Joost Sytsma

International Technology Roadmap for Semiconductors 1999

	1999	2002	2005	2008	2011	2014
Half Pitch DRAM (nm)	180	130	100	70	50	35
Development (nm)	90	35	45	-	-	-

CD =Controllable minimal linewidth

To be achieved via
$$CD = k_1 \cdot \frac{\lambda}{NA}$$

Defining the challenge-1

Defining the challenge-2

- Major steps by λ and NA
- The process factor k₁ and contrast still decreases ⇒ Need for:
 - Improved System Dynamics
 - Improved System's Imaging Capabilities
- Future Needs (EUVL)

"What you can not measure, you can not make, nor control"

Good System Dynamics

Even better System Dynamics

Improved System's Imaging Capabilities

- Resolution enhancement techniques
- Optics utilization improvement
- Process improvement

system = scanner + reticle + process (+ SEM/ELM....)

- Illumination enhancement techniques:
 - Off-axis illumination
- Optimal use of Projection Optics
 - Case Study L₁-L₂
 - Aberration measurements
 - Lithographic Correlation and Aberration control
- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality
- Process improvement

"What you can not measure, you can not make, nor control"

- Illumination enhancement techniques:
 - Off-axis illumination
- Optimal use of Projection Optics
 - Case Study L₁-L₂
 - Aberration measurements
 - Lithographic Correlation and Aberration control
- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

"What you can not measure, you can not make, nor control"

Illumination enhancement techniques

(a) Two Huygen sources formed at S1 and S2

(c) "Densely" packed S1 and S2

Observations:

- 1) Diffraction patterns are not the same from dense to isolated
- 2) Lens act as "lowpass" filter, only lower diffraction order light beams can get through lens

Illumination enhancement techniques

Off-axis illumination (OAI)

220 nm

180 nm

150 nm

150 nm

Annular

Quasar

Dipole

Illumination enhancement techniques

OAI and Normalized Image Log Slope

- Illumination enhancement techniques:
 - Off-axis illumination
- Optimal use of Projection Optics
 - Case Study L₁-L₂
 - Aberration measurements
 - Lithographic Correlation and Aberration control
- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

"What you can not measure, you can not make, nor control"

Case study L₁L₅

Target .180 μm

Case study L₁L₅

- Understanding L₁-L₅
 - Measured and calculated
 - two feature orientations

Case study L₁L₅

Correlation with coma aberration:

Case study L₁L₅

Coma=13 nm: $\Delta \phi = (n-1)*d$, \Rightarrow d=26 nm on a track length of 1 meter distributed over 50 to 60 surfaces.

Aberration levels

- Quality in RMS wavefront aberration (Progler, 1998)
 - Gold: 0.025 λ (6.2 nm for 248 nm)
 - Silver: 0.04 λ
 - Bronze: 0.06 λ

- Set a target at 5% CD change du to aberration
 - Extract the RMS aberration level that results from the target
 - Define an aberration sensitivity parameter as SA=RMS-1

- More accurate description needed: Zernike fringe polynomials
- Zeiss makes 'golden' lenses

Imaging 19 version 2.0 Joost Sytsma / ULSI Characterization and Metrology 2000

Zernike Fringe Polynomials

Optimal use of Projection Optics Aberration measurements

- All lens manufacturers use phase measuring interferometry (PMI) during manufacturing.
- In situ by sampling the pupil
 - Select angles (Litel)
 - Use structures with different diffraction patterns
 - Use Multiple Illumination Settings (NA/s)
 - Quick and extension on established methods: FAMIS/DAMIS
 - Full lens qualification: Artemis

Aberration measurements At Multiple Illumination Settings

- FAMIS: Focal At Multiple Illumination Settings
 - Best Focus changes due to spherical aberration: Z₄, Z₉, Z₁₆,...
 - Sensitivity depends on NA/ σ and can be calculated
 - Solve linear matrix equation:

$$\begin{bmatrix} BF_{meas}(1) \\ BF_{meas}(2) \\ ... \\ BF_{meas}(n) \end{bmatrix} = Z4 \cdot \begin{bmatrix} 1 \\ 1 \\ ... \\ 1 \end{bmatrix} + Z9 \cdot \begin{bmatrix} BF_{sim@1nm_Z9}(1) \\ BF_{sim@1nm_Z9}(2) \\ ... \\ BF_{sim@1nm_Z9}(n) \end{bmatrix} + Z16 \cdot \begin{bmatrix} BF_{sim@1nm_Z16}(1) \\ BF_{sim@1nm_Z16}(2) \\ ... \\ BF_{sim@1nm_Z16}(n) \end{bmatrix}$$

Generalized: C=W·Z

Aberration measurements At Multiple Illumination Settings

- Famis:
 - Spherical aberration,
 Astigmatise: Z_{9,16}, Z_{12,21}
- Damis: Distortion at MIS
 - Coma: Z_{7,8}, Z_{14,15}
- Artemis: ART at MIS (Philips)
 - Full set, Z₅₋₃₇

Artemis: Prints a phase dot

- Deformation is written as a Fourier series.
- Order of Fourier components correspond to angular Zernike coefficients
- MIS allows separation of radial term

Lithographic Correlation and Aberration control

- Controlling Iso-dense bias
 - Related to Spherical Aberration, measurable with FAMIS
 - Process optimization reduces Iso-dense bias

Lithographic Correlation and Aberration control

- Controlling L₁L₂
 - Caused by coma, measurable by DAMIS
 - Wavelength shift reduced coma
 - L₁L₂ reduced from 50 to 10 nm

Lithographic Correlation and Aberration control

- Isolation properties of DRAM cells at k₁= 0.37
 - C-D is critical metric , Threewave and coma sensitive
 - Predicted performance of a 'golden' lens

- Illumination enhancement techniques:
 - Off-axis illumination
- Optimal use of Projection Optics
 - Case Study L₁-L₂
 - Aberration measurements
 - Lithographic Correlation and Aberration control
- Reticles:
 - Optical Proximity Correction
 - Phase shifting mask
 - Reticle quality

"What you can not measure, you can not make, nor control"

Resolution Enhancement Techniques

Mask Type

Structure(s)

Challenges

Optical Proximity Correction

Phase Shifting Masks

DuPont

Binary Mask

Multi-Phase Shift Mask

version 2.0

Quality: CD-uniformity

— - 4	Setting	CD-uniformity [3σ, nm]						
Feature		@BF	MEF	Reticle contr.	±0.1μm	±0.2μm	±0.3μr	
180nm DL	NA=0.60 σ=0.70/0.40	11	2.1	8		12	14	
180nm iso	NA=0.56 σ=0.60/0.30	9	1.2	5		23		
150nm DL	NA=0.66 σ=0.75/0.45	14	3.2	12	14	15		
150nm DL*	NA=0.70 σ=0.85/0.55	11	2.0	8		15		
150nm iso	NA=0.62 σ=0.85/0.55	11	1.3	5	(19)			
* : Quadrupole		ı		20 p	oints per	field, 2 o	rientatio	

Joost Sytsma / ULSI Characterization and Metrology 2000

Averaged over 6 dies

AMAT 7830SI CD-SEM

Imaging 31

Why is MEF ≠ **1?**

- Lower Aerial Image Contrast -> Higher MEF
- Position of Resist Threshold strongly affects MEF

Acknowledgements

- Projection Lenses group, especially Hans van der Laan, Marco Moers, Rob Willekers
- Jan van Schoot, Jo Finders, Henk van Greevenbroek, Jan Mulkens, Donis Flagello, Kevin Cummings, Anton van Dijsseldonk, Hans Meiling
- Christian Wagner of Carl Zeiss

"What you can not measure, you can not make, nor control"

