64 0.77 

Chaparral Whitethorn 0.59 0.75 

Lodgepole Pine 1.10 1.07 

Average Stem  0.85 

 
• Fire front location

– Location of the maximum gas temperature
• Propagation occurred at constant rate, R

– For all fuels: 0.50 ≤ R ≤ 1.11 m s-1

– Spread rate faster for leaves than stems
– ΔHc, total vs. ΔHc,i

• For each fuel, R changes by -27% to + 66%



Conclusions
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• Measured thermal degradation behavior of 
stem and leaf samples of six vegetative 
fuels commonly found in the United States 

• Thermogravimetric Analysis (TGA) 
– Thermal decomposition mechanisms

• Parallel, first order, Arrhenius rate reactions
– Associated kinetic parameters (Ai, Ei) 

• Microscale Combustion Calorimetry (MCC) 
– Heats of complete combustion of all gaseous 

pyrolyzates released by sample, ΔHc,total
• ΔHc, total varies between 8.9 and 14.4 kJ g-1

– Heats of complete combustion of gaseous 
species produced in each reaction step, ΔHc,i



Conclusions
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• Distinct variations in degradation 
behavior of different fuels
– Onset temperature of degradation
– Number of apparent reactions
– Peak measured mass loss and heat release rates

• Reaction step peaks observed between 220 and 485 °C. 
– Stems: higher peaks, narrower temperature range
– Leaves: overlapping reactions over a wider 

temperature range, higher heats of combustion

• Model-predicted wildfire spread rate 
sensitive to measured variations in 
decomposition behavior of these fuels
– Significant dependence on fuel decomposition 

mechanism: Predicted wildfire spread rate varied 
between 0.5 and 1.11 m s-1

– Spread rate faster for stems than leaves
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The 2020 MaCFP 
Condensed Phase Workshop

Workshop Objectives
– To catalogue current approaches used to 

parameterize pyrolysis models;

– To quantify the interlaboratory variability for 
comparable experimental datasets; 

– To assess the impact of the variability of model 
parameters on predictions of sample burning rate; 

– To present a rigorous analysis of these results in the 
Fire Safety Journal
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Validation of microwaving 
samples for preservation
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