
       

      

  

 
  

 
  

  

  
 

 

  
 

  

      
   

      
     

  

        
       

          

   
 

 

  
  

 
  

 

              
         

         
  

          
         

    
         

               
           

           
           

      

               
      

            

                

Input to the Commission on Enhancing National Cybersecurity 

  

Input to the Commission on Enhancing National Cybersecurity 

Submission September 6, 2016  
date: 
Joint Benjamin Gittins  Ronald Kelson   
submission Chief Technical Officer  Chief Executive Officer  
made by: b.gittins@synaptic-labs.com   r.kelson@synaptic-labs.com   

+356 9944 9390	 +356 9944 9390 

Synaptic Laboratories Ltd.  Designers of safe and secure computing and 
www.synaptic-labs.com   communication architectures. Developers of
13 Nadur Heights,   general-purpose soft IP for FPGA devices, to
Nadur NDR-1390,   increase security and performance, and to
MALTA, Europe  reduce circuit area. 

Topic of this	 Significant Progress In The Design Of Backwards Compatible, Cache-
submission:	 coherent, Trustworthy and Dependable computing: Synaptic Labs’

Safe and Secure Real-Time platform with collaborators such as Intel
PSG 

RFI topic areas • Cybersecurity Research and Development 
this • Critical Infrastructure Cybersecurity 
submission • Identity and Access Management 
relates to: • Internet of Things 

• International Markets  

Submission	 (1) A 1 page executive summary for this comment, in the format requested by the RFI,
contents:	 which “identifies the topic addressed, the challenges, and the proposed solution,

recommendation, and/or finding.” We have inserted headings that match these points in 
the executive summary.  
  
(2) Detailed technical information about the technologies being developed within the
SSRT project are hosted on the European Union’s Mixed Criticality Forum website 
(www.mixedcriticalityforum.org/projects/detail/?tx_dreams_fep[project]=12). Each year the
Cluster holds a by invitation only one day workshop to showcase the latest advances in
the field. In 2016 the SSRT project was selected for promotion at the Workshop held on
18 March at the 5 day European event for electronic system design and testing, the
Design, Automation and Test in Europe (Date '16) Conference, Dresden, 14-18 March 
2016. The Workshop slideshow of 44 slides / 22 pages in length (including the text
spoken on the day) is attached to this submission.   
https://contrex.offis.de/home/images/downloads/date2016/07_20160311-DATE-2016-SLL-Costs-HW-014-Website.pdf   
  
(3) Brian Snow. We need assurance! In ACSAC ’05: Proceedings of the 21st Annual
Computer Security Applications Conference, pages 3–10, Washington, DC, USA, Dec.
2005. IEEE Computer Society. Full text published online on the ACASC website.   
(https://www.acsac.org/2005/papers/Snow.pdf) 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Input to the Commission on Enhancing National Cybersecurity 

Significant Advances In The Design Of Backwards Compatible, Trustworthy and Dependable
computing: Synaptic Labs’ Safe and Secure Real-Time platform with collaborators such as Intel PSG 
1 Page Executive Summary 
RFI Topics: Cybersecurity Research and Development, Critical Infrastructure Cybersecurity, Identity and
Access Management, Internet of Things, International Markets 
Problem: Brian Snow (Formerly U.S. National Security Agency for 30+ years, designing secure products 
and systems, including 12 years as Technical Director) states: “For a one-word synopsis of computer design 
philosophy, it was and is: SHARING. In the security realm, the one word synopsis is SEPARATION. .... So 
today, making a computer secure requires imposing a “separation paradigm” on top of an architecture built to
share. That is tough! Even when partially successful, the residual problem is going to be covert channels.” 
Real-time experts state: “In safety critical and mission critical systems ... it is important to assign applications 
with different requirements to different partitions with different criticality levels ... Partitions should be isolated
functionally, temporally and securely ... Unfortunately, modern COTS architectures are not built to provide 
strong isolation guarantees.” From a safety perspective, in 2012 Airbus’ Benoît Triquet stated multicore 
processors represent “a major challenge how to adequately deploy them for safety applications they were
typically not designed specifically for. ... Temporal behaviour has been much less addressed .. Airbus ... 
have found very few multicore chips that can ever hope to be useable for avionics.” 
Progress being made: The Safe and Secure Real-time Project is the answer to published top priority 
Government and industry needs for high performance, area efficient, real-time capable, multi-core (and
many-core) computers, on which both general purpose and real-time software can run concurrently at the 
same instant in time with higher performance. The single-core performance of software running on soft
cores accessing FLASH and SDRAM in FPGA will be more competitive than current single-core systems.
On the SSRT architecture with many cores and many bus-master peripherals, real-time software will be as 
easy to write, verify, certify and maintain as it is today on single-bus master computer architectures. 
To achieve this, several years of foundational cross-domain research and industrial needs analysis has led to
universal computer architecture designs for multiple industries that are commercially viability in the soft logic 
of COTS FPGA chips (and that can then be developed as hard-macro’s in FPGA or as ASIC micro controller 
chips). Our designs systematically eliminate or control all timing and performance problems at the source, in
the hardware, with no changes needed to application software and no changes or minimal porting for O/S,
while ensuring that all shared memory and message passing paradigms and all real-time operating system 
types (ARINC-653, AUTOSAR 2.0, ...) can be supported. The SSRT project is processor agnostic. 
The SSRT architecture is designed to be extended to create Synaptic Labs’, independently reviewed,
Trustworthy resilient universal Secure Infrastructure Platform (TruSIP). TruSIP is designed to provide high-
assurance security controls that prevent the public cloud provider and their hardware and software suppliers 
from maliciously or unintentionally learning or exposing the value of the cloud clientʼs data, even though the 
data is being processed in the cloud. This includes protection against malware hidden in the hardware or 
software employed in the cloud infrastructure used to provide services to customers. 
The recommendation: We respectfully propose that the Commission’s detailed recommendations to
strengthen cybersecurity should include the following points: 
1.	 Perform a high-level survey to identify, catalogue and evaluate the viability of all candidate next-

generation cache-coherent mixed criticality real-time multi-core computer architectures that provide
backwards compatibility of general purpose and real-time software running on COTS real-time operating
systems and that can scale performance near-linearly for between 2 to 4 cores. (Based on our survey of
all published real-time computing architectures as of 2014, there are very few cache-coherent designs.) 

2.	 Perform a high-level security aware Failure Mode and Effects Analysis of today’s COTS real-time
capable computing architectures that considers the impact of identified safety and security flaws wrt. the
stakeholders in critical infrastructure and cyber-physical applications (automotive, industrial control,
avionics, aerospace). Quantify the costs to the global community of those security flaws. Quantify the
returns of developing a “fit for purpose” high-assurance real-time computing platform. Fund the top 5
candidate next-generation computing solutions that are credibly trustworthy and dependable, ensuring
sufficient diversity between the research agendas / techniques. Ensure equal access and adequate
support for (and team building around) innovative small-to-medium sized enterprises. 

For more information, visit the project summary hosted on the website of the EU Mixed-Criticality Cluster 
(www.mixedcriticalityforum.org/projects/detail/?tx_dreams_fep[project]=12) See also the invited presentation
at the EU funded Mixed-Criticality Cluster's workshop at the 5 day Design, Automation and Test in Europe
(Date '16) Conference, Dresden, 14-18 March 2016 which is attached. 
Sincerely, Benjamin Gittins and Ronald Kelson.  

6 September 2016 +356 9944 9390 © www.synaptic-labs.com page 2 of 2 
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Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

1 

Benjamin GITTINS       cto@pqs.io

Very brief introduction to only a few aspects of 
S/Labs’ Safe and Secure Real-Time (SSRT) 
cache-coherent shared memory
computing architecture 

Already under development - No major barriers remain 
• The most complex component of SSRT at Tech. Readiness Level 5 (TRL-5) 
• Some discrete technologies are also advancing to market now in products 

High performance 
• With clock cycle deterministic time partitioning 

between ALL cores and ALL bus-master peripherals 
• Satisfies both general purpose AND 

time-analysability, safety and security requirements 

Industry agnostic, cross domain 
• IoT, auto, avionics, 

industrial control, ... ceo@pqs.ioRonald KELSON        

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

23 

➠ Faster per-core and across cores performance for 
best effort and real time workloads 
• Near linear scalable software performance over 1 to 28 cores 
• Guaranteed wire-speed shared memory bandwidth for peripherals 

➠ Faster total system performance: 
• With any combination of memory intensive 

mixed-criticality tasks distributed across cores 

➠ Support for: 
• All popular (and emerging) timing analysis techniques; and 
• Asymmetric and symmetric 

multi-processing for all RTOS types 

➠ Easy implementation in most FPGA’s 
(and ASIC) - vendor neutral 

Overcomes all major barriers with: 



   
    

   
        

   
  

 
 

     
     

   

     
    

        

   
    

   
        

      

       

       

    

      

        

    

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

Our strategy and roadmap for developing SSRT 
1.	 Create a vendor neutral shared memory architecture (done) 

a.	 Rework any components found in general-purpose computer 

architectures that reduce:
 
a.	 time analyzability or 
b.	 software performance 

b.	 Our interconnect is explicitly designed to support unmodified
 
COTS cores and peripherals to support rapid market up-take:
 

i.	 Time-analysable soft-cores within the FPGA 

ii.	 Coupled with dual ARM cores within the
 
hard processing subsystem of SoC FPGA
 

iii.	 Coupled with quad-core Intel Xeon cores external to the FPGA 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

Our strategy and roadmap for developing SSRT 
1.	 Create a vendor neutral shared memory architecture (done) 

2.	 Already advancing a 4 phase commercialisation roadmap 

a. Develop parts of the architecture in stand-alone products for FPGA (started) 

b.	 Complete implementations of SSRT architectures for FPGA coupled to ASIC 

i.	 Employ an enhanced time-analysable shared memory cache 

ii. Employ a tiny time-analysable MMU that introduces zero timing jitter 

c.	 Upgrade the Nios II soft-core to employ our Cache and MMU directly 

d.	 Full ASIC implementation/s of SSRT 

3 

4 



   
    

    
              

            
               
            
             
         
          
         

  
      

           
                  

   
    

    
   

 
 

  
  

  
   

   

  

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

Slide 
number(s) Introducing SSRT over 9 Parts 
6 - 12 Part 1: 1-core SSRT configuration 

13 - 20 Part 2: 2-core SSRT configuration 
21 - 22 Part 3: 3-core SSRT configuration (ARM and Nios II cores) 
23 - 27 Part 4: 8-core SSRT configuration 
28 - 30 Part 5: 14-core SSRT configuration (Xeon and Nios II cores) 
31 - 32 Part 6: 28-core SSRT configuration 
33 - 34 Part 7: SSRT’s support for multiple timing analysis techniques 
35 - 37 Part 8: Broad across-industry expectations wrt. realtime architectures 

and 
How SSRT satisfies those industrial requirements 

38 - 42 Part 9: S/Labs’ 4 phase commercialisation roadmap for SSRT 
43 - 44 Closing statement 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

6 

Part 1: 
A fully time-analysable 
unmodified COTS 
single-core, 
multi bus-master 
SSRT configuration 

that has faster 
best-effort & real-time performance
than today’s single-core architectures 

(using comparable components) 

5 
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Single-core design with 64 bus master peripherals
 

Processor 
Core 1 

with L1 Cache 
and MMU 

Private 
FLASH 

Up to 64 private
bus-target peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Time-
analysable 

multi-function 
interconnect 

(32-bit) 
True dual port SRAM 

64 time slot based interconnect for bus master peripherals 

Cache & MMU 1 Cache & MMU 64 

COTS

COTS

COTS

TRL-7

Unmodified COTS
e.g.  Nios II/fast

➠ The single unmodified COTS core has 100% time deterministic access to: 
• COTS Private Flash 
• Up to 64 private COTS bus-target peripherals 
• One port of the true dual-port SRAM which stores shared memory 

Single-core design with 64 bus master peripherals 

Processor 
Core 1 

with L1 Cache 
and MMU 

Private 
FLASH 

Up to 64 private
bus-target peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Time-
analysable 

multi-function 
interconnect 

(32-bit) 
True dual port SRAM 

(256-bit) 

64 time slot based interconnect for bus master peripherals 

Cache & MMU 1 Cache & MMU 64 

Synaptic Labs

Interconnect
TRL-3

➠ Employs S/Labs’ up to 64 time slot based interconnect for bus master peripherals 
• 256-bit wide data path to the true dual-port SRAM 
• Each time slot is exactly 1 clock-cycle in duration 
• The worst case access latency for 1 time slot is only 63 clock-cycles 
• Permits allocation of multiple time slots to any very high-bandwidth peripherals 

7 

8 



  
 

 

    
 

  

 

  

    

    

    

        
 

        
      

  
 

 

    
 

  

 

  

    

    

    

        
    

     

Single-core design with 64 bus master peripherals
 

Processor 
Core 1 

with L1 Cache 
and MMU 

Private 
FLASH 

Up to 64 private
bus-target peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Time-
analysable 

multi-function 
interconnect 

(32-bit) 
True dual port SRAM 

(256-bit) 

64 time slot based interconnect for bus master peripherals 

Cache & MMU 1 Cache & MMU 64 

S/LabsCache & 
MMU

S/Labs 
Peripheral 

Cache 
TRL-3

S/Labs
I/O MMU

TRL-4

➠ Each bus-master peripheral is paired with a tiny fully-associative cache & I/O MMU 
• Accelerates contiguous rd/wr operations by that COTS bus-master peripheral 

– Combines 32-bit wide writes into a 256-bit contiguous write operation to SRAM 
– Prefetches 256-bits of data from SRAM on a 32-bit read-miss by the peripheral 

Single-core design with 64 bus master peripherals 

Processor 
Core 1 

with L1 Cache 
and MMU 

Private 
FLASH 

Up to 64 private
bus-target peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Time-
analysable 

multi-function 
interconnect 

(32-bit) 
True dual port SRAM 

(256-bit) 

64 time slot based interconnect for bus master peripherals 

Cache & MMU 1 Cache & MMU 64 

➠ It is trivial to configure SSRT at design-time to 

COTS

ensure that each COTS bus-master peripheral has 
guaranteed wire-speed bandwidth with low latency 

9 

10 



  
 

 

    
 

  

 

  

    

    

  

      
      

            
 
     

  
 

 

    
 

  

 

  

    

    

  

      
         
     

     
      

Architecture enables superior ACET performance
 

Processor 
Core 1 

with L1 Cache 
and MMU 

Private 
FLASH 

Up to 64 private
bus-target peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Time-
analysable 

multi-function 
interconnect 

(32-bit) 
True dual port SRAM 

(256-bit) 

64 time slot based interconnect for bus master peripherals 

Cache & MMU 1 Cache & MMU 64 COTS

Unmodified COTS
e.g.  Nios II/fast

➠	 SSRT is the ideal high-performance single-core ACET architecture 
•	 Compared to today’s COTS single-core microcontroller architectures, 

the average case execution time of software running on the core is FASTER 
because: 
–	 there is no timing interference from bus-master peripheral activity 

Architecture enables superior WCET performance 

Processor 
Core 1 

with L1 Cache 
and MMU 

Private 
FLASH 

Up to 64 private
bus-target peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Time-
analysable 

multi-function 
interconnect 

(32-bit) 
True dual port SRAM 

(256-bit) 

64 time slot based interconnect for bus master peripherals 

Cache & MMU 1 Cache & MMU 64 

➠ SSRT is the ideal high-performance single-core WCET architecture: 

COTS

Unmodified COTS
e.g.  Nios II/fast

•	 The upper-bound WCET analysis of software running on that core is as 
tight as a single-core system with no bus-master peripherals 

•	 All bus-master peripherals are intrinsically guaranteed wire-speed bandwidth 
with guaranteed tight upper-bound access latencies at all times 

11 

12 



   
    

    
  

   
 

    
    

 

  

   
    

 

   

     
      

   
           

 

    

   

  

 

    
 

 

    
 

  

    

    

Concepts for Composable Dependable Architectures & 

14 

Costs of Hardware-Support for Dependability (DATE 2016) 

13 

Part 2: 
An unmodified COTS 
dual-core, cache coherent, 
SSRT configuration 

Achieves higher bandwidth access
to shared memory than today’s
multi-core architectures 

(using comparable components) 

Employs the technologies
described in the single-core
SSRT configuration 

Cache-coherent dual-core with peripherals 

➠ The dual-core configuration adds S/Labs’ time-analysable 
cache-coherent time slot based interconnect which has: 
• 2 time slots for 2 cores 
• 64-bit wide data path (2x the width of the 32-bit processor word length) 

Time-
analysable 

multi-function 
interconnect 

Cache & MMU 1 Cache & MMU 64 

64 time slot interconnect for bus master peripherals 

(64-bit) 
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private
bus-target
peripherals 

32-bit 
Processor 

Core 2 

Private 
SDRAM 2 

Up to 64 private
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Cache & MMU 1 Cache & MMU 2 

2 time slot time-analysable cache-coherent interconnect 

S/Labs
Coherent

Interconnect
RTL-5

S/Labs

Unmodified 
COTS  e.g. 
Nios II/fast



   

           
     
        
    

 

    

   

  

 

    
 

 

    
 

  

    

    

   

   
     
    

 

    

   

  

 

    
 

 

    
 

  

    

    

Cache-coherent dual-core with peripherals
 

Time-
analysable 

multi-function 
interconnect 

Cache & MMU 1 Cache & MMU 64 

64 time slot interconnect for bus master peripherals 

(64-bit) 
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private 
bus-target
peripherals 

32-bit 
Processor 

Core 2 

Private 
SDRAM 2 

Up to 64 private 
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Cache & MMU 1 Cache & MMU 2 

2 time slot time-analysable cache-coherent interconnect 

S/Labs

S/Labs
MMU
TRL-4

S/Labs 
Coherent 

Cache 
TRL-5

➠ There are 2 caches and 2 constant time MMU connected to that interconnect 
• Each of S/Labs’ coherent caches employ: 

• a fully-associative, true LRU (or random) cache-line eviction scheme; and 
• a time-analysable “write-update” (snarfing) cache coherency scheme 

Cache-coherent dual-core with peripherals
 

➠ The time analysable memory transfer requests 
issued by the processor core to the 
cache of the interconnect ... 

Time-
analysable 

multi-function 
interconnect 

Cache & MMU 1 Cache & MMU 64 

64 time slot interconnect for bus master peripherals 

(64-bit) 
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private
bus-target
peripherals 

32-bit 
Processor 

Core 2 

Private 
SDRAM 2 

Up to 64 private
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Cache & MMU 1 Cache & MMU 2 

2 time slot time-analysable cache-coherent interconnect 

Time analysable requests

Proven in 
VHDL

15 

16 



   

   
     
    

      
   

 

    

   

  

 

    
 

 

    
 

  

    

    

   

       
   

       

      

 

    

   

  

 

    
 

 

    
 

  

    

    

Cache-coherent dual-core with peripherals
 

➠ The time analysable memory transfer requests 
issued by the processor core to the 
cache of the interconnect 
experience zero timing interference wrt. all 
write coherency events issued over that interconnect 

Time-
analysable 

multi-function 
interconnect 

Cache & MMU 1 Cache & MMU 64 

64 time slot interconnect for bus master peripherals 

(64-bit) 
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private 
bus-target
peripherals 

32-bit 
Processor 

Core 2 

Private 
SDRAM 2 

Up to 64 private 
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Cache & MMU 1 Cache & MMU 2 

2 time slot time-analysable cache-coherent interconnect 

Time analysable requests

Time analysable write update coherency event

Proven in 
VHDL

Cache-coherent dual-core with peripherals 

➠ In a N core configuration of the SSRT architecture: 
• Every core can issue 

N 32-bit wide memory requests 
every 
N clock cycles to its cache 

Time-
analysable 

multi-function 
interconnect 

Cache & MMU 1 Cache & MMU 64 

64 time slot interconnect for bus master peripherals 

(64-bit) 
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private
bus-target
peripherals 

32-bit 
Processor 

Core 2 

Private 
SDRAM 2 

Up to 64 private
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Cache & MMU 1 Cache & MMU 2 

2 time slot time-analysable cache-coherent interconnect 

32-bit 
access

32-bit 
access

Proven in 
VHDL

17 

18 



Time-
analysable 

multi-function
interconnect 

Cache & MMU 1 Cache & MMU 64

64 time slot interconnect for bus master peripherals

Private
SDRAM 2

Up to 64 private
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64

2

Time-
analysable 

multi-function
interconnect 

Cache & MMU 1 Cache & MMU 64

64 time slot interconnect for bus master peripherals

(64-bit)
True dual port SRAM

(256-bit)

Private
SDRAM 2

Up to 64 private
bus-target
peripherals 

Bus master peripheral 1 Bus master peripheral 64

e & MMU 2

       
         

       
        

       
     

 

    

   

  

 

    
 

 

    
 

  

    

    

   

         
      

   
     

 

    

   

  

 

    
 

 

    
 

  

    

    

     

Cache-coherent dual-core with peripherals
 

➠ In a N core configuration of the SSRT architecture: 
• We linearly scale the cache-line and bus widths with the number of cores to 

ensure that the peak bandwidth between cores SCALES LINEARLY 
• For example eight 32-bit write operations issued over 8 clock cycles can be 

combined into four 64-bit write requests issued issued over 8 clock cycles 
with zero timing jitter introduced from unrelated memory transfer requests 

(64-bit) 
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private
bus-target
peripherals 

32-bit 
Processor 

Core 2 

Cache & MMU 1 Cache & MMU 

2 time slot time-analysable cache-coherent interconnect 

4 x 64-bit write

8 x 32-bit write

Proven in 
VHDL

In phase 3: Slightly modifying COTS cores 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private
bus-target 
peripherals 

32-bit 
Processor 

Core 2 

Cache & MMU 1 Cach 

2 time slot time-analysable cache-coherent interconnect 

➠	 To gain additional per-core performance in phase 3 of 
our commercialisation roadmap, we plan to implement our 
•	 coherent cache; and 
• smaller and faster MMU 
directly into the Nios II/fast soft-core processor pipeline 

19 

20 



   
    

    
  

   
 

     
     
   

   
     
  

 
 

  

 

    
 

    

 

 

      

       
    

    
      
     

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

21 

Part 3: 
An unmodified COTS 
tri-core, cache coherent, 
SSRT configuration 

This example employs
dual hard macro ARM cores and 
a time-analysable soft Nios II core
in one SoC FPGA 

Employs the technologies
described in the single and
dual-core SSRT configurations 

Use the fast ARM cores of Altera SoC FPGA
 

Nios II 
Processing 

Element 

S/Labs' 
time-analysable 
multi-function 
interconnect 

Up to 64 real-time (RT) 
bus-target peripherals (I/O) 

Up to 64 real-time (RT) 
bus-master peripherals (I/O) 

Private 
SDRAM 
Channel 

Private 
FLASH 
Channel 

ARM 
dual-core 

hard processor 
system 

Non real-time 
I/O 

Non real-time 
I/O 

COTS COTS

S/Labs 
interconnect

TRL-5

➠	 The unmodified Nios II core and COTS peripherals located in 
the programmable logic of the FPGA 
experience zero timing interference from 
the fast unmodified ARM cores and COTS peripherals located in 
the hard processing subsystem of the FPGA 

22 



   
    

    
  

   
 

 
    

   
    

  

  

   
     
  

   
    

    
     
   

  

            

    

           

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

23 

Part 4: 
An unmodified COTS 
8-core, cache coherent, 
SSRT configuration 

with a far superior
memory subsystem for
AMP and SMP RTOS than 
today’s multi-core architectures 

(using comparable components) 

Employs the technologies
described in the single and
dual-core SSRT configuration 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

SSRT is carefully designed for use with SDRAM 
➠	 Wrt. 32-byte burst access to a 

DDR SDRAM running @ 
800 MHz per data pin: 

Peak performance of an 8-bit wide SDRAM in OPEN-page mode (6.4 Gb/s)
 

is 1.56x faster than the
 

peak performance of a 64-bit wide SDRAM in CLOSED-page mode (4.1 Gb/s)
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SSRT is carefully designed for use with SDRAM 
➠	 To take advantage of this fact: 

•	 SSRT’s memory subsystem is 

carefully designed to
 
maximise SDRAM row-hits on
 
narrow, open-page mode, private SDRAM channels
 

•	 This increases the effective memory bandwidth
 
per data pin of SDRAM
 
while controlling hardware costs
 
in a multi-core context
 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

Simplified view of the 8-core memory subsystem
 

SDRAM 

SDRAM 

SRAM 

PE 1 

PE 2 

SDRAM 

8 
timeslot 

non 
blocking 

inter-

SDRAM 

SDRAM PE 3 

PE 4 

SDRAM 

SDRAM PE 5 

PE 6 

SDRAM 

SDRAM PE 7 

PE 8 

➠	 Private narrow SDRAM channels are used to 
store all executable code and private data that is accessed by its core 

➠	 This self-evidently results in LINEAR scalability of 
private code + private data access in 
AMP and SMP tasks wrt. the number of cores 
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Simplified view of the 8-core memory subsystem
 

SDRAM 

SDRAM 

SRAM 

PE 1 

PE 2 

SDRAM 

8 
timeslot 

non 
blocking 

inter-
connect 

SDRAM 

SDRAM PE 3 

PE 4 

SDRAM 

SDRAM PE 5 

PE 6 

SDRAM 

SDRAM PE 7 

PE 8 

➠	 In SMP contexts: 

•	 All data shared between the threads
 
of an application running on 2 or more cores 

can be mapped to either 

shared SDRAM or shared SRAM 
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Part 5: 
An unmodified COTS 
14 core, shared-memory
configuration of SSRT
that employs: 

8x Intel Xeon processor cores 

6x Intel PSG Nios II/fast cores 

Employs the technologies
described in the single and
dual-core SSRT configuration 
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Coupling 2 Xeon E5-2603 chips to our interconnect
 

Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 

Core 
0 

Core 
1 

Core 
2 

Core 
3 

Gen 3 PCI Express ports ECC SDRAM Memory Controller 

I/O 

ECC SDRAM ECC SDRAM 

Core 
2 

Core 
3 

Core 
4 

Core 
5 

I/O I/O I/O I/O I/O I/O I/O 

S/Labs' multi-function interconnect 

Altera Cyclone 5CGTFD5C5 (USD 173.00) 

Core 
0 

Core 
1 

Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 

➠ Use the 2 Intel Xeon chips 
for soft real-time and 
best-effort tasks 

➠ Use the Altera FPGA 
for hard real-time 
tasks and peripherals 
with excellent performance 
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Coupling 2 Xeon E5-2603 chips to our interconnect
 

I/O 

ECC SDRAM ECC SDRAM 

Core 
2 

Core 
3 

Core 
4 

Core 
5 

I/O I/O I/O I/O I/O I/O I/O 

S/Labs' multi-function interconnect 

Altera Cyclone 5CGTFD5C5 (USD 173.00) 

Core 
0 

Core 
1 

Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 

➠ Tasks running on the 
8 Intel Xeon cores can 
transparently access the 
shared memory 
managed on the 
FPGA by using 
the PCI express 
hardware 
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Part 6: 
An unmodified COTS 
28-core, cache-coherent, 
SSRT configuration
optimised for
digital signal processing 

Employs the technologies
described in the single and
dual-core SSRT configuration 

Private 
SDRAM 

Channel 1 

Private 
SDRAM 

Channel 2 

S/Labs’ interconnect in 28-core configuration 

PE 
1 

PE 
2 

PE 
3 

PE 
4 

PE 
5 

PE 
6 

PE 
7 

PE 
8 

PE 
9 

PE 
10 

PE 
11 

PE 
12 

PE 
13 

PE 
14 

PE 
15 

PE 
16 

Synaptic Labs' Multi Function Interconnect 

PE 
17 

PE 
18 

PE 
19 

PE 
20 

PE 
21 

PE 
22 

PE 
23 

PE 
24 

PE 
25 

PE 
26 

PE 
27 

PE 
28 

Modules not to scale 

I/O I/O I/O I/O 

➠	 In this illustration, a 1024-bit wide cache coherent interconnect, is 
configured for 28-wide symmetric multi processing (SMP) 
•	 Supports a small number of I/O peripherals (Ethernet, CAN, ...) 
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Part 7: 

SSRT supports multiple
timing analysis techniques 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

SSRT supports multiple timing analysis techniques 
➠	 Integrated hardware support for 

multiple timing analysis techniques in parallel 
makes SSRT the ideal real-time platform 
•	 Supports rapid switching between
 

true LRU and random cache-line eviction
 
in a fully-associative cache
 
to support different timing analysis schemes
 

➠	 The end-user can therefore select and compare 
different timing analysis algorithms 
or 
use different timing analysis techniques for different tasks 

➠	 We explicitly track the evolving requirements of: 
•	 AbsInt, Rapita, Proxima, .... 
•	 We acknowledge and are grateful for the long term 


collaboration support from AbsInt
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Part 8: 

Broad across-industry
expectations wrt.
realtime architectures 

and 

How the SSRT architecture 
satisfies those requirements 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 

Broad across-industry expectations 
➠	 Real-time capabilities in multi-core architectures are

almost universally viewed as 

SECOND TIER PRIORITIES 

when compared to maintaining backwards compatibility in the form of 

best-effort software price / performance ratios
that are roughly competitive against COTS 
non-real time multi-core solutions 

✓	 S/Labs’ SSRT cache-coherent shared memory architecture
will simultaneously achieve
FASTER real-time and best-effort software performance: 
✓ by employing faster more efficient tech. at comparable costs 
✓ increasing software performance by reducing contention 
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Part 9: 

S/Labs’ 4 phase
commercialisation 
roadmap for SSRT 

Broad across-industry expectations 
➠	 Specifically, end-users are looking for: 

1.	 Support for (cache-coherent) shared-memory software 
- Based on our analysis, time-analysable message passing architectures cannot deliver 

commercially competitive cache-coherent shared memory performance over 2 or more cores 

2.	 Support for their trusted AMP and SMP real-time operating systems 
3.	 Support running memory intensive best-effort tasks fast while
 

concurrently running memory intensive time-analysable tasks
 
with tight bounds
 

4.	 Support for existing instruction sets and development tool suites 
- Using either low-area COTS cores and/or high-performance COTS cores 

- Support for their trusted / mandated task scheduling schemes
 

- Robust space and time partitioning, priority driven scheduling, ...
 

5. Support for their preferred time-analysis scheme(s) with tight bounds 
- The computer architecture must not impose/dictate a timing method on to the end-user 

➠	 Only solutions that satisfy all 5 points are candidates to achieve sufficient 
broad industry acceptance to achieve economies of scale in manufacture 
• This is why competing real-time multi-core proposals are not widely adopted today 
✓ Only S/Lab’s multi-core architecture satisfies all these 5 points and more... 
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Fig 1. S/Labs' up to 4x faster solution (Modules not to scale)

Fig 2. S/Labs' low-area cache solution for all types of off-chip flash
(Modules not to scale)
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S/Labs’ 4 phase commercialisation roadmap 
1.	 Develop a range of private fully-associative cache technologies

that accelerate per-core performance for best-effort tasks in FPGA 
a.	 For example: 


a tiny flash accelerator for up to 4x faster
 
best-effort software performance on the 

Nios II/f when executing code from the
 
on-chip FLASH of the Altera Max10® FPGA
 

Up to 4x faster and 41x smaller than Altera’s Flash Accelerator 
which was designed specifically to accelerate the Max 10 on-chip flash 

This tiny cache (35 4LUT, 1KB SRAM) informs the commercial development 

Intel 
on-chip
flash 

Code 
Data 

Data 

Control 
Nios II/f 

I$ 
D$ On-chip memory 

S/Labs' Accelerator Intel Flash 
Accelerator 

Intel PSG's / Altera's Max 10 

Stand-alone
product available 

for license
 today

➠ 
of the tiny caches for bus-master peripherals in SSRT 

S/Labs’ 4 phase commercialisation roadmap 
1.	 Develop a range of private fully-associative cache technologies

that accelerate per-core performance for best-effort tasks in FPGA 
b.	 S/Labs up to 32 way, fully associative cache


with true LRU cache-line eviction
 

Accelerate on and off-chip FLASH and SDRAM on the Nios II/e 
e.g. our 4-way, 4KB L1 cache on Nios II/e@100MHz wins up to 44x 
acceleration of industry standard benchmarks run from 25 MHz serial flash 

Add our 4-way 1KB L2 cache to Nios II/f@100MHz with 4K L1 I$ to win up 
to 1.8x acceleration of industry standard benchmarks run from 1xSPI@25 
MHz. 

➠ Our small fast cache designs inform the commercial design of the 

Code 
Data 

I$ 
D$ On-chip memory 

S/Labs' Cache 

Intel PSG's / Altera's
SRAM based FPGA 

SPI 
Flash 

Nios II 
/e or /f Data 

Control 

SPI 

Stand-alone
product available 

for license
 today

SSRT fully-associative write-update cache module with 
true-LRU and random cache-line eviction policies 
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3.	 Build heterogeneous multi-core solutions using soft and hard cores 

Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 

S/Labs’ 4 phase commercialisation roadmap 

Core Core Core Core 
0 1 2 3 

Gen 3 PCI Express ports ECC SDRAM Memory Controller 

I/O 

ECC SDRAM ECC SDRAM 

Core 
2 

Core 
3 

Core 
4 

I/O I/O I/O I/O I/O I/O I/O 

Core 
5 

S/Labs' multi-function interconnect 

Altera Cyclone 5CGTFD5C5 (USD 173.00) 

Core 
0 

Core 
1 

Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 

4.	 Implement our field-proven technology 
as a hard-macro in a SoC FPGA device or 
as dedicated ASIC chips 

6)

S/Labs’ 4 phase commercialisation roadmap
 
2.	 Improve both the per core performance and the total system performance 

in a wide-range of shared memory mixed criticality FPGA applications, 
when compared to today’s COTS FPGA based solutions 

Such as our 2 core solution previously discussed 

Time-
analysable 

multi-function 
interconnect 

Cache & MMU 1 Cache & MMU 64 

64 time slot interconnect for bus master peripherals 

(64-bit)
True dual port SRAM 

(256-bit) 

32-bit 
Processor 

Core 1 

Private 
SDRAM 1 

Up to 64 private
bus-target 
peripherals 

32-bit 
Processor 

Core 2 

Private 
SDRAM 2 

Up to 64 private
bus-target 
peripherals 

Bus master peripheral 1 Bus master peripheral 64 

Cache & MMU 1 Cache & MMU 2 

2 time slot time-analysable cache-coherent interconnect 
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In summary, only S/Labs’ SSRT
architectures permits: 

• ACET and WCET performance gains to 
be won in FPGA (and ASIC) 

• a commercially viable, incremental development process 
that is producing stand-alone products 
in addition to the final architecture 

• the development of high performance commercially viable 
FPGA solutions in soft logic, that can be coupled to COTS 
ASIC cores, to inform future 
high-volume fully ASIC based solutions 

S/Labs solutions address the
pragmatic real-world needs of 
the broadest range of 
end-users / industries 

Concepts for Composable Dependable Architectures & 
Costs of Hardware-Support for Dependability (DATE 2016) 
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www.synaptic-labs.com 

Thank you for your attention
All enquiries welcome 

cto@pqs.io

ceo@pqs.ioRon KELSON        

Benjamin GITTINS 



  
 
 

  
     

 
 

 
 

 
          

      
      

     
      

      
     

     
    
    

     
    

   
 

 
 

      
      

          
          

      
        
     

          
      

         
     

          
   

     
       

        
   

  
        
         
      

       
     

     

      
      

      
       

    
        

      
       

     
         

 
 

   
 

        
       

       
           
          

   
         

         
      

      
             

         
  

        
        

  
        

          
        

         
        

      
     

       
    

         
      

      

We Need Assurance! 

Brian Snow 
U. S. National Security Agency 

bdsnow@nsa.gov 

Abstract 

When will we be secure? Nobody knows for sure – 
but it cannot happen before commercial security 
products and services possess not only enough 
functionality to satisfy customers’ stated needs, but 
also sufficient assurance of quality, reliability, safety, 
and appropriateness for use. Such assurances are 
lacking in most of today’s commercial security 
products and services. I discuss paths to better 
assurance in Operating Systems, Applications, and 
Hardware through better development environments, 
requirements definition, systems engineering, quality 
certification, and legal/regulatory constraints. I also 
give some examples. 

1. Introduction 

This is an expanded version of the “Distinguished 
Practitioner” address at ACSAC 2005 and therefore is 
less formal than most of the papers in the proceedings. 

I am very grateful that ACSAC chose me as a 
distinguished practitioner, and I am eager to talk with 
you about what makes products and services secure. 

Most of your previous distinguished practitioners 
have been from the open community; I am from a 
closed community, the U.S. National Security Agency, 
but I work with and admire many of the distinguished 
practitioners from prior conferences. 

I spent my first 20 years in NSA doing research 
developing cryptographic components and secure 
systems. Cryptographic systems serving the U.S. 
government and military spanning a range from 
nuclear command and control to tactical radios for the 
battlefield to network security devices use my 
algorithms. 

For the last 14 years, I have been a Technical 
Director at NSA (similar to a chief scientist or senior 
technical fellow in industry) serving as Technical 
Director for three of NSA’s major mission 
components: the Research Directorate, the Information 
Assurance Directorate, and currently the Directorate 

for Education and Training (NSA’s Corporate 
University). Throughout these years, my mantra has 
been, “Managers are responsible for doing things 
right; Technical Directors are responsible for finding 
the right things to do.” 

There are many things to which NSA pays 
attention in developing secure products for our 
National Security Customers to which developers of 
commercial security offerings also need to pay 
attention, and that is what I want to discuss with you 
today. 

2. Setting the context 

The RSA Conference of 1999 opened with a choir 
singing a song whose message is still valid today: 
“Still Haven’t Found What I’m Looking For”. The 
reprise phrase was . . . “When will I be secure? 
Nobody knows for sure. But I still haven’t found what 
I’m looking for!” 

That sense of general malaise still lingers in the 
security industry; why is that? Security products and 
services should stop malice in the environment from 
damaging their users. Nevertheless, too often they fail 
in this task. I think it is for two major reasons. 

First, too many of these products are still designed 
and developed using methodologies assuming random 
failure as the model of the deployment environment 
rather than assuming malice. There is a world of 
difference! 

Second, users often fail to characterize the nature 
of the threat they need to counter. Are they subject 
only to a generic threat of an opponent seeking some 
weak system to beat on, not necessarily theirs, or are 
they subject to a targeted attack, where the opponent 
wants something specific of theirs and is willing to 
focus his resources on getting it? 

The following two simple examples might 
clarify this. 

Example 1: As a generic threat, consider a burglar 
roaming the neighborhood wanting to steal a VCR. 
First, understand his algorithm: Find empty house 

mailto:bdsnow@nsa.gov


             
           

     
        

            
          
      

         
    

       
       

         
           

          
          

            
              

           
      

         
      

        
          
         

        
       

      
           

        
          

         
       
        

 
     

 
        

     
       

          
         

        
        

      
         

      
       

        
      

           
          
    

        
      

        
         

       
        

         
        

        
       

         
       

 
         
      
        

        
         

        
 

        
           

        
         

       
           

        
     

      
      

     
     

       
             

  
         

        
   

        
       
        

        
 

    
 

         
          

        
        

         
         

        
          

      
      
      

(dark, no lights) try door; if open, enter, if VCR – take. 
If the door is resistant, or no VCR is present, find 
another dark house. 

Will the burglar succeed? Yes, he will probably 
get a VCR in the neighborhood. Will he get yours? 
What does it take to stop him? Leave your lights on 
when you go out (9 cents a kilowatt-hour) and lock 
your door. That is probably good enough to stop the 
typical generic burglar. 

Example 2: As a targeted threat, assume you have 
a painting by Picasso worth $250,000 hanging above 
your fireplace, and an Art thief knows you have it and 
he wants it. What is his algorithm? He watches your 
house until he sees the whole family leave. He does 
not care if the lights are on or not. He approaches the 
house and tries the door; if open, he enters. If locked, 
he kicks it in. If the door resists, he goes to a window. 
If no electronic tape, he breaks the glass and enters. If 
electronic tape is present, he goes to the siding on the 
house, rips some off, then tears out the fiberboard 
backing, removes the fiberglass insulation, breaks 
though the interior gypsum board, steps between the 
studs, and finally takes the painting and leaves. 

It takes more effort to counter a targeted threat. 
In this case, typically a burglar alarm system with 
active polling and interior motion sensors as a 
minimum (brick construction would not hurt either). 
With luck, this should be enough to deter him. If not, 
at least there should be increased odds of recovery due 
to hot pursuit once the alarms go off. 

There is no such thing as perfect security; you 
need to know how much is enough to counter the 
threat you face, and this changes over time. 

3. What do we need? 

NSA has a proud tradition during the past 53 
years of providing cryptographic hardware, embedded 
systems, and other security products to our customers. 
Up to a few years ago, we were a sole-source provider. 
In recent years, there has come to be a commercial 
security industry that is attractive to our customers, 
and we are in an unaccustomed position of having to 
“compete.” There is nothing wrong with that. If 
industry can meet our customer’s needs, so be it. 

Policy and regulation still require many of our 
customers to accept Government advice on security 
products. However, they really press us to recommend 
commercial solutions for cost savings and other 
reasons. Where we can, we do so. However, we do not 
do it very often because we still have not found what 
we are looking for – assurance. 

Assurance is essential to security products, but it 
is missing in most commercial offerings today. The 

major shortfall is absence of assurance (or safety) 
mechanisms in software. If my car crashed as often as 
my computer does, I would be dead by now. 

In fact, compare the software industry to the 
automobile industry at two points in its history, the 
1930s and today. In 1930, the auto industry produced 
cars that could go 60 mph or faster, looked nice, and 
would get you from here to there. Cars “performed” 
well, but did not have many “safety features.” If you 
were in an accident at high-speed, you would likely 
die. 

The car industry today provides air bags, seat 
belts, crush zones, traction control, anti-skid braking, 
and a host of other safety details (many required by 
legislation) largely invisible to the purchaser. Do you 
regularly use your seat belt? If so, you realize that 
users can be trained to want and to use assurance 
technology! 

The software security industry today is at about 
the same stage as the auto industry was in 1930; it 
provides performance, but offers little safety. For both 
cars and software, the issue is really assurance. 

Yet what we need in security products for high-
grade systems in DoD is more akin to a military tank 
than to a modern car! Because the environment in 
which our products must survive and function 
(battlefields, etc.) has malice galore. 

I am looking forward to, and need, convergence 
of government and commercial security products in 
two areas: assurance, and common standards. 
Common standards will come naturally, but assurance 
will be harder – so I am here today as an evangelist for 
assurance techniques. 

Many vendors tell me that users are not willing to 
pay for assurance in commercial security products; I 
would remind you that Toyota and Honda penetrated 
U.S. Markets in the 70’s by differentiating themselves 
from other brands by improving reliability and quality! 
What software vendor today will become the “Toyota” 
of this industry by selling robust software? 

4. Assurance: first definition 

What do I mean by assurance? I’ll give a more 
precise definition later, but for now it suffices to say 
that assurance work makes a user (or accreditor) more 
confident that the system works as intended, without 
flaws or surprises, even in the presence of malice. 

We analyze the system at design time for potential 
problems that we then correct. We test prototype 
devices to see how well they perform under stress or 
when used in ways beyond the normal specification. 
Security acceptance testing not only exercises the 
product for its expected behavior given the expected 



       
        

      
        
        

        
      

       
           

    
        

          
      

        
       

          
       

        
          

   
       

       
         
         
      

      
     

      
         

      
         

    
        

          
        
  

        
    
        

      
        

    
           

        
      

 
      

          
        

       
      

 
 
 

   
 

         
        

          
          
        

    
      

       
        

      
        

         
        

     
       

       
         

        
     

      
         

       
     

      
          

     
        

  
     

       
        
          

      
  

         
         

          
        

      
     

       
           

        
         

          
             

  
          

        
     

          

environment and input sequences, but also tests the 
product with swings in the environment outside the 
specified bounds and with improper inputs that do not 
match the interface specification. We also test with 
proper inputs, but in an improper sequence. We 
anticipate malicious behavior and design to counter it, 
and then test the countermeasures for effectiveness. 
We expect the product to behave safely, even if not 
properly, under any of these stresses. If it does not, 
we redesign it. 

I want functions and assurances in a security 
device. We do not “beta-test” on the customer; if my 
product fails, someone might die. 

Functions are typically visible to the user and 
commanded through an interface. Assurances tend to 
be invisible to the user but keep him safe anyway. 

Examples would be thicker insulation on a power 
wire to reduce the risk of shock, and failure analysis to 
show that no single transistor failure will result in a 
security compromise. 

Having seat belts in a car provides a safety 
function. Having them made of nylon instead of 
cotton is the result of assurance studies that show 
nylon lasts longer and retains its strength better in the 
harsh environment of a car’s interior. 

Assurance is best addressed during the initial 
design and engineering of security systems – not as  
after-market patches. The earlier you include a 
security architect or maven in your design process, the 
greater is the likelihood of a successful and robust 
design. The usual quip is, “He who gets to the 
interface first, wins”. 

When asked to predict the state of “security ten 
years from now,” I focus on the likely absence of 
assurance, rather than the existence of new and 
wonderful things. 

Ten years from now, there will still be security-
enhanced software applications vulnerable to buffer 
overflow problems. These products will not be secure, 
but will be sold as such. 

Ten years from now, there will still be security-
enhanced operating systems that will crash when 
applications misbehave. They will not be secure either. 

Ten years from now, we will have sufficient 
functionality, plenty of performance, but not enough 
assurance. 

Otherwise, predicting ten years out is simply too 
hard in this industry, so I will limit myself to about 
five years. Throughout the coming five-year span, I 
see little improvement in assurance, hence little true 
security offered by the industry. 

5. The current state of play 

Am I depressed about this state of affairs? Yes, I 
am. The scene I see is products and services 
sufficiently robust to counter many (but not all) of the 
“hacker” attacks we hear so much about today, but not 
adequate against the more serious but real attacks 
mounted by economic enemies, organized crime, 
nation states, and yes, terrorists. 

We will be in a truly dangerous stance: we will 
think we are secure (and act accordingly) when in fact 
we are not secure. 

The serious enemy knows how to hide his 
activities. What is the difference between a hacker 
and a more serious threat such as organized crime? 
The hacker wants a score, and bragging rights for 
what he has obviously defaced or entered. Organized 
crime wants a source, is willing to work long, hard, 
and quietly to get in, and once in, wants to stay 
invisible and continue over time to extract what it 
needs from your system. 

Clearly, we need confidence in security products; 
I hope we do not need a major bank-failure or other 
disaster as a wake-up call before we act. 

The low-level hackers and “script-kiddies” who 
are breaking systems today and are either bragging 
about it or are dumb enough to be caught, are 
providing some of the best advertising we could ask 
for to justify the need for assurance in security 
products. 

They demonstrate that assurance techniques 
(barely) adequate for a benign environment simply 
will not hold up in a malicious environment, so we 
must design to defeat malice. Believe me – there is  
malice out there, beyond what the “script-kiddies” can 
mount. 

However, I do fear for the day when the easy 
threats are countered – that we may then stop at that 
level, rather than press on to counter the serious and 
pernicious threats that can stay hidden. 

During the next several years, we need major 
pushes and advances in three areas: Scalability, 
Interoperability, and Assurance. I believe that market 
pressures will provide the first two, but not the last one 
– assurance.  

There may or may not be major breakthroughs in 
new security functions; but we really do not need 
many new functions or primitives – if they come, that 
is nice. If they do not, we can make do with what we 
have. 

What we really need but are not likely to get is 
greater levels of assurance. That is sad, because 
despite the real need for additional research in 
assurance technology, the real crime is that we fail to 



         
     

       
        

        
      

           
      

          
       

       
         
         

     
 

    
 

        
    

  
         

       
  

       
     

        
     

     
      

      
 

    
     
     

  
        

     
       
      

         
          

 
     

          
   

     
     
 

   
    

       
        

       
       

     
         

      
     

    
      

   
      

      
         

       
       
    

      
     

         
         

           
   

        
        

       
        

      
          

      
      

      
      
          

       
         

       
        

   
 

    
 

     
     

       
     

     
     

       
        
      

        
      

         
       

        
      

           

use fully that which we already have in hand! We need 
to better use those confidence-improving techniques 
that we do have, and continue research and 
development efforts to refine them and find others. 

I am not asking for the development of new 
science; the safety and reliability communities (and 
others) know how to do this – go and learn from them. 

You are developers and marketers of security 
products, and I am sorry that even as your friend I 
must say, “Shame on you. You should build them 
better!” It is a core quality-of-implementation issue. 
The fact that teen-age hackers can penetrate many of 
your devices from home is an abysmal statement about 
the security-robustness of the products. 

6. Assurance: second definition 

It is time for a more precise definition. 
Assurances are confidence-building activities 
demonstrating that 

1.	$ The system’s security policy is internally 
consistent and reflects the requirements of the 
organization, 

2.	$ There are sufficient security functions to 
support the security policy, 

3.	$ The system functions meet a desired set of 
properties and only those properties, 

4.	$ The functions are implemented correctly, and 
5.	$ The assurances hold up through the 

manufacturing, delivery, and life cycle of the 
system. 

We provide assurance through structured design 
processes, documentation, and testing, with greater 
assurance provided by more processes, documentation, 
and testing. 

I grant that this leads to increased cost and 
delayed time-to-market – a severe one-two punch in 
today’s marketplace; but your customers are growing 
resistive and are beginning to expect, and to demand, 
better products tomorrow. They are near the point of 
chanting, “I’m mad as hell, and I’m not going to take 
it anymore!” 

Several examples of assurance techniques come to 
mind; I will briefly discuss some in each of the 
following six areas: operating systems, software 
modules, hardware features, systems engineering, 
third party testing, and legal constraints. 

7. Operating systems 

Even if operating systems are not truly secure, 
they can at least remain benign (not actively 
malicious) if they would simply enforce a digital 
signature check on every critical module prior to each 

execution. Years ago, NSA’s research organization 
wrote test code for a UNIX system that did exactly 
that. The performance degraded about three percent. 
This is something that is doable! 

Operating Systems should be self-protective and 
enforce (at a minimum) separation, least-privilege, 
process-isolation, and type-enforcement. 

They should be aware of and enforce security 
policies! Policies drive requirements. Recall that 
Robert Morris, a prior chief scientist for the National 
Computer Security Center, once said: “Systems built 
without requirements cannot fail; they merely offer 
surprises – usually unpleasant!” 

Given today’s common hardware and software 
architectural paradigms, operating systems security is 
a major primitive for secure systems – you will not 
succeed without it. This area is so important that it 
needs all the emphasis it can get. It is the current 
“black hole” of security. 

The problem is innately difficult because from the 
beginning (ENIAC, 1944), due to the high cost of 
components, computers were built to share resources 
(memory, processors, buses, etc.). If you look for a 
one-word synopsis of computer design philosophy, it 
was and is SHARING. In the security realm, the one 
word synopsis is SEPARATION: keeping the bad 
guys away from the good guys’ stuff! 

So today, making a computer secure requires 
imposing a “separation paradigm” on top of an 
architecture built to share. That is tough! Even when 
partially successful, the residual problem is going to 
be covert channels. We really need to focus on 
making a secure computer, not on making a computer 
secure – the point of view changes your beginning 
assumptions and requirements! 

8. Software modules 

Software modules should be well documented, 
written in certified development environments, (ISO 
9000, SEI-CMM level five, Watts Humphrey’s Team 
Software Process and Personal Software Process 
(TSP/PSP), etc.), and fully stress-tested at their 
interfaces for boundary-condition behavior, invalid 
inputs, and proper commands in improper sequences. 

In addition to the usual quality control concerns, 
bounds checking and input scrubbing require special 
attention. For bounds checking, verify that inputs are 
of the expected type: if numeric, in the expected 
range; if character strings, the length does not exceed 
the internal buffer size. For input scrubbing, 
implement reasonableness tests: if an input should be a 
single word of text, a character string containing 
multiple words is wrong, even if it fits in the buffer. 



      
        

        
    

    
      
         

         
         

      
          

      
        

           
         

          
          

        
       

      
    

     
        

         
     

    
        

       
        

       
       

      
       

       
    

 
   

 
        

       
      

      
          

     
       

      
        

       
       

       
     

  
       

        
     

 
    

 
        

 
        

           
           

       
       

         
         

  
           

       
   

        
      

       
        

       
          

    
      

       
       

       
    

       
       

         
        
       

       
      

         
        

         
        
          
    

    
      

      
        
        
         

          
        

    
       

         

A strong quality control regime with aggressive 
bounds checking and input scrubbing will knock out 
the vast majority of today’s security flaws. 

We also need good configuration control 
processes and design modularity. 

A good security design process requires review 
teams as well as design teams, and no designer should 
serve on the review team. They cannot be critical 
enough of their own work. Also in this world of 
multi-national firms with employees from around the 
world, it may make sense to take the national affinity 
of employees into account, and not populate design 
and review teams for a given product with employees 
of the SAME nationality or affinity. Half in jest I 
would say that if you have Israelis on the design team 
put Palestinians on the review team; or if Germans are 
on one, put French on the other. . . . 

Use formal methods or other techniques to assure 
modules meet their specifications exactly, with no 
extraneous or unexpected behaviors – especially 
embedded malicious behavior. 

Formal methods have improved dramatically over 
the years, and have demonstrated their ability to 
reduce errors, save time, and even save dollars! This 
is an under-exploited and very promising area 
deserving more attention. 

I cite two examples of formal methods successes: 
The Microsoft SLAM static driver verifier effort 
coming on line in 2005, and Catherine Meadows’ 
NRL Protocol Analyzer detecting flaws in the IKE 
(Internet Key Exchange) protocol in 1999. You may 
have your own recent favorites. 

As our systems become more and more complex, 
the need for, and value of, formal methods will 
become more and more apparent. 

9. Hardware features 

Consider the use of smartcards, smart badges, or 
other hardware tokens for especially critical functions. 
Although more costly than software, when properly 
implemented the assurance gain is great. The form-
factor is not as important as the existence of an 
isolated processor and address space for assured 
operations – an “Island of Security,” if you will. Such 
devices can communicate with each other through 
secure protocols and provide a web of security 
connecting secure nodes located across a sea of 
insecurity in the global net. 

I find it depressing that the hardware industry has 
provided hardware security functionality (from the 
Trusted Platform Group and others) now installed in 
processors and motherboards that is not yet accessed 

or used by the controlling software, whether an OS or 
an application. 

10. Security systems engineering 

How do we get high assurance in commercial 
gear? 

a) How can we trust, or
 b)  If  we  cannot  trust,  how  can  we  safely  use,  

security gear of unknown quality? 
Note the difference in the two characterizations 

above: how we phrase the question may be important. 
For my money, I think we need more focus on how to 
use safely security gear of unknown quality (or of 
uncertain provenance). 

I do not have a complete answer on how to handle 
components of unknown quality, but my thoughts lean 
toward systems engineering approaches somewhat 
akin to what the banking industry does in their 
systems. No single component, module, or person 
knows enough about the overall transaction processing 
system to be able to mount a successful attack at any 
one given access point. To be successful the enemy 
must have access at multiple points and a great deal of 
system architecture data. 

Partition the system into modules with “blinded 
interfaces” and limited authority where the data at any 
one interface are insufficient to develop a complete 
attack. Further, design cooperating modules to be 
“mutually suspicious,” auditing and alarming each 
other’s improper behavior to the extent possible. 

For example: if you are computing interest to post 
to accounts there is no need to send the complete 
account record to a subroutine to adjust the account 
balance. Just send the current balance and interest 
rate, and on return store the result in the account 
record. Now the interest calculating subroutine cannot 
see the data on the account owner, and therefore 
cannot target specific accounts for theft or other 
malicious action. We need to trust the master exec 
routine, but minimize the number of subroutines we 
need to trust. Yes, I know this is over-simplified, but 
you get my drift. 

In addition, to guard against “unintended extra 
functionality” within given hardware modules or 
software routines, the development philosophy needs 
to enforce something akin to “no-lone zones” in that 
no single designer or coder can present a “black-box” 
(or proprietary?) effort to the system design team that 
is tested only at its interfaces and is then accepted. 

Review all schematics and code (in detail, line by 
line) for quality and “responsive to stated 
requirement” goals. This review should be by parties 
independent of the designer. This is expensive, but not 



       
     
     

        
      

           
       

       
 
       

         
         

     
      

        
      
       
      

    
      

      
      

         
       
      

       
      

        
        

         
       

        
       

       
       

       
  

        
       

            
    

       
        

         
       

 
 
    

      
    

     
         

        

          
     

        
      

        
    

       
     

   
 

      
       

         
       

       
       

      
          

         
       

       
       

  
         

       
      
   

     
       

       
       

         
     

        
      

   
      

         
       

         
      

      
          

       
   

       
       

         
          
      

     
       

        
       

far from processes required today in many quality 
software development environments to address 
reliability and safety concerns. 

This of course requires all tools (compilers, CAD 
support, etc.) used in the development environment to 
be free of malice; that can be a major hurdle and a 
difficult assurance task in and of itself (remember the 
Thompson compiler in “Reflections on Trusting Trust, 
CACM 1983)! 

The “Open Source” movement may also provide 
value in this area. There are pluses and minuses with 
open source, but from the security viewpoint, I believe 
it is primarily a plus. 

Further architectural constraints may be imposed 
to make up for deficiencies in certain modules. Rather 
than (or in addition to) encryption in application 
processes prior to transmission to other sites which 
could be bypassed or countered by a malicious 
operating system, you might require site-to-site 
transmissions to go through an encrypting modem or 
other in-line, non-bypassable link encryptors. 

Link encryption in addition to application layer 
encryption is an example of a “Defense in Depth” 
strategy that attempts to combine several weak or 
possibly flawed mechanisms in a fashion robust 
enough to provide protection at least somewhat 
stronger than the strongest component present. 

Synergy, where the strength of the whole is 
greater than the sum of the strength of the parts, is 
highly desirable but not likely. We must avoid at all 
costs the all-too-common result where the system 
strength is less than the strength offered by the 
strongest component, and in some worst cases less 
than the weakest component present. Security is so 
very fragile under composition; in fact, secure 
composition of components is a major research area 
today. 

Good system security design today is an art, not a 
science. Nevertheless, there are good practitioners out 
there that can do it. For instance, some of your prior 
distinguished practitioners fit the bill. 

This area of “safe use of inadequate components” 
is one of our hardest problems, but an area where I 
expect some of the greatest payoffs in the future and 
where I invite you to spend effort. 

11. Third party testing 

NIST (and NSA) provide third-party testing in the 
National Information Assurance Partnership 
Laboratories (NIAP labs), but Government 
certification programs will only be successful if users 
see the need for something other than vendor claims of 

adequacy or what I call “proof by emphatic assertion – 
Buy me, I’m Good.” 

If not via NIST or other government mechanism, 
then the industry must provide third-party mediation 
for vendor security claims via consortia or other 
mechanisms to provide independent verification of  
vendor claims in a way understandable by users. 

12. Market/legal/regulatory constraints 

Market pressures are changing, and may now help 
drive more robust security functionality. The 
emergence of e-commerce in the past decade as a 
driver for secure internet financial transactions is 
certainly helpful, as is the entertainment industry’s 
focus on digital rights management. These industries 
certainly want security laid on correctly and robustly! 

I hope citizens will be able to use the emerging 
mechanisms to protect personal data in their homes, as 
well as industry using the mechanisms to protect 
industry’s fiscal and intellectual property rights. It is 
simply a matter of getting the security architecture 
right. 

I wonder if any of the industry consortia working 
on security for digital rights management and/or 
electronic fiscal transactions have citizen advocates 
sitting on their working groups. 

Lawsuits might help lead to legal “fitness-for-use” 
criteria for software products – much as other 
industries face today. This could be a big boon to 
assurance – liability for something other than the 
quality of the media on which a product is delivered! 

Recall that failure to deliver expected 
functionality can be viewed, in legal parlance, as 
providing an “attractive nuisance” and is often legally 
actionable. 

One example is a back yard swimming pool with 
no fence around it. If a neighbor’s child drowns in it, 
you can be in deep trouble for providing an attractive 
nuisance. Likewise, if you do a less than adequate job 
of shoveling snow from your walk in winter 
(providing the appearance of usability) you can be 
liable if someone slips on the ice you left on the 
surface. Many software security products today are 
attractive nuisances! 

All you need do is to Google “Software Quality 
Lawsuits” or a similar phrase, and you can find plenty 
of current examples of redress sought under law for 
lack of quality in critical software. Do not attempt to 
manage defects in software used in life-critical 
applications. Remove them during the development 
and testing processes! People have died due to poor 
software in medical devices, and the courts are now 
engaged; the punitive awards can be significant. 



        
     

          
        

       
         

   
        

       
   

      
        

       
       
      
        

             
       

       
              
         

       
       

        
          
    

       
       

      
      

     
         

   
 
 

 
        

        
      

      
        

      
       

       
       

      
        
        

           
 

      
        

     

One example of a lawsuit already settled: General 
Motors Corp. v. Johnston (1992).  A truck stalled and 
was involved in an accident because of a defect in a 
PROM, leading to the death of a seven-year old child. 
An award of $7.5 million in punitive damages against 
GM followed, in part due to GM knowing of the fault, 
but doing nothing. 

There are social processes outside the courts that 
can also drive vendors toward compliance with quality 
standards. 

One of the most promising recent occurrences in 
the insurance industry was stated in the report of 
Rueschlikon 2005 (a conference serving the insurance 
industry). Many participants felt that, “The insurance 
industry’s mechanisms of premiums, deductibles, and 
eligibility for coverage can incent best practices and 
create a market for security . . . This falls in line with 
the historic role played by the insurance industry to 
create incentives for good practices, from healthcare to 
auto safety . . . Moreover, the adherence to a set of 
best practices suggest that if they were not followed, 
firms could be held liable for negligence.” 

Bluntly, if your security product lacks sufficient 
robustness in the presence of malice, your customers 
will have to pay more in insurance costs to mitigate 
their risks. 

How the insurance industry will measure best 
practices and measure compliance are still to be 
worked out, but I believe differential pricing of 
business disaster recovery insurance based in part on 
quality/assurance (especially of security components) 
is a great stride forward in bringing market pressure to 
bear in this area! 

13. Summary 

In closing, I reiterate that what we need most in 
the future is more assurance rather than more 
functions or features. The malicious environment in 
which security systems must function absolutely 
requires the use of strong assurance techniques. 

Remember: most attacks today result from 
failures of assurance, not failures of function. 

Rather than offer predictions, try for a self-
fulfilling prophecy – each of us should leave this 
conference with a stronger commitment to using 
available assurance technology in products! It is not 
adequate to have the techniques; we must use them! 

We have our work cut out for us; let’s go do it. 

In closing, I would like to thank Steven 
Greenwald, Brad Martin, and Greg Shipley for their 
insights and help in preparing this article. 
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	Figure
	6 Part 1: A fully time-analysable unmodified COTS single-core, multi bus-master SSRT configuration that has faster best-effort & real-time performancethan today’s single-core architectures (using comparable components) 

	Single-core design with 64 bus master peripherals. 
	Single-core design with 64 bus master peripherals. 
	Processor Core 1 with L1 Cache and MMU Private FLASH Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Time-analysable multi-function interconnect (32-bit) True dual port SRAM 64 time slot based interconnect for bus master peripherals Cache & MMU 1 Cache & MMU 64 
	➠ The single unmodified COTS core has 100% time deterministic access to: 
	• 
	• 
	• 
	COTS Private Flash 

	• 
	• 
	Up to 64 private COTS bus-target peripherals 

	• 
	• 
	One port of the true dual-port SRAM which stores shared memory 



	Single-core design with 64 bus master peripherals 
	Single-core design with 64 bus master peripherals 
	Processor Core 1 with L1 Cache and MMU Private FLASH Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Time-analysable multi-function interconnect (32-bit) True dual port SRAM (256-bit) 64 time slot based interconnect for bus master peripherals Cache & MMU 1 Cache & MMU 64 
	➠ 
	➠ 
	➠ 
	➠ 
	Employs S/Labs’ up to 64 time slot based interconnect for bus master peripherals 

	• 
	• 
	• 
	256-bit wide data path to the true dual-port SRAM 

	• 
	• 
	Each time slot is exactly 1 clock-cycle in duration 

	• 
	• 
	The worst case access latency for 1 time slot is only 63 clock-cycles 

	• 
	• 
	Permits allocation of multiple time slots to any very high-bandwidth peripherals 



	➠ 
	➠ 
	Each bus-master peripheral is paired with a tiny fully-associative cache & I/O MMU 



	Single-core design with 64 bus master peripherals. 
	Single-core design with 64 bus master peripherals. 
	Processor Core 1 with L1 Cache and MMU Private FLASH Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Time-analysable multi-function interconnect (32-bit) True dual port SRAM (256-bit) 64 time slot based interconnect for bus master peripherals Cache & MMU 1 Cache & MMU 64 
	• Accelerates contiguous rd/wr operations by that COTS bus-master peripheral 
	– 
	– 
	– 
	Combines 32-bit wide writes into a 256-bit contiguous write operation to SRAM 

	– 
	– 
	Prefetches 256-bits of data from SRAM on a 32-bit read-miss by the peripheral 



	Single-core design with 64 bus master peripherals 
	Single-core design with 64 bus master peripherals 
	Processor Core 1 with L1 Cache and MMU Private FLASH Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Time-analysable multi-function interconnect (32-bit) True dual port SRAM (256-bit) 64 time slot based interconnect for bus master peripherals Cache & MMU 1 Cache & MMU 64 ➠ It is trivial to configure SSRT at design-time to 
	ensure that each COTS bus-master peripheral has 
	guaranteed wire-speed bandwidth with low latency 

	Architecture enables superior ACET performance. 
	Architecture enables superior ACET performance. 
	Processor Core 1 with L1 Cache and MMU Private FLASH Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Time-analysable multi-function interconnect (32-bit) True dual port SRAM (256-bit) 64 time slot based interconnect for bus master peripherals Cache & MMU 1 Cache & MMU 64 
	➠. SSRT is the ideal high-performance single-core ACET architecture 
	•. Compared to today’s COTS single-core microcontroller architectures, the average case execution time of software running on the core is FASTER because: 
	–. there is no timing interference from bus-master peripheral activity 

	Architecture enables superior WCET performance 
	Architecture enables superior WCET performance 
	Processor Core 1 with L1 Cache and MMU Private FLASH Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Time-analysable multi-function interconnect (32-bit) True dual port SRAM (256-bit) 64 time slot based interconnect for bus master peripherals Cache & MMU 1 Cache & MMU 64 ➠ SSRT is the ideal high-performance single-core WCET architecture: 
	•. 
	•. 
	•. 
	The upper-bound WCET analysis of software running on that core is as tight as a single-core system with no bus-master peripherals 

	•. 
	•. 
	All bus-master peripherals are intrinsically guaranteed wire-speed bandwidth with guaranteed tight upper-bound access latencies at all times 


	Figure
	Costs of Hardware-Support for Dependability (DATE 2016) 13 Part 2: An unmodified COTS dual-core, cache coherent, SSRT configuration Achieves higher bandwidth accessto shared memory than today’smulti-core architectures (using comparable components) Employs the technologiesdescribed in the single-coreSSRT configuration Cache-coherent dual-core with peripherals ➠ The dual-core configuration adds S/Labs’ time-analysable cache-coherent time slot based interconnect which has: • 2 time slots for 2 cores • 64-bit w

	Cache-coherent dual-core with peripherals. 
	Cache-coherent dual-core with peripherals. 
	Time-analysable multi-function interconnect Cache & MMU 1 Cache & MMU 64 64 time slot interconnect for bus master peripherals (64-bit) True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 private bus-targetperipherals 32-bit Processor Core 2 Private SDRAM 2 Up to 64 private bus-targetperipherals Bus master peripheral 1 Bus master peripheral 64 Cache & MMU 1 Cache & MMU 2 2 time slot time-analysable cache-coherent interconnect 
	➠ There are 2 caches and 2 constant time MMU connected to that interconnect 
	• Each of S/Labs’ coherent caches employ: 
	• 
	• 
	• 
	a fully-associative, true LRU (or random) cache-line eviction scheme; and 

	• 
	• 
	a time-analysable “write-update” (snarfing) cache coherency scheme 



	Cache-coherent dual-core with peripherals. 
	Cache-coherent dual-core with peripherals. 
	➠ The time analysable memory transfer requests issued by the processor core to the cache of the interconnect ... Time-analysable multi-function interconnect Cache & MMU 1 Cache & MMU 64 64 time slot interconnect for bus master peripherals (64-bit) True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 privatebus-targetperipherals 32-bit Processor Core 2 Private SDRAM 2 Up to 64 privatebus-targetperipherals Bus master peripheral 1 Bus master peripheral 64 Cache & MMU 1 Cache & MMU 2 2
	Figure

	Cache-coherent dual-core with peripherals. 
	Cache-coherent dual-core with peripherals. 
	➠ The time analysable memory transfer requests issued by the processor core to the cache of the interconnect experience zero timing interference wrt. all write coherency events issued over that interconnect Time-analysable multi-function interconnect Cache & MMU 1 Cache & MMU 64 64 time slot interconnect for bus master peripherals (64-bit) True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 private bus-targetperipherals 32-bit Processor Core 2 Private SDRAM 2 Up to 64 private bus-
	Figure

	Cache-coherent dual-core with peripherals 
	Cache-coherent dual-core with peripherals 
	➠ In a N core configuration of the SSRT architecture: • Every core can issue N 32-bit wide memory requests every N clock cycles to its cache Time-analysable multi-function interconnect Cache & MMU 1 Cache & MMU 64 64 time slot interconnect for bus master peripherals (64-bit) True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 privatebus-targetperipherals 32-bit Processor Core 2 Private SDRAM 2 Up to 64 privatebus-targetperipherals Bus master peripheral 1 Bus master peripheral 64 C
	➠ In a N core configuration of the SSRT architecture: • Every core can issue N 32-bit wide memory requests every N clock cycles to its cache Time-analysable multi-function interconnect Cache & MMU 1 Cache & MMU 64 64 time slot interconnect for bus master peripherals (64-bit) True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 privatebus-targetperipherals 32-bit Processor Core 2 Private SDRAM 2 Up to 64 privatebus-targetperipherals Bus master peripheral 1 Bus master peripheral 64 C
	Figure


	Cache-coherent dual-core with peripherals. 
	Cache-coherent dual-core with peripherals. 
	➠ In a N core configuration of the SSRT architecture: • We linearly scale the cache-line and bus widths with the number of cores to ensure that the peak bandwidth between cores SCALES LINEARLY • For example eight 32-bit write operations issued over 8 clock cycles can be combined into four 64-bit write requests issued issued over 8 clock cycles with zero timing jitter introduced from unrelated memory transfer requests (64-bit) True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 pri

	In phase 3: Slightly modifying COTS cores 
	In phase 3: Slightly modifying COTS cores 
	32-bit Processor Core 1 Private SDRAM 1 Up to 64 privatebus-target peripherals 32-bit Processor Core 2 Cache & MMU 1 Cach 2 time slot time-analysable cache-coherent interconnect 
	➠. To gain additional per-core performance in phase 3 of our commercialisation roadmap, we plan to implement our 
	•. 
	•. 
	•. 
	coherent cache; and 

	• 
	• 
	smaller and faster MMU directly into the Nios II/fast soft-core processor pipeline 


	Figure
	21 Part 3: An unmodified COTS tri-core, cache coherent, SSRT configuration This example employsdual hard macro ARM cores and a time-analysable soft Nios II corein one SoC FPGA Employs the technologiesdescribed in the single anddual-core SSRT configurations 

	Use the fast ARM cores of Altera SoC FPGA. 
	Use the fast ARM cores of Altera SoC FPGA. 
	Nios II Processing Element S/Labs' time-analysable multi-function interconnect Up to 64 real-time (RT) bus-target peripherals (I/O) Up to 64 real-time (RT) bus-master peripherals (I/O) Private SDRAM Channel Private FLASH Channel ARM dual-core hard processor system Non real-time I/O Non real-time I/O 
	➠. The unmodified Nios II core and COTS peripherals located in the programmable logic of the FPGA experience zero timing interference from the fast unmodified ARM cores and COTS peripherals located in the hard processing subsystem of the FPGA 
	Figure
	23 Part 4: An unmodified COTS 8-core, cache coherent, SSRT configuration with a far superiormemory subsystem forAMP and SMP RTOS than today’s multi-core architectures (using comparable components) Employs the technologiesdescribed in the single anddual-core SSRT configuration 
	Figure
	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 

	SSRT is carefully designed for use with SDRAM 
	SSRT is carefully designed for use with SDRAM 
	➠. Wrt. 32-byte burst access to a DDR SDRAM running @ 800 MHz per data pin: 
	Peak performance of an 8-bit wide SDRAM in OPEN-page mode (6.4 Gb/s). is 1.56x faster than the. peak performance of a 64-bit wide SDRAM in CLOSED-page mode (4.1 Gb/s). 
	Figure

	SSRT is carefully designed for use with SDRAM 
	SSRT is carefully designed for use with SDRAM 
	➠. To take advantage of this fact: 
	•. 
	•. 
	•. 
	SSRT’s memory subsystem is .carefully designed to. maximise SDRAM row-hits on. narrow, open-page mode, private SDRAM channels. 

	•. 
	•. 
	This increases the effective memory bandwidth. per data pin of SDRAM. while controlling hardware costs. in a multi-core context. 


	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 
	Figure

	Simplified view of the 8-core memory subsystem. 
	Simplified view of the 8-core memory subsystem. 
	SDRAM SDRAM SRAM PE 1 PE 2 SDRAM 8 timeslot non blocking inter-SDRAM SDRAM PE 3 PE 4 SDRAM SDRAM PE 5 PE 6 SDRAM SDRAM PE 7 PE 8 
	➠. 
	➠. 
	➠. 
	Private narrow SDRAM channels are used to store all executable code and private data that is accessed by its core 

	➠. 
	➠. 
	This self-evidently results in LINEAR scalability of private code + private data access in AMP and SMP tasks wrt. the number of cores 

	➠. 
	➠. 
	In SMP contexts: 


	Figure

	Simplified view of the 8-core memory subsystem. 
	Simplified view of the 8-core memory subsystem. 
	SDRAM SDRAM SRAM PE 1 PE 2 SDRAM 8 timeslot non blocking inter-connect SDRAM SDRAM PE 3 PE 4 SDRAM SDRAM PE 5 PE 6 SDRAM SDRAM PE 7 PE 8 
	•. All data shared between the threads. of an application running on 2 or more cores .can be mapped to either .shared SDRAM or shared SRAM .
	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 
	Figure
	28 Part 5: An unmodified COTS 14 core, shared-memoryconfiguration of SSRTthat employs: 8x Intel Xeon processor cores 6x Intel PSG Nios II/fast cores Employs the technologiesdescribed in the single anddual-core SSRT configuration 
	Coupling 2 Xeon E5-2603 chips to our interconnect. 
	Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 
	Core 0 
	Core 0 
	Core 0 
	Core 1 
	Core 2 
	Core 3 

	Gen 3 PCI Express ports 
	Gen 3 PCI Express ports 
	ECC SDRAM Memory Controller 


	I/O ECC SDRAM ECC SDRAM Core 2 Core 3 Core 4 Core 5 I/O I/O I/O I/O I/O I/O I/O S/Labs' multi-function interconnect Altera Cyclone 5CGTFD5C5 (USD 173.00) Core 0 Core 1 Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) ➠ Tasks running on the 8 Intel Xeon cores can transparently access the shared memory managed on the FPGA by using the PCI express hardware 
	Coupling 2 Xeon E5-2603 chips to our interconnect. 
	Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 
	Core 0 
	Core 0 
	Core 0 
	Core 1 
	Core 2 
	Core 3 

	Gen 3 PCI Express ports 
	Gen 3 PCI Express ports 
	ECC SDRAM Memory Controller 


	I/O ECC SDRAM ECC SDRAM Core 2 Core 3 Core 4 Core 5 I/O I/O I/O I/O I/O I/O I/O S/Labs' multi-function interconnect Altera Cyclone 5CGTFD5C5 (USD 173.00) Core 0 Core 1 Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) ➠ Use the 2 Intel Xeon chips for soft real-time and best-effort tasks ➠ Use the Altera FPGA for hard real-time tasks and peripherals with excellent performance 
	Figure
	31 Part 6: An unmodified COTS 28-core, cache-coherent, SSRT configurationoptimised fordigital signal processing Employs the technologiesdescribed in the single anddual-core SSRT configuration 
	Private SDRAM Channel 1 Private SDRAM Channel 2 S/Labs’ interconnect in 28-core configuration 
	Figure
	PE 1 PE 2 PE 3 PE 4 PE 5 PE 6 PE 7 PE 8 PE 9 PE 10 PE 11 PE 12 PE 13 PE 14 PE 15 PE 16 Synaptic Labs' Multi Function Interconnect 
	Figure
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	PE 18 
	PE 18 
	PE 18 
	PE 18 
	PE 18 
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	PE 18 
	PE 18 
	PE 18 
	PE 18 
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	PE 20 

	PE 21 

	PE 22 
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	PE 25 

	PE 26 

	PE 27 

	PE 28 

	Modules not to scale 
	I/O 
	I/O 
	I/O 
	I/O 
	I/O 

	I/O 

	I/O 

	➠. In this illustration, a 1024-bit wide cache coherent interconnect, is configured for 28-wide symmetric multi processing (SMP) 
	•. Supports a small number of I/O peripherals (Ethernet, CAN, ...) 
	Figure
	33 Part 7: SSRT supports multipletiming analysis techniques 
	Figure
	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 

	SSRT supports multiple timing analysis techniques 
	SSRT supports multiple timing analysis techniques 
	➠. 
	➠. 
	➠. 
	➠. 
	Integrated hardware support for multiple timing analysis techniques in parallel makes SSRT the ideal real-time platform 

	•. Supports rapid switching between. true LRU and random cache-line eviction. in a fully-associative cache. to support different timing analysis schemes. 

	➠. 
	➠. 
	The end-user can therefore select and compare different timing analysis algorithms or use different timing analysis techniques for different tasks 

	➠. 
	➠. 
	➠. 
	We explicitly track the evolving requirements of: 

	•. 
	•. 
	•. 
	AbsInt, Rapita, Proxima, .... 

	•. 
	•. 
	We acknowledge and are grateful for the long term .collaboration support from AbsInt. 




	Figure
	35 Part 8: Broad across-industryexpectations wrt.realtime architectures and How the SSRT architecture satisfies those requirements 
	Figure
	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 

	Broad across-industry expectations 
	Broad across-industry expectations 
	➠. Real-time capabilities in multi-core architectures arealmost universally viewed as 
	SECOND TIER PRIORITIES 
	SECOND TIER PRIORITIES 
	when compared to maintaining backwards compatibility in the form of 
	best-effort software price / performance ratiosthat are roughly competitive against COTS non-real time multi-core solutions 

	✓. S/Labs’ SSRT cache-coherent shared memory architecturewill simultaneously achieveFASTER real-time and best-effort software performance: 
	✓. S/Labs’ SSRT cache-coherent shared memory architecturewill simultaneously achieveFASTER real-time and best-effort software performance: 
	✓ by employing faster more efficient tech. at comparable costs 
	✓ increasing software performance by reducing contention 


	Broad across-industry expectations 
	Broad across-industry expectations 
	➠. Specifically, end-users are looking for: 
	1.. Support for (cache-coherent) shared-memory software 
	-Based on our analysis, time-analysable message passing architectures cannot deliver commercially competitive cache-coherent shared memory performance over 2 or more cores 
	2.. 
	2.. 
	2.. 
	Support for their trusted AMP and SMP real-time operating systems 

	3.. 
	3.. 
	Support running memory intensive best-effort tasks fast while. concurrently running memory intensive time-analysable tasks. with tight bounds. 

	4.. 
	4.. 
	Support for existing instruction sets and development tool suites 


	-Using either low-area COTS cores and/or high-performance COTS cores .-Support for their trusted / mandated task scheduling schemes. -Robust space and time partitioning, priority driven scheduling, .... 
	5. Support for their preferred time-analysis scheme(s) with tight bounds 
	-The computer architecture must not impose/dictate a timing method on to the end-user 
	➠. Only solutions that satisfy all 5 points are candidates to achieve sufficient broad industry acceptance to achieve economies of scale in manufacture 
	• This is why competing real-time multi-core proposals are not widely adopted today 
	✓ Only S/Lab’s multi-core architecture satisfies all these 5 points and more... 
	✓ Only S/Lab’s multi-core architecture satisfies all these 5 points and more... 
	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 
	Concepts for Composable Dependable Architectures & Costs of Hardware-Support for Dependability (DATE 2016) 

	Figure
	38 Part 9: S/Labs’ 4 phasecommercialisation roadmap for SSRT 
	S/Labs’ 4 phase commercialisation roadmap 
	1.. Develop a range of private fully-associative cache technologiesthat accelerate per-core performance for best-effort tasks in FPGA 
	a.. For example: .a tiny flash accelerator for up to 4x faster. best-effort software performance on the .Nios II/f when executing code from the. on-chip FLASH of the Altera Max10FPGA. 
	® 

	Up to 4x faster and 41x smaller than Altera’s Flash Accelerator which was designed specifically to accelerate the Max 10 on-chip flash 
	This tiny cache (35 4LUT, 1KB SRAM) informs the commercial development Intel on-chipﬂash Code Data Data Control Nios II/f I$ D$ On-chip memory S/Labs' Accelerator Intel Flash Accelerator Intel PSG's / Altera's Max 10 
	➠ 
	of the tiny caches for bus-master peripherals in SSRT 
	S/Labs’ 4 phase commercialisation roadmap 
	1.. Develop a range of private fully-associative cache technologiesthat accelerate per-core performance for best-effort tasks in FPGA 
	b.. S/Labs up to 32 way, fully associative cache.with true LRU cache-line eviction. 
	Accelerate on off-chip FLASH and SDRAM on the Nios II/e 
	and 

	e.g. our 4-way, 4KB L1 cache on Nios II/e@100MHz wins up to 44x acceleration of industry standard benchmarks run from 25 MHz serial flash 
	Add our 4-way 1KB L2 cache to Nios II/f@100MHz with 4K L1 I$ to win up to 1.8x acceleration of industry standard benchmarks run from 1xSPI@25 
	MHz. ➠ Our small fast cache designs inform the commercial design of the Code Data I$ D$ On-chip memory S/Labs' Cache Intel PSG's / Altera'sSRAM based FPGA SPI Flash Nios II /e or /f Data Control SPI 
	SSRT fully-associative write-update cache module with true-LRU and random cache-line eviction policies 
	S/Labs’ 4 phase commercialisation roadmap. 
	2.. Improve both the per core performance and the total system performance in a wide-range of shared memory mixed criticality FPGA applications, when compared to today’s COTS FPGA based solutions 
	Such as our 2 core solution previously discussed 
	Time-analysable multi-function interconnect Cache & MMU 1 Cache & MMU 64 64 time slot interconnect for bus master peripherals (64-bit)True dual port SRAM (256-bit) 32-bit Processor Core 1 Private SDRAM 1 Up to 64 privatebus-target peripherals 32-bit Processor Core 2 Private SDRAM 2 Up to 64 privatebus-target peripherals Bus master peripheral 1 Bus master peripheral 64 Cache & MMU 1 Cache & MMU 2 2 time slot time-analysable cache-coherent interconnect 
	Sect
	Figure

	Figure
	3.. Build heterogeneous multi-core solutions using soft and hard cores 
	Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 
	S/Labs’ 4 phase commercialisation roadmap 
	Core 
	Core 
	Core 
	Core 
	Core 
	Core 

	0 
	0 
	1 
	2 
	3 

	Gen 3 PCI Express ports 
	Gen 3 PCI Express ports 
	ECC SDRAM Memory Controller 


	I/O ECC SDRAM ECC SDRAM Core 2 Core 3 Core 4 I/O I/O I/O I/O I/O I/O I/O Core 5 S/Labs' multi-function interconnect Altera Cyclone 5CGTFD5C5 (USD 173.00) Core 0 Core 1 Xeon E5-2603 1.8 GHz 4-Core 4-ECC DDR (USD 198.00) 
	4.. Implement our field-proven technology as a hard-macro in a SoC FPGA device or as dedicated ASIC chips 
	43 In summary, only S/Labs’ SSRTarchitectures permits: • ACET and WCET performance gains to be won in FPGA (and ASIC) • a commercially viable, incremental development process that is producing stand-alone products in addition to the final architecture • the development of high performance commercially viable FPGA solutions in soft logic, that can be coupled to COTS ASIC cores, to inform future high-volume fully ASIC based solutions S/Labs solutions address thepragmatic real-world needs of the broadest range
	Figure
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	Abstract 
	Abstract 
	When will we be secure? Nobody knows for sure – but it cannot happen before commercial security products and services possess not only enough functionality to satisfy customers’ stated needs, but also sufficient assurance of quality, reliability, safety, and appropriateness for use. Such assurances are lacking in most of today’s commercial security products and services. I discuss paths to better assurance in Operating Systems, Applications, and Hardware through better development environments, requirements
	1. Introduction 
	This is an expanded version of the “Distinguished Practitioner” address at ACSAC 2005 and therefore is less formal than most of the papers in the proceedings. 
	I am very grateful that ACSAC chose me as a distinguished practitioner, and I am eager to talk with you about what makes products and services secure. 
	Most of your previous distinguished practitioners have been from the open community; I am from a closed community, the U.S. National Security Agency, but I work with and admire many of the distinguished practitioners from prior conferences. 
	I spent my first 20 years in NSA doing research developing cryptographic components and secure systems. Cryptographic systems serving the U.S. government and military spanning a range from nuclear command and control to tactical radios for the battlefield to network security devices use my algorithms. 
	For the last 14 years, I have been a Technical Director at NSA (similar to a chief scientist or senior technical fellow in industry) serving as Technical Director for three of NSA’s major mission components: the Research Directorate, the Information Assurance Directorate, and currently the Directorate 
	For the last 14 years, I have been a Technical Director at NSA (similar to a chief scientist or senior technical fellow in industry) serving as Technical Director for three of NSA’s major mission components: the Research Directorate, the Information Assurance Directorate, and currently the Directorate 
	for Education and Training (NSA’s Corporate University). Throughout these years, my mantra has been, “Managers are responsible for doing things right; Technical Directors are responsible for finding the right things to do.” 

	There are many things to which NSA pays attention in developing secure products for our National Security Customers to which developers of commercial security offerings also need to pay attention, and that is what I want to discuss with you today. 
	2. Setting the context 
	The RSA Conference of 1999 opened with a choir singing a song whose message is still valid today: “Still Haven’t Found What I’m Looking For”. The reprise phrase was . . . “When will I be secure? Nobody knows for sure. But I still haven’t found what I’m looking for!” 
	That sense of general malaise still lingers in the security industry; why is that? Security products and services should stop malice in the environment from damaging their users. Nevertheless, too often they fail in this task. I think it is for two major reasons. 
	First, too many of these products are still designed and developed using methodologies assuming random failure as the model of the deployment environment rather than assuming malice. There is a world of difference! 
	Second, users often fail to characterize the nature of the threat they need to counter. Are they subject only to a generic threat of an opponent seeking some weak system to beat on, not necessarily theirs, or are they subject to a targeted attack, where the opponent wants something specific of theirs and is willing to focus his resources on getting it? 
	The following two simple examples might clarify this. 
	Example 1: As a generic threat, consider a burglar roaming the neighborhood wanting to steal a VCR. First, understand his algorithm: Find empty house 
	Example 1: As a generic threat, consider a burglar roaming the neighborhood wanting to steal a VCR. First, understand his algorithm: Find empty house 
	(dark, no lights) try door; if open, enter, if VCR – take. If the door is resistant, or no VCR is present, find another dark house. 

	Will the burglar succeed? Yes, he will probably get a VCR in the neighborhood. Will he get yours? What does it take to stop him? Leave your lights on when you go out (9 cents a kilowatt-hour) and lock your door. That is probably good enough to stop the typical generic burglar. 
	Example 2: As a targeted threat, assume you have a painting by Picasso worth $250,000 hanging above your fireplace, and an Art thief knows you have it and he wants it. What is his algorithm? He watches your house until he sees the whole family leave. He does not care if the lights are on or not. He approaches the house and tries the door; if open, he enters. If locked, he kicks it in. If the door resists, he goes to a window. If no electronic tape, he breaks the glass and enters. If electronic tape is prese
	It takes more effort to counter a targeted threat. In this case, typically a burglar alarm system with active polling and interior motion sensors as a minimum (brick construction would not hurt either). With luck, this should be enough to deter him. If not, at least there should be increased odds of recovery due to hot pursuit once the alarms go off. 
	There is no such thing as perfect security; you need to know how much is enough to counter the threat you face, and this changes over time. 
	3. What do we need? 
	NSA has a proud tradition during the past 53 years of providing cryptographic hardware, embedded systems, and other security products to our customers. Up to a few years ago, we were a sole-source provider. In recent years, there has come to be a commercial security industry that is attractive to our customers, and we are in an unaccustomed position of having to “compete.” There is nothing wrong with that. If industry can meet our customer’s needs, so be it. 
	Policy and regulation still require many of our customers to accept Government advice on security products. However, they really press us to recommend commercial solutions for cost savings and other reasons. Where we can, we do so. However, we do not do it very often because we still have not found what we are looking for – assurance. 
	Assurance is essential to security products, but it is missing in most commercial offerings today. The 
	Assurance is essential to security products, but it is missing in most commercial offerings today. The 
	major shortfall is absence of assurance (or safety) mechanisms in software. If my car crashed as often as my computer does, I would be dead by now. 

	In fact, compare the software industry to the automobile industry at two points in its history, the 1930s and today. In 1930, the auto industry produced cars that could go 60 mph or faster, looked nice, and would get you from here to there. Cars “performed” well, but did not have many “safety features.” If you were in an accident at high-speed, you would likely die. 
	The car industry today provides air bags, seat belts, crush zones, traction control, anti-skid braking, and a host of other safety details (many required by legislation) largely invisible to the purchaser. Do you regularly use your seat belt? If so, you realize that users can be trained to want and to use assurance technology! 
	The software security industry today is at about the same stage as the auto industry was in 1930; it provides performance, but offers little safety. For both cars and software, the issue is really assurance. 
	Yet what we need in security products for high-grade systems in DoD is more akin to a military tank than to a modern car! Because the environment in which our products must survive and function (battlefields, etc.) has malice galore. 
	I am looking forward to, and need, convergence of government and commercial security products in two areas: assurance, and common standards. Common standards will come naturally, but assurance will be harder – so I am here today as an evangelist for assurance techniques. 
	Many vendors tell me that users are not willing to pay for assurance in commercial security products; I would remind you that Toyota and Honda penetrated 
	U.S. Markets in the 70’s by differentiating themselves from other brands by improving reliability and quality! What software vendor today will become the “Toyota” of this industry by selling robust software? 
	4. Assurance: first definition 
	What do I mean by assurance? I’ll give a more precise definition later, but for now it suffices to say that assurance work makes a user (or accreditor) more confident that the system works as intended, without flaws or surprises, even in the presence of malice. 
	We analyze the system at design time for potential problems that we then correct. We test prototype devices to see how well they perform under stress or when used in ways beyond the normal specification. Security acceptance testing not only exercises the product for its expected behavior given the expected 
	We analyze the system at design time for potential problems that we then correct. We test prototype devices to see how well they perform under stress or when used in ways beyond the normal specification. Security acceptance testing not only exercises the product for its expected behavior given the expected 
	environment and input sequences, but also tests the product with swings in the environment outside the specified bounds and with improper inputs that do not match the interface specification. We also test with proper inputs, but in an improper sequence. We anticipate malicious behavior and design to counter it, and then test the countermeasures for effectiveness. We expect the product to behave safely, even if not properly, under any of these stresses. If it does not, we redesign it. 

	I want functions and assurances in a security device. We do not “beta-test” on the customer; if my product fails, someone might die. 
	Functions are typically visible to the user and commanded through an interface. Assurances tend to be invisible to the user but keep him safe anyway. 
	Examples would be thicker insulation on a power wire to reduce the risk of shock, and failure analysis to show that no single transistor failure will result in a security compromise. 
	Having seat belts in a car provides a safety function. Having them made of nylon instead of cotton is the result of assurance studies that show nylon lasts longer and retains its strength better in the harsh environment of a car’s interior. 
	Assurance is best addressed during the initial design and engineering of security systems – not as after-market patches. The earlier you include a security architect or maven in your design process, the greater is the likelihood of a successful and robust design. The usual quip is, “He who gets to the interface first, wins”. 
	When asked to predict the state of “security ten years from now,” I focus on the likely absence of assurance, rather than the existence of new and wonderful things. 
	Ten years from now, there will still be security-enhanced software applications vulnerable to buffer overflow problems. These products will not be secure, but will be sold as such. 
	Ten years from now, there will still be security-enhanced operating systems that will crash when applications misbehave. They will not be secure either. 
	Ten years from now, we will have sufficient functionality, plenty of performance, but not enough assurance. 
	Otherwise, predicting ten years out is simply too hard in this industry, so I will limit myself to about five years. Throughout the coming five-year span, I see little improvement in assurance, hence little true security offered by the industry. 
	5. The current state of play 
	Am I depressed about this state of affairs? Yes, I am. The scene I see is products and services sufficiently robust to counter many (but not all) of the “hacker” attacks we hear so much about today, but not adequate against the more serious but real attacks mounted by economic enemies, organized crime, nation states, and yes, terrorists. 
	We will be in a truly dangerous stance: we will think we are secure (and act accordingly) when in fact we are not secure. 
	The serious enemy knows how to hide his activities. What is the difference between a hacker and a more serious threat such as organized crime? The hacker wants a score, and bragging rights for what he has obviously defaced or entered. Organized crime wants a source, is willing to work long, hard, and quietly to get in, and once in, wants to stay invisible and continue over time to extract what it needs from your system. 
	Clearly, we need confidence in security products; I hope we do not need a major bank-failure or other disaster as a wake-up call before we act. 
	The low-level hackers and “script-kiddies” who are breaking systems today and are either bragging about it or are dumb enough to be caught, are providing some of the best advertising we could ask for to justify the need for assurance in security products. 
	They demonstrate that assurance techniques (barely) adequate for a benign environment simply will not hold up in a malicious environment, so we must design to defeat malice. Believe me – there is malice out there, beyond what the “script-kiddies” can mount. 
	However, I do fear for the day when the easy threats are countered – that we may then stop at that level, rather than press on to counter the serious and pernicious threats that can stay hidden. 
	During the next several years, we need major pushes and advances in three areas: Scalability, Interoperability, and Assurance. I believe that market pressures will provide the first two, but not the last one 
	– assurance.  
	There may or may not be major breakthroughs in new security functions; but we really do not need many new functions or primitives – if they come, that is nice. If they do not, we can make do with what we have. 
	What we really need but are not likely to get is greater levels of assurance. That is sad, because despite the real need for additional research in assurance technology, the real crime is that we fail to 
	What we really need but are not likely to get is greater levels of assurance. That is sad, because despite the real need for additional research in assurance technology, the real crime is that we fail to 
	use fully that which we already have in hand! We need to better use those confidence-improving techniques that we do have, and continue research and development efforts to refine them and find others. 

	I am not asking for the development of new science; the safety and reliability communities (and others) know how to do this – go and learn from them. 
	You are developers and marketers of security products, and I am sorry that even as your friend I must say, “Shame on you. You should build them better!” It is a core quality-of-implementation issue. The fact that teen-age hackers can penetrate many of your devices from home is an abysmal statement about the security-robustness of the products. 
	6. Assurance: second definition 
	It is time for a more precise definition. Assurances are confidence-building activities demonstrating that 
	1..$
	1..$
	1..$
	The system’s security policy is internally consistent and reflects the requirements of the organization, 

	2..$
	2..$
	There are sufficient security functions to support the security policy, 

	3..$
	3..$
	The system functions meet a desired set of properties and only those properties, 

	4..$
	4..$
	The functions are implemented correctly, and 

	5..$
	5..$
	The assurances hold up through the manufacturing, delivery, and life cycle of the system. 


	We provide assurance through structured design processes, documentation, and testing, with greater assurance provided by more processes, documentation, and testing. 
	I grant that this leads to increased cost and delayed time-to-market – a severe one-two punch in today’s marketplace; but your customers are growing resistive and are beginning to expect, and to demand, better products tomorrow. They are near the point of chanting, “I’m mad as hell, and I’m not going to take it anymore!” 
	Several examples of assurance techniques come to mind; I will briefly discuss some in each of the following six areas: operating systems, software modules, hardware features, systems engineering, third party testing, and legal constraints. 
	7. Operating systems 
	Even if operating systems are not truly secure, they can at least remain benign (not actively malicious) if they would simply enforce a digital signature check on every critical module prior to each 
	Even if operating systems are not truly secure, they can at least remain benign (not actively malicious) if they would simply enforce a digital signature check on every critical module prior to each 
	execution. Years ago, NSA’s research organization wrote test code for a UNIX system that did exactly that. The performance degraded about three percent. This is something that is doable! 

	Operating Systems should be self-protective and enforce (at a minimum) separation, least-privilege, process-isolation, and type-enforcement. 
	They should be aware of and enforce security policies! Policies drive requirements. Recall that Robert Morris, a prior chief scientist for the National Computer Security Center, once said: “Systems built without requirements cannot fail; they merely offer surprises – usually unpleasant!” 
	Given today’s common hardware and software architectural paradigms, operating systems security is a major primitive for secure systems – you will not succeed without it. This area is so important that it needs all the emphasis it can get. It is the current “black hole” of security. 
	The problem is innately difficult because from the beginning (ENIAC, 1944), due to the high cost of components, computers were built to share resources (memory, processors, buses, etc.). If you look for a one-word synopsis of computer design philosophy, it was and is SHARING. In the security realm, the one word synopsis is SEPARATION: keeping the bad guys away from the good guys’ stuff! 
	So today, making a computer secure requires imposing a “separation paradigm” on top of an architecture built to share. That is tough! Even when partially successful, the residual problem is going to be covert channels. We really need to focus on making a secure computer, not on making a computer secure – the point of view changes your beginning assumptions and requirements! 
	8. Software modules 
	Software modules should be well documented, written in certified development environments, (ISO 9000, SEI-CMM level five, Watts Humphrey’s Team Software Process and Personal Software Process (TSP/PSP), etc.), and fully stress-tested at their interfaces for boundary-condition behavior, invalid inputs, and proper commands in improper sequences. 
	In addition to the usual quality control concerns, bounds checking and input scrubbing require special attention. For bounds checking, verify that inputs are of the expected type: if numeric, in the expected range; if character strings, the length does not exceed the internal buffer size. For input scrubbing, implement reasonableness tests: if an input should be a single word of text, a character string containing multiple words is wrong, even if it fits in the buffer. 
	A strong quality control regime with aggressive bounds checking and input scrubbing will knock out the vast majority of today’s security flaws. 
	We also need good configuration control processes and design modularity. 
	A good security design process requires review teams as well as design teams, and no designer should serve on the review team. They cannot be critical enough of their own work. Also in this world of multi-national firms with employees from around the world, it may make sense to take the national affinity of employees into account, and not populate design and review teams for a given product with employees of the SAME nationality or affinity. Half in jest I would say that if you have Israelis on the design t
	Use formal methods or other techniques to assure modules meet their specifications exactly, with no extraneous or unexpected behaviors – especially embedded malicious behavior. 
	Formal methods have improved dramatically over the years, and have demonstrated their ability to reduce errors, save time, and even save dollars! This is an under-exploited and very promising area deserving more attention. 
	I cite two examples of formal methods successes: The Microsoft SLAM static driver verifier effort coming on line in 2005, and Catherine Meadows’ NRL Protocol Analyzer detecting flaws in the IKE (Internet Key Exchange) protocol in 1999. You may have your own recent favorites. 
	As our systems become more and more complex, the need for, and value of, formal methods will become more and more apparent. 
	9. Hardware features 
	Consider the use of smartcards, smart badges, or other hardware tokens for especially critical functions. Although more costly than software, when properly implemented the assurance gain is great. The form-factor is not as important as the existence of an isolated processor and address space for assured operations – an “Island of Security,” if you will. Such devices can communicate with each other through secure protocols and provide a web of security connecting secure nodes located across a sea of insecuri
	I find it depressing that the hardware industry has provided hardware security functionality (from the Trusted Platform Group and others) now installed in processors and motherboards that is not yet accessed 
	I find it depressing that the hardware industry has provided hardware security functionality (from the Trusted Platform Group and others) now installed in processors and motherboards that is not yet accessed 
	or used by the controlling software, whether an OS or an application. 

	10. Security systems engineering 
	How do we get high assurance in commercial gear? 
	a) How can we trust, or
	 b) If we cannot trust, how can we safely use, 
	security gear of unknown quality? 
	Note the difference in the two characterizations above: how we phrase the question may be important. For my money, I think we need more focus on how to use safely security gear of unknown quality (or of uncertain provenance). 
	I do not have a complete answer on how to handle components of unknown quality, but my thoughts lean toward systems engineering approaches somewhat akin to what the banking industry does in their systems. No single component, module, or person knows enough about the overall transaction processing system to be able to mount a successful attack at any one given access point. To be successful the enemy must have access at multiple points and a great deal of system architecture data. 
	Partition the system into modules with “blinded interfaces” and limited authority where the data at any one interface are insufficient to develop a complete attack. Further, design cooperating modules to be “mutually suspicious,” auditing and alarming each other’s improper behavior to the extent possible. 
	For example: if you are computing interest to post to accounts there is no need to send the complete account record to a subroutine to adjust the account balance. Just send the current balance and interest rate, and on return store the result in the account record. Now the interest calculating subroutine cannot see the data on the account owner, and therefore cannot target specific accounts for theft or other malicious action. We need to trust the master exec routine, but minimize the number of subroutines 
	In addition, to guard against “unintended extra functionality” within given hardware modules or software routines, the development philosophy needs to enforce something akin to “no-lone zones” in that no single designer or coder can present a “black-box” (or proprietary?) effort to the system design team that is tested only at its interfaces and is then accepted. 
	Review all schematics and code (in detail, line by line) for quality and “responsive to stated requirement” goals. This review should be by parties independent of the designer. This is expensive, but not 
	Review all schematics and code (in detail, line by line) for quality and “responsive to stated requirement” goals. This review should be by parties independent of the designer. This is expensive, but not 
	far from processes required today in many quality software development environments to address reliability and safety concerns. 

	This of course requires all tools (compilers, CAD support, etc.) used in the development environment to be free of malice; that can be a major hurdle and a difficult assurance task in and of itself (remember the Thompson compiler in “Reflections on Trusting Trust, CACM 1983)! 
	The “Open Source” movement may also provide value in this area. There are pluses and minuses with open source, but from the security viewpoint, I believe it is primarily a plus. 
	Further architectural constraints may be imposed to make up for deficiencies in certain modules. Rather than (or in addition to) encryption in application processes prior to transmission to other sites which could be bypassed or countered by a malicious operating system, you might require site-to-site transmissions to go through an encrypting modem or other in-line, non-bypassable link encryptors. 
	Link encryption in addition to application layer encryption is an example of a “Defense in Depth” strategy that attempts to combine several weak or possibly flawed mechanisms in a fashion robust enough to provide protection at least somewhat stronger than the strongest component present. 
	Synergy, where the strength of the whole is greater than the sum of the strength of the parts, is highly desirable but not likely. We must avoid at all costs the all-too-common result where the system strength is less than the strength offered by the strongest component, and in some worst cases less than the weakest component present. Security is so very fragile under composition; in fact, secure composition of components is a major research area today. 
	Good system security design today is an art, not a science. Nevertheless, there are good practitioners out there that can do it. For instance, some of your prior distinguished practitioners fit the bill. 
	This area of “safe use of inadequate components” is one of our hardest problems, but an area where I expect some of the greatest payoffs in the future and where I invite you to spend effort. 
	11. Third party testing 
	NIST (and NSA) provide third-party testing in the National Information Assurance Partnership Laboratories (NIAP labs), but Government certification programs will only be successful if users see the need for something other than vendor claims of 
	NIST (and NSA) provide third-party testing in the National Information Assurance Partnership Laboratories (NIAP labs), but Government certification programs will only be successful if users see the need for something other than vendor claims of 
	adequacy or what I call “proof by emphatic assertion – Buy me, I’m Good.” 

	If not via NIST or other government mechanism, then the industry must provide third-party mediation for vendor security claims via consortia or other mechanisms to provide independent verification of vendor claims in a way understandable by users. 
	12. Market/legal/regulatory constraints 
	Market pressures are changing, and may now help drive more robust security functionality. The emergence of e-commerce in the past decade as a driver for secure internet financial transactions is certainly helpful, as is the entertainment industry’s focus on digital rights management. These industries certainly want security laid on correctly and robustly! 
	I hope citizens will be able to use the emerging mechanisms to protect personal data in their homes, as well as industry using the mechanisms to protect industry’s fiscal and intellectual property rights. It is simply a matter of getting the security architecture right. 
	I wonder if any of the industry consortia working on security for digital rights management and/or electronic fiscal transactions have citizen advocates sitting on their working groups. 
	Lawsuits might help lead to legal “fitness-for-use” criteria for software products – much as other industries face today. This could be a big boon to assurance – liability for something other than the quality of the media on which a product is delivered! 
	Recall that failure to deliver expected functionality can be viewed, in legal parlance, as providing an “attractive nuisance” and is often legally actionable. 
	One example is a back yard swimming pool with no fence around it. If a neighbor’s child drowns in it, you can be in deep trouble for providing an attractive nuisance. Likewise, if you do a less than adequate job of shoveling snow from your walk in winter (providing the appearance of usability) you can be liable if someone slips on the ice you left on the surface. Many software security products today are attractive nuisances! 
	All you need do is to Google “Software Quality Lawsuits” or a similar phrase, and you can find plenty of current examples of redress sought under law for lack of quality in critical software. Do not attempt to manage defects in software used in life-critical applications. Remove them during the development and testing processes! People have died due to poor software in medical devices, and the courts are now engaged; the punitive awards can be significant. 
	One example of a lawsuit already settled: General Motors Corp. v. Johnston (1992).  A truck stalled and was involved in an accident because of a defect in a PROM, leading to the death of a seven-year old child. An award of $7.5 million in punitive damages against GM followed, in part due to GM knowing of the fault, but doing nothing. 
	There are social processes outside the courts that can also drive vendors toward compliance with quality standards. 
	One of the most promising recent occurrences in the insurance industry was stated in the report of Rueschlikon 2005 (a conference serving the insurance industry). Many participants felt that, “The insurance industry’s mechanisms of premiums, deductibles, and eligibility for coverage can incent best practices and create a market for security . . . This falls in line with the historic role played by the insurance industry to create incentives for good practices, from healthcare to auto safety . . . Moreover, 
	Bluntly, if your security product lacks sufficient robustness in the presence of malice, your customers will have to pay more in insurance costs to mitigate their risks. 
	How the insurance industry will measure best practices and measure compliance are still to be worked out, but I believe differential pricing of business disaster recovery insurance based in part on quality/assurance (especially of security components) is a great stride forward in bringing market pressure to bear in this area! 
	13. Summary 
	In closing, I reiterate that what we need most in the future is more assurance rather than more functions or features. The malicious environment in which security systems must function absolutely requires the use of strong assurance techniques. 
	Remember: most attacks today result from failures of assurance, not failures of function. 
	Rather than offer predictions, try for a self-fulfilling prophecy – each of us should leave this conference with a stronger commitment to using available assurance technology in products! It is not adequate to have the techniques; we must use them! 
	We have our work cut out for us; let’s go do it. 
	In closing, I would like to thank Steven Greenwald, Brad Martin, and Greg Shipley for their insights and help in preparing this article. 
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