Synchronization Of Data Streams In
DistrbutedifReal=time and Multimodal
S1gNalfPreceSsing Environments
UsingiGommodity Hardware

Lukas Diduch, Antoine Fillinger, Imad Hamchi, Mathieu Hoarau,
Vincent Stanford

Smartspace Lab

ICME 2008

ICME 08 presentation, session TM-AM1-L5.4 (June 26, 2008)

Applications

The big image is a screenshot of the ‘NIST meeting room Dist. Data acquisition task’
producing large multi modal corpora (10 TByte) used by various intl. research
communities in context sensitive research (CHIL, CLEAR, VASE, AMI).

It represents a good example of a heavy real-time computational task (capturing
about 200 GByte / h) which is distributed due to performance reasons, and more
important due to availability of distributed sensors. It consists of over 280
microphones (4 arrays a 64 microphones + 24 direct mics) and 7 HD cameras.

The smaller upper image is a photo of our in house developed 64 channel 24 bit
22-44 kHz MK-Ill microphone arrays, a Ethernet device.

This review station does not involve synchronization. It can not be guaranteed that
one image of the HD views corresponds to the exact frame of the rest. Same applies
to the microphone output data. This is not critical however, because the data is only
recorded and viewed in this example. This setup is also working quick enough to
make the impression of a synchronized display. Once processing in real-time is
involved, synchronization becomes a crucial part of signal processing.

Applications

This is a dataflow view of this task. You can see all sensor capturing nodes as well as
the review station in the middle which fuses the data.

Data Flow: Concept

To process and capture data in a distributed environment we usually want to apply
the concept of a DATAFLOW.

There are mainly three kinds of processing entities:
- Source, can be a sensor of any rate
- Filter, process and fusion

- Sink, process and fusion

Besides the distributed data transport and processing the filters and sinks can SPLIT
and FUSE the data.

NIST Data Flow System Il (NDES=II)

S
TR

=
e

Cormection requests om Py a3
‘Remata Saners - l S
HEE Server
ot
LHaey et arcie

(ot Node (©) I

', Reas
v
- Duplicator)
T . y .
a i/ i
SR N eas
Cornocion reaueata fom N
Lozal Gller: Nodse C o =
e Gient Node ()
Gorawwion raes fom (A
Feemote Duplcrars 2

HOSTA [HOST B

Servioe Access Point > Direction of Messages -~ --- Registered o the Heactor () Producer
{-: 7 Shered Memory B DataQueues » Shared Memory Access (G) Consumer

This is a concept picture of the NIST Data Flow System Il. See Documentation on
Website for details.

NIST; Data Flow: System || (NDES=II)

¢ Middleware
e Supports Modularity
® Multi-core Architectures and Network Architectures
¢ Dynamic
Decentralized
Multiplatform (Windows/0S-X/Unix)

Language bindings (Java/Octave)

Public Domain

The NDFS-Il is a sensor net middleware: a GENERIC transport vehicle

We do apply it momentarily for sensor data acquisition, transport, distributed
processing, synchronization, storage, and retrieval of multimodal corpora. At this
point it supports a variety of sensors for multimodal applications with simultaneous
use of multiple OS platforms (e.g. Windows, OS X, and Linux).

See the NDFS-Il Guide for a detailed description and documentation on our website
(www.nist.gov/smartspace)

Dataflow: Concepts |

¢ Blocking behavior applies to all Flow Types

Consumer

Input Data Flow Processing Core

while (done) \

{

Queue WAIT

i flw'>p°p_data ();

process_data (data);

delete data;

Basic behaviors of a client node:

In a processing loop of the client node the user requests data from the input queue or
pushes data to an output queue (the so called flow). This call has a BLOCKING, which
means if there is no data the user waits or if the output queue if full the user waits as
well when pushing data. This behavior has important consequences on how the data
is transported across several processing nodes.

Dataflow Concepts |l

¢ Real-time and Drop vs. Non-Drop Flow Policies

network Source ' Filter

slow filter E
nondrop Source ‘ [IHIHHH] Filter

slow filter
drop

Filter

slow sink

(@)
filter out is Source ‘ Filter
(o

dropping

propagation
(realtime)
nondrop
(offline)

Source

A second behavior is dropping of data. In order to keep a system running in real time
on hardware which does not grant enough ressources (too slow processing of data)
the user decides to drop data at the input or output flow level.

In online processing this has severe consequences:

In the case of a slow filter, queues are filled up upto the source node, which itself
starts CAPTURING at a lower rate (e.g. camera capture call occurs not so often
anymore). This means that the source node lowers his capture rate. The consequence
is that if another processing node is connected to the sources ouput flow, it will
receive the data at a lower rate too. This behaviour is not desired. As a solution we
adjust the filter node to drop the data. The source captures data at its full rate and
only the FILTER drops the data if it can not process data in time. One can easily image
that buffering inequalities (such as netwotk transport errors, uninterruptable kernel
time, scheduling problems etc..) have an impact on the data flow, which especially
impacts fused data.

Offline processing actually does not involve dropping of data, because the processing
time is not critical.

Real-time Data Fusion Concepts

¢ Source Dependent
¢ One source split-fusion (R)
¢ Multiple sources (R1/R2../RN),unknown rates

Vislribulon of ime UL o 200 095=Codgmulal,, il

_oa li-c Stars lela-

‘i , JJ%MWkk &f

1
“ome Stanp Telzy o ng Hiernsanonds

.
3

Truncated Lag “robability
»

ba

Two possible ways to fuse data:

Splitting data from a single source (distribute one signal) and fusing it back together.
Fusing data from many independent source with unknown rates.

Additionally to transport problems there is a jitter on the computer clock, so even if
the sensor is giving us data at a constant rate, the os is introducing jitter. The graph
shows a complex distributed jitter over several orders of magnitude.

Linear regression can be used to estimate the exact timestamp a posteriori (see
references at the end about this)

Synchronization API

e BTStamp, each frame
¢ Blockstamp: Data Integrity Information
¢ Timestamp: Time Information

Em_ 834/41:18.027 | 41: 1&286
00.00.12___]00.00.13 [00.00.14 | 00.

e Buffering
(12| 3 1456 (7|8 9 |

(1]2] 3 45678
(21]2] 2 l456]" 3]

To be able to fuse data which involves a proper synchronization first we developed a
SYNCHRONIZARTION API on top of the NDFS-II. The synchronization algorithm has
multiple modes which will be explained in the next slides.

We introduce a mixture of Blockstamp and Timestamp as metadata. The blockstamps
can be used to track data integrity and apply linear regression. Timestamps are used
to synchronize data in time (The timestamps are produces by the os/computer clock
and usually synchronized by NTP). Buffering has additionally to be applied to
compensate for processing delay (due to transport besides the computation) and for
data loss occurring due to dropping of data.

Blockstamp Match Based Synch

e App: Processing of a split stream with final fusion
¢ Grouping of frames, Dropping of Frames

e Same Principle as Timestamp Tolerance Match Sync

| 1]2] 3 [4/5/617]8]9 10]
|1 (24|56 P 8|9 |10}
|1 2] 3 4]0 6 7|8 [l 10

In the case of data originating only from a SINGLE sensor, distributed across multiple
processing nodes and fused at the end, we can apply pure block-stamp based
synchronization.

After compensation of the delay the data looks aligned as in the figure above (Stream
A-B-C). The synchronization algorithm basically groups frames with matching
blockstamps. Please keep in mind that we are in a distributed system so each stream
has to be buffered due to time delay, so several Buffering methods can be used
(adapting, fixed, unlimited).

11

Timestamp Overlay Based Synch

¢ Fusion of sources with independent bit- and
framerates

¢ Different hooking modes
e Works with Intervals

¢ Detection of stream integrity

Most interesting is the Timestamp Overlay Based Synchronization. This algorithm
allows to fuse MULTIPLE sources with an UNKNOWN/INDEPENDENT data-rate.
Several so called HOOKING modes exist (explained in the next slide). The algorithm
works with time intervals gathers from the frames Timestamps instead of single
timestamps itself. Due to the embedded Blockstamp in the BTStamp metadata,
stream integrity can be additionally monitored.

Let’s assume two data stream from independent sources with different rates as an
explanation example. (slow/fast)

12

Timestamp Overlay /' Modes

slowest --
Il B

]

The three hooking modes allow different synchronization behavior:
All methods compensate for delay first (buffering).

Hooking to the slowest stream, analyzes the data-rate of all streams, determines the
stream with the lowest rate and tries to group all frames which starting point falls into
the interval of the slowest stream.

Hooking to the fastest stream, analyzes the data-rate of all streams, determines the

stream with the highest rate and tries to group all frames which starting point falls
into the interval of the fastest stream.

Overlay Hooking (all) groups all frames whose starting times fall within the current
locked frame. This mode can have a HIGHER data-rate than the fastest stream. This is
due to duplication of frames which can occur if the frames time-intervals interleave.
The data integrity (duplication) can be determined however.

13

Application Example (Split Fusion)

e One Host, Filters with different rates, fusion

Application example as described in the corresponding ICME-08 paper. Please look up
the paper for details.

We show a split fusion example demonstrating runtime effects using the two
explained synchronization methods.

14

Application Example (Split Fusion)

-
)
]
w

<
v
aQ
£
<
=
w
9]

E

-
£
<
]
=

]

BLOCKSTAMP MATCH - Synchronisation Algorithm

T T

(in) Flow 1 (Node 1)
(in) Flow 2 (Node 2)
(in) Flow 3 (Node 3)
(out) Synced Frames

0.8 1
Program Execution Time (sec)

1.2

15

Application Example (Split Fusion)

(in) Flow 1 (Node 1)
(in) Flow 2 (Node 2)
(in) Flow 3 (Node 3)
(out) Synced Frames

o
@
)
a
£
I
ol
w
o
£
-
£
S
g
=
%)

L

0.8 1.2 14
Program Execution Time (sec)

16

16

L, N IsfLev_odisplay
meterennon g
et —
I -
e y
anm a0
Jsf_vcen_catie v
an ez AT gow on conu. e ni.gow
I uI |
3 o T Sy
on oLty o et L —rl
I —_— —
e "
v 5.ncsl i
or meis.neslis

57 metis.ncsl.nist.qev

nnnn

{mis _anay_titer fmic_auray_energy_ceteztor
7 2202 202 nesl nisz gov o nist.gov

i3 _aisplay
21 metis.nesl nist.gov

Another example of a real-time audio visual sensor fusion application, applying all
described forms of SYNCHRONIZATION at the fusion steps.

Two independent sensors (video camera, 64 channel microphone array) are
processed and monitored in a separate processing pipleline:

Video stream is split in 5 processing nodes to perform a face localization. The ROIS
are fused afterwards using Blockstamp based sychronization. Both the video stream
and the ROl stream a displayed either asynchronous (as the data comes into the sink)
or synchronous.

Multichannel Audio stream is at first filtered spectrally and spatially, energy detection
(bearing angle) is performed using a beamformer. A linetracker and speech activity
detector is used afterwards to keep track of the speaker and assign the speakers
angle. Same assignment is performed on the ROI stream. In the end the both angle
feature streams are fused either asynchronous or synchronous to demonstrate the
error occuring due to processing and transportation delay, as well as due to different
rates.

17

Multi Channel Data Oscilloscope

From left/top to right/bottom:

-asynchronous real-time Video/ROI display, ROl is off due to delayed incoming data
- synchronous real-time Video/ROI display, ROl and video match

- 64 channel real-time audio display

- asynchronous real-time Audio Visual Track display, tracks should overlay but due to
drift and different rates the tracks show a fusion error

- synchronous real-time Audio Visual Track display, tracks overlay due to ‘timestamp
overlay’ synch. Method

- 3d real-time Audio Track visualization of the activity/linetracking module

- Real-time bearing Angle, Acoustic Energy monitor

18

Conclusions

¢ Blockstamp Match Synchronization Algorithm
® Robustness against lossy channel
® Robustness against channel delays

¢ Timestamp Overlay Synchronization Algorithm
¢ Fusion on independent source
¢ Unknown datarates

e API on top of the NDFS-II

¢ NDFS-II, free, public domain, data transport
middleware

19

References

www.nist.gov/smartspace

Synchronizing Multimodal Data Streams Acquired Using
Commodity Hardware, M. Michel, V. Stanford, MLMI 2006

NIST Data Flow System II, Users Guide (Draft)

The NIST Smart Space and Meeting Room projects: Signals,
Acquisition, Annotation, and Metrics, V. Stanford, O. Galibert,
M Michel and C. Laprun, 2003

20

Independent Video Stream FuSion

xterm
(111 Igeneric client cleampl exitina..
[1dolinctic clicntsld ./oi_cv_displow ——oF clicatninesdd ok Flov-vidoo_in=vk
s a1l iveilcJ$ /i inelisplag ==<F 1l ibnaald =

e [1demnstie cliente]s [

metis.ncsl.nist.gov

) 00,00, 10,70 (T) 375:05:10,17

00,00,00,19,¢1 (1) £/5326819, /494,404

00,00,00,19,72 '5:25:19,921.957

00,00,00,19,73 (T. 9,047,
00,00,00,19,74 (1) &1t
00,00,00,19,75 (T) 3
00,00,00,19,78 (T) 37F

xterm

(11) [senceic_client cleanup] exitira,,
(1denommetis clientsk ./sfi_cv_displag --sf clientna ~3f flow-video_tr
(k) [+ low_Video SHL_functions.cep,20b] krron unilc qotbing Buffor

sntation fault

Dl i - Tirmis]8 Ao valinelag ==t il il send

ﬂ [1denommetae clientz]s

LAl danelinat i climbalE Slicudisglay o Do
1

Ex

189 00.00.00.20,70 {1 s/
(3) 20.00.00.20.71 (T) 575

Additional slide:

example of 4 independent camera stream fusion

Buffering Strategies

¢ No universal strategy applicable

¢ Kinds of windows
e Restricted
e Scalable
¢ Infinite

* Memory Management necessary (Speed Constrains)

y | 1 e
y | i]]

Additional Slide:

Need of windowing due to delay. Windowing implies memory usage and have to be
chosen properly

22

