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Despite recent progress in trapped-ion quantum computation, scaling to large numbers of

qubits remain a challenge. One proposal for extending beyond tens of ions in a single string is the

‘quantum CCD’ (QCCD) architecture [1] [2]. In this approach, ion qubits are coherently transported

between trapping zones dedicated to memory, readout and logical operations. In this thesis, I de-

scribe work on improving two aspects of the QCCD: trap-integrated qubit state readout and cold,

fast ion transport. Trap-integrated photon detectors promise reduced complexity and improved

scalability for ion qubit readout relative to external bulk collection optics, and with comparable

light collection efficiency. I report the first high-fidelity readout of a trapped ion qubit in a surface

electrode trap using an integrated superconducting nanowire single-photon detector (SNSPD) [3].

To maximize the clock speed of QCCD processors, fast ion transport with low motional excita-

tion is needed. In most prior QCCD experiments, low motional excitation was achieved by slow

(adiabatic) ion transport between trap zones, and ion transit times were much longer than typical

laser-driven gate interactions. Faster-than-adiabatic transport between neighboring trap zones has

been previously demonstrated in relatively large three-dimensional traps [4][5], but low motional

excitation was only achieved with particular choices of the transport duration. I report multi-zone

faster-than-adiabatic transport in a surface electrode trap with reduced dependence of the final

motional excitation on the duration of the transport. Using this scheme, a single 9Be+ ion was

transported 88 µm in 25 µs with 0.03(2) quanta of heating due to transport, the lowest excitation

reported to date for faster-than-adiabatic transport.



For my family, both biological and chosen.



Acknowledgements

It’s a funny thing to write a dissertation and put only my name on it, when science is such

a deeply collaborative process and so many people have contributed so much to this work. Over

the course of my graduate career, I’ve been blessed (and occasionally cursed) with a large number

of mentors, advisors, and supervisors. Thanks to Daniel Slichter, Andrew Wilson, Didi Leibfried

and Dave Wineland for supervising the projects discussed in this thesis, sharing invaluable scientific

insight, and securing funding. They didn’t always agree with each other on everything (or even most

things), but I learned enormously from every one of them. I’d like to especially acknowledge Daniel

and Andrew, who have been incredible mentors through my graduate career and have assisted in

my development not only as a physicist but as a person. An advisor that can guide you through a

panic attack is a rare and valuable thing, and I’ve been so lucky to have worked with both of them.

I also need to acknowledge everyone down in the trenches with me. Robert Jördens began
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Chapter 1

Introduction

Quantum information processing (QIP) holds the promise of a major increase in computing

power. Rather than storing binary information as a classical signal that can take either of two

binary values, a quantum computer encodes information as either of two quantum states, or the

“qubit.” Crucially, a qubit can take either of these two quantum state values or a superposition of

the two; information can also be spread between multiple qubits in an entangled quantum state.

By exploiting these features of quantum superposition and entanglement, proposed quantum algo-

rithms could empower substantial speed-ups in certain complex computational problems, including

but not limited to database searches [6], factoring large numbers [7] and simulation of complex

quantum systems [8].

Many physical platforms have been proposed and studied for quantum information processing

applications, including trapped atomic ions, superconducting Josephson junctions [9], quantum dots

[10], nitrogen vacancy centers in diamond [11], single photons [12], arrays of Rydberg atoms [13],

and more. I will limit my discussion to trapped ions. Qubits encoded in two different electronic

states of trapped ions provide a natural platform for quantum computing. The qubit state can be

manipulated with high fidelity using high-intensity laser radiation [14][15][16] or microwave fields

[17], and can have quantum coherence times as long as tens of seconds [18]. Neighboring ions

naturally interact via the Coulomb interaction, and two-qubit gates have been demonstrated by

coupling the states of the qubits to the ions’ motion with infidelities as low as 10−3 per gate [15][16].
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1.1 Scalable quantum computing with trapped ions

The highest fidelity two-qubit gates [15][16] were performed in systems of two ions by coupling

the qubit states to the shared motion of the ions in a single harmonic well. In general, interesting

quantum algorithms require more than two qubits. However, the same basic scheme can be used

to perform pairwise two qubit gates on ions within a longer chain by addressing shared modes

of motion [19]. Development of these techniques has allowed trapped ions to enter what John

Preskill dubbed the era of the “noisy intermediate-scale quantum” (NISQ) computer [20]. In

the NISQ regime, systems of 10-100 non-error-corrected qubits will be used to perform certain

algorithms that may demonstrate a quantum advantage. (NISQ is not a platform-specific regime:

the recent highly-publicized Google quantum supremacy result was performed in a NISQ-scale

system using superconducting qubits. [21]) Quantum computers using chains of trapped ions have

been demonstrated in this regime, implementing such algorithms as the quantum approximate

optimization algorithm (QAOA) [22] and rudimentary simulation of molecule binding energies

[23][24].

Pushing past the NISQ regime into the realm of scalable, fault-tolerant quantum computing

(as is required for algorithms like Shor’s factoring algorithm to present a speed-up over classical

computers) requires many more than 50 ions, with gate errors below the level of the current best

two-qubit gates. For technical reasons, it appears challenging to simply increase the number of

ions in these long chains to hundreds or thousands of ions. Longer chains are increasingly sensitive

to decrystalization or ion loss errors [25]; they have densely packed motional spectra, resulting in

cross-talk errors; and the coupling rate between ions due to the Coulomb interaction decreases in

as the system grows. Instead, this thesis is focused on scaling the quantum computer that in a way

that is not subject to these technical limits.
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1.1.1 The quantum CCD

Various research groups (including industrial ones) are actively investigating paths to scala-

bility in trapped ion quantum information. A few are discussed below, in Section 1.1.2, but for the

bulk of this thesis, I will focus on one possible solution: the “quantum CCD” [1][2].

Figure 1.1: A cartoon illustration of the quantum CCD, adapted from [2]. In this architecture, ions
can be trapped in specialized zones anywhere along given “lanes,” and can be moved in and out of
these zones. Specialized zones are shown here for (A) single qubit rotations, (B) two-qubit gates,
(C) long term qubit storage, and (D) qubit state detection.

The quantum CCD (QCCD), schematically illustrated in Figure 1.1, can be thought of as an

scheme to build a large-scale quantum computer in a modular fashion rather than attempting to

control a single system. In order to motivate this approach, I emphasize a few of characteristics of

trapped-ion quantum operations:

• Any quantum algorithm can be broken down into combinations of single qubit rotations

and two-qubit entangling operations [26].

• The highest fidelity quantum gates to date were performed on small systems of one [14][15][16]

or two [15][16] ion qubits.
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• Although two-qubit gates are typically performed using collective motion between two ions

in a shared harmonic well, the quantum information is generally stored in the electronic

(pseudo-spin) states of the ion. In the absence of a spin-dependent force, the electronic

state of an ion is well decoupled from its motion.

From here, we can build to the QCCD. Rather than trying to perform all operations on a single

crystal of ions, we consider an apparatus with different “zones,” optimized for different components

of trapped-ion-based computation. This would include zones for single- and two-qubit gates, detec-

tion, ion loading, and long-term memory. With the application of time-varying trapping potentials,

ion qubits can be moved in and out of these zones and shifted to the memory zone when are not

being acted on. Because the ion’s motion is decoupled from its qubit state, it is possible to move

the ion without degrading the qubit. Initial use of this architecture has enabled demonstration of

complex quantum algorithms, including quantum gate teleportation [27] and creation of a four-ion

Greenberger-Horne-Zeilinger State [28].

1.1.1.1 Transport, separation, and merging of ion crystals

The ability to move ions in and out of different trap zones involves four basic operations:

• Transport: moving a harmonic well in one dimension

• Separation: splitting an ion chain in a shared harmonic well into two separate, individually

controllable wells

• Merge: joining two ion chains in separate wells into a longer chain in a shared harmonic

well

• Reorder: arbitrarily reordering an ion chain.

With these four operations, it is possible to bring two ions into a shared two-qubit gate zone,

entangle them, and separate them into individual wells. Then, two different ions can be brought

into the two-qubit gate zone and entangled. These building blocks can be used to build up to larger



5

quantum algorithms. The implementation of these operations in ion traps is discussed in Chapter

2.

1.1.1.2 Specialized trap zones

One other benefit of the QCCD is that it enables the use of trap zones which are optimized

for specific operations, rather than a single zone which functions as a “jack of all trades, master of

none.” To quickly illustrate how this might be useful, consider the example of ion loading. Although

the improvement of loading efficiency is an active subject of investigation [29][30], established

methods of loading ions into traps involve the generation of thousands or millions more ions than

are trapped. These non-trapped ions can stick to nearby surfaces and create temporally- and

spatially-varying stray electric fields. To avoid this problem, it is desirable to have separated zones

for ion loading and high fidelity logical operations.

Using specialized trap zones not only limits deleterious effects of certain processes on gate

fidelity but also enables the use of new technologies, which may be desired for only a single operation.

Trapped-ion research groups are actively investigating numerous new technologies for quantum

computing applications, including:

• High power microwave antennae enabling microwave-mediated multi-qubit gates. Shown

in Figure 1.2(a). [17][31][34]

• Integrated digital-analog converters for direct on-chip generation of trap potentials. [35]

• Integrated optical waveguides and grating couplers for delivery of laser beams to ions.

Shown in Figure 1.2(b). [32]

• On-chip collection optics for state detection. Shown in Figure 1.2(c). [36][37][33][38][39].

• Optics for the integration of trapped ions with standing-wave optical cavities [40].

• On-chip photodetectors. Shown in Figure 1.2(d). [41][3]
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(a) (b)

(c) (d)

Figure 1.2: Examples of new ion trap technologies. (a) High power microwave antennae for the
delivery of large microwave gradients. Microwave antennae are shown in yellow. From [31]. (b) A
linear RF trap with integrated waveguides and grating couplers, enabling on-chip delivery of laser
beams. From [32]. (c) An aluminum-coated micromirror integrated into a surface electrode trap
geometry. From [33]. (d) A point trap with an on-chip photodetector. From [3].

It may be challenging to fabricate many of these technologies on a single chip, and operation of

one technology may degrade another. However, by spatially separating trap zones and moving ions

between these zones, it may be possible to incorporate multiple of these technologies onto a single

chip.

1.1.2 Alternative scalable schemes

Trapped-ion quantum computing is now a broad research field, and there are investigation into

several other methods for scaling the trapped ion quantum-computer in addition to the QCCD.

It is likely that the truly useful scalable quantum computer will be some hybrid, incorporating
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techniques developed through each of these areas of research. In the following sections, two of the

other scalability schemes under investigation are described

1.1.2.1 Photonic links

Up to this point, the discussion has been limited to two-qubit entangling gates mediated by

collective ion motional information. Ion motion is a natural resource for entanglement because the

Coulomb force enables strong interactions between neighboring ions confined in a shared harmonic

well. However, it is also possible to probabilistically entangle ions using light. Photons can travel

long distances in fiber, with losses as low as < 1 dB/km at telecom wavelengths, so this scheme is

a natural choice for remote entanglement of distant ions.

The primary drawback to this entanglement method is the rate of entanglement generation.

Using state-of-the-art photon collection optics and high-quantum efficiency single photon counting,

remote ions have been entangled using quantum interference of light in 5.5 ms with 94% fidelity

[42]. In contrast, the fastest phonon-mediated two-qubit gates have gate times below a microsecond

[43]. Although marginal improvements can be made (including attempts to integrate trapped ions

into resonant optical cavities) geometric constraints will still limit the entanglement rate, since only

a fraction of the emitted photons can be collected for entanglement. Therefore groups investigating

this scheme typically envision using it as a secondary source of entanglement. In this long-term

vision, there would be “nodes” of 10-50 ions, in which entanglement could be generated with high

fidelity using motional modes. For algorithms involving more than 10-50 qubits, entanglement

would be mediated between spatially separated nodes using photonic links [44].

1.1.2.2 Lattice traps

In the previous discussion of phonon-based entanglement, motion of ions was shared because

they shared a single harmonic trap. However, since the Coulomb interaction is long-range, these

ions need not be trapped in the same well to share motional information. Consider as a lowest-

order example, two ions trapped in a double-well trap, as shown in Figure 1.3. If the two wells
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are exactly on resonance with each other (meaning that their harmonic oscillator frequencies are

the same) these separated ions can be entangled [45]. This interaction is naturally tunable, as it

can be essentially turned on and off by tuning the two potential wells in and out of resonance.

Investigations into this scalability scheme are still at an early stage. Ions have been entangled

in a double well as described above, and preliminary attempts are underway to entangle ions

at the three vertices of an equilateral triangle trap [46][47]. Such a scheme is appealing from a

scalability standpoint because if ions could be controllably coupled in a two-dimensional array, the

two-dimensional linkages between nodes enable better scaling for quantum algorithms. It is also

an interesting platform for certain quantum simulation problems [48].

Figure 1.3: A double-well surface electrode trap, in which the interaction between two separated
ions can essentially be turned on and off by bringing the ions in and out of resonance. Adapted
from [45].

1.2 This work

This thesis describes addresses challenges in scaling the trapped ion quantum computer. The

focus is on the QCCD. owever, many of the technical improvements discussed are applicable to other

scalability schemes. The chief results of this thesis are the demonstration and characterization of a

trap-integrated single photon detector for high fidelity qubit state readout and the development and

demonstration of a new scheme for faster-than-adiabatic cold transport of ion qubits with reduced

sensitivity to transport duration.

Chapter 2 reviews ion trapping in Paul traps and the generation of trap voltages, focusing

on surface electrode traps. Chapter 3 reviews the 9Be+ qubit and its interactions with laser light
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that enables quantum control. Chapter 4 provides a comprehensive description of a new cryogenic

apparatus developed for the experimental work central to this this dissertation. Chapter 5 de-

scribes calibrations in this apparatus and reviews readout methods, including high fidelity state

detection. Chapter 6 describes a new trap-integrated superconducting nanowire single-photon de-

tector (SNSPD), and measurements that characterize the performance of this device for high-fidelity

quantum state readout are presented. Chapter 7 presents a new scheme for faster-than-adiabatic

transport of ions, and this scheme is demonstrated with low net motional excitation and reduced

sensitivity to transport duration relative to previous ion transport methods.

1.2.1 Development of a cryogenic apparatus for trapped ion experiments

All trapped-ion scalability schemes benefit from the ongoing development of microfabricated

surface electrode traps (discussed in depth in Chapter 2). The high precision of microfabrication

techniques enables the reliable production of larger, more complex ion trapping systems with tiny

electrodes. However, users of surface traps face two major technical challenges:

• Reduced Trap Depths: Trapping with microfabricated chips is enabled by generating

an RF quadrupole potential above the chip surface. However, away from the center of the

quadrupole, there is higher anharmonicity compared to a traditional, four-rod, linear RF

Paul trap [49]. This increases ion-loss due to background gas collisions.

• Anomalous Heating: All ion traps have electric field noise that is known to emanate

from electrode surfaces [50]. This noise leads to ion heating, and because the underlying

physics is not yet understood, this heating is referred to as “anomalous.” For trapped-ion

quantum computing, this heating can be a significant source of errors. This is especially

the case for devices that use surface-electrode traps, since ions in these traps are confined

close to the surface, and the electric field noise amplitude has been shown to scale as d−4,

where d is the approximate distance to the nearest electrode [51][52][53].

Both of these challenges can be mitigated by operating the trap under cryogenic conditions. Since
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the residual background gases common in ultra-high vacuum chambers all freeze out at temperatures

below 10 K, a cryo-pumped vacuum chamber can have background gas pressures as low as 10−13−

10−17 torr [54][25], a level at which background gas collisional loss is essentially eliminated, even

in traps with low depth. Additionally, it was discovered that anomalous heating is usually reduced

by cryogenically cooling the trap electrodes [55][56]. Although the temperature effect is not yet

understood, several groups are actively studying this [57][58].

In addition to increased ion lifetimes and reduced anomalous heating, a cryogenic environment

provides another technical benefit. Operating cryogenically enables the use of superconducting

devices. Of particular interest for this thesis, this includes superconducting nanowire single photon

detectors (SNSPDs) [59], which are discussed further in Chapter 6.

The new cryogenic apparatus discussed in Chapter 4, is a low-vibration closed-cycle cryogenic

system. This apparatus has sufficiently good vacuum to trap a Doppler-cooled 9Be+ ion for days and

has a base temperature below 3.5 K, low enough to operate an SNSPD similar to those discussed

in [3]. Additionally, the system was designed for quick and reliable exchange of traps, enabling

quicker testing of new trap designs and technologies in the future. Vibration measurements from

this system are also presented, showing < 1 µm peak-to-peak. This vibration may need to be

reduced for experiments which require very high-fidelity gates, but is sufficient for the experiments

I present in this work.

1.2.2 Scalable high-fidelity qubit state detection

Qubit state detection in trapped-ion quantum computing is performed by state-selective

fluorescence detection. The quantum information is mapped onto either a “bright” state, which

has a resonant cycling transition at a desired laser wavelength, or a “dark” state, which does not

have a resonant transition at that wavelength. (This is discussed in the specific case of 9Be+ in

Chapter 5.) If the ion is found in the bright state, an incident photon at that wavelength will excite

this cycling transition. When it falls back down to the bright state, the ion will emit a photon at

the same wavelength into 4π, which can be detected. If it is in the dark state, no photons will be
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counted. Detecting this re-emitted fluorescence requires sensitive single photon detection, resulting

in typical count rates of 10’s of photons in hundreds of microseconds. This is usually performed by

imaging the ion fluorescence with high-numerical-aperture (NA) lenses onto distant high-quantum-

efficiency sensors. High-NA imaging systems enable capture of photons from a large solid angle to

maximize the photon counting signal. However, these imaging systems are challenging to design,

with multiple conflicting design objectives.

• The objective must have high NA, so that it can collect a large of a fraction of the emitted

photons.

• It is helpful if the objective is also high magnification and low abherrations so it can be

used to image laser scatter off the trap electrodes during initial laser alignment.

• For many ions, including 9Be+, all optics must be UV-compatible, so commonly used optical

glasses like BK7 cannot be used.

• For experiments incorporating multiple species of ions [60][61], it is highly desirable that the

objective operate simultaneously at the multiple wavelengths used to detect each species.

• In many setups, the objective must have a long working distance, so it doesn’t interfere

with vacuum hardware.

• Larger, multi-ion systems may require a wide field of view to detect multiple ions at once.

Accomodating all of these design constraints is challenging and requires trade-offs. More, these

systems are relatively bulky, expensive, and represent increased experimental complexity.

Any scalable scheme for trapped-ion quantum computing that seeks to detect many ions

in parallel will require an alternative to this traditional method of fluorescence detection. There

are many possible solutions. This dissertation presents one such solution: the integration of a

photon sensor directly into an ion trap chip, eliminating the need for collection optics. Traps

incorporating photon detectors have been previously demonstrated, included a commercial photo-

diode positioned beneath a transparent, electrically conductive electrode [41] and on-chip avalanche
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photodiodes (APDs) [32]. Another option for high-efficiency single photon counting is a supercon-

ducting nanowire single-photon detector (SNSPD). These detectors (discussed in detail in Section

6) have high quantum efficiency, low dark counts, and appropriate count rates for trapped-ion ex-

periments [62]. Previous work has shown that SNSPDs operate well at the UV wavelengths that are

used for state detection in many ions [3][63] (up to 76% quantum efficiency at 315 nm) and under

conditions that suggested that such a detector could be integrated into a trap chip [3]. Demonstrat-

ing this trap integration was one of the primary goals of the work described in this dissertation,

and Chapter 6 describes the successful implementation. Results include the first demonstration of

trapping ions in a device with an on-chip SNSPD and using this SNSPD for state detection with

> 99.9% detection fidelity.

1.2.3 Fast ion transport

In order to demonstrate a practical trapped-ion quantum computer, improvements to the

speed of each operation are still needed. Others are working on faster quantum gates, and the

current record is 1.6 µs with 99.8% fidelity [43]. The work described in this thesis focuses on one

of the major issues slowing down algorithms in QCCD architectures: the speed of ion transport.

For context, consider the example quantum algorithm illustrated in Figure 1.4, which was

performed using a QCCD-style approach, from [60]. The experiment is a modified Bell test ex-

periment, providing a careful measurement of the extent to which the state of two entangled ions

cannot be expressed as a classical product state. This experiment illustrates the issue of transport

as a major time-sink in a QCCD-type experiment. The timeline of this experiment is shown in

Figure 1.4. Transport steps (shown in orange and light blue) took 250 µs each, while separation

and recombination (in yellow and light green, respectively) steps took 300 µs each. All transport,

separation, and recombination steps combined took 1.9 ms. Neglecting initial ground state cooling

and final state detection, the full experiment took 2.3 ms.

In this example, transport and separation and separation represent a large fraction of the

experimental timeline. This is generally true of quantum-CCD-style algorithms [64]. This is a chal-
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Figure 1.4: Timeline of a sample experiment performed using a quantum-CCD architecture, with
adiabatic transport. Transport, separation, and recombination operations take up 1.9 ms, 83% of
the time not devoted to initial ground-state cooling and final state detection. From [60].

lenge, not just because we wish to be able to perform operations quickly but because as algorithms

grow longer, the ions heat more due to both technical noise and anomalous heating. The highest

fidelity gates are performed on ions cooled to the motional ground state, so long algorithms need

additional time-intensive re-cooling steps before high-fidelity steps, further extending the runtime

of the algorithm. One might näıvely simply perform the transport more quickly; however, if not

performed carefully, speeding transport up introduces further heating and therefore gate errors.

On timescales of tens to hundreds of trap motional periods (typically on the order of 0.1− 10 µs),

the ion is largely insensitive to the motion of the harmonic well. This is generally referred to as

“adiabatic” transport. However, as the transport speeds up to timescales approaching the timescale

of a few tens of trap motional periods, the ion’s motion is excited by the motion of the potential

well. Under these conditions, the ion can end up in a highly excited motional state at the end of

the transport, requiring re-cooling.

Transport can be performed faster than adiabatically if the ion is transported in an integer

number of trap periods. This can be thought of classically as the ion receiving a “kick” as the well

starts moving and an equal and opposite “kick” at the end of the transport. (This is formalized

more in Chapter 7.) Ions have previously been transported a single zone in relatively large, mi-
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crostructured 3D traps with transport times of 3.6 µs [5] and 8 µs [4] with v 0.1 quanta of motional

excitation due to transport. However, in practice, this method is sensitive to both fluctuations in

the trap secular frequency and miscalibration of the transport duration and thus requires frequent

careful calibration. Further, there is a single free parameter (the time of the transport) on which

to optimize; this does not scale well to systems of more degrees of freedom. In Chapter 7, a new

scheme for fast transport of ions which has more degrees of freedom and is thus generalizable to

more complex systems and which is less sensitive to the duration of the transport, is presented and

demonstrated.



Chapter 2

Ion Traps

We require a method of trapping and storing the ions for long times; ideally, many days.

Although there are other methods of trapping ions, I only discuss here linear RF Paul traps.

2.1 RF Paul Traps

Ions interact strongly with electric fields, which are generated by applying voltages to nearby

electrodes. However, it is impossible to trap an ion with only static electric fields, since we are

bound by Maxwell’s equations. Specifically, a 3D confining electric potential would violate Gauss’s

Law, which necessitates that electric fields be divergence-free in the absence of sources:

∇ · ~E = 0 (2.1)

[65]. It is, however, possible to generate a trapping potential using purely electric fields if we

consider the trap in a time-averaged way. Gauss’s Law permits confinement in two dimension but

de-confines in the third dimension [65]. However, if we quickly alternate between confining and de-

confining, the ion will see, on average, a confining potential, commonly called the “pseudopotential”

[1].

First define the system geometry. A schematic of a simple linear Paul trap is shown in Figure

2.1(a). A radio frequency tone VRF (t) = VRF cos(ΩRF t) at amplitude VRF and angular frequency

ΩRF is applied to electrodes A and C (the RF electrodes). Electrodes B2 and D2 are grounded. A

DC voltage VDC is applied to the endcap electrodes B1, B3, D1, and D3. In a transverse slice to
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(a) (b) (c)

Figure 2.1: Schematics of three linear Paul traps. (a) A classic linear Paul trap. RF applied to the
red electrodes A and C will produce a quadrupole transverse to the central axis, a distance R from
the electrodes, as described by Eq. 2.2, confining the ion in the yz plane. Confinement along the
trap axis is provided by DC voltages applied to electrodes B1, B3, D1, and D3. (b) A segmented
Paul trap. The RF confinement is identical to the case in (a), but DC confinement can be provided
by any combination of the DC electrodes, enabling multiple trapping zones. (c) A surface electrode
trap, functionally equivalent to the case in (b) but that has been “unfolded” onto a single plane so
that it can be made using microfabrication techniques.

(a) t = t1 (b) t = t2

Figure 2.2: Electric field lines in a quadrupole ion trap, at times t1, t2 corresponding to two opposite
points of the RF phase, i.e. t2 = t1 + 2π/ΩRF .
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the axis of this trap, the electric field at time t = 0 will be as shown in Figure 2.2(a), with field

lines directed from electrodes A and C towards electrodes B and D. There is zero electric field at

the very center of the trap, but this is a saddle point of the potential not a minimum. At this time,

an ion will travel along the field lines towards GND.

At a later time corresponding to a 180◦ phase change, the electric field lines transverse o

the axis will appear as shown in Figure 2.2(b), with field directions reversed from those in Figure

2.2(a), directed from electrodes B and D towards electrodes A and C. At this time, the force on an

ion will be reversed, and it will instead travel towards the RF electrodes.

For an ion near the central axis, the electric potential is

Φ(x, y, z) ≈ qVRF
2

cos (ΩRF t)

(
1 +

y2 − z2

R2

)
+ κVDC

(
x2 − 1

2
(y2 + z2)

)
(2.2)

for ion-electrode distance R, where κ is a geometric factor that depends on the shape and positioning

of the electrodes [1]. This has a time dependent and static components. The static component

(provided by the DC voltages on the endcap electrodes) is deconfining in y and z. For this to

function as a three-dimensional confining potential, the values of VRF , ΩRF , and VDC must be

such that the confinement provided by the time-dependent piece of this potential overcomes the

deconfinement of the static piece. Eq. 2.2 gives ion equations of motion in the radial direction

described by the Matthieu equation

d2y

dζ2
+ (ay + 2qy cos(2ζ)) y = 0 (2.3)

d2z

dζ2
+ (az + 2qz cos(2ζ)) z = 0 (2.4)

where

ζ ≡ ΩRF t/2 (2.5)

ay = az = − 4κqVDC
mx2

0Ω2
RF

(2.6)

qy = −qz =
2qVRF
mR2Ω2

RF

(2.7)
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[1]. Ion traps are generally operated in the limit

ax < q2
x << 1 (2.8)

[1]. In this limit, the ion’s position xi ∈ {y, z} as a function of time is described by

xi(t) ∝ cos(ωit+ φi)

(
1 +

qi
2

cos(ΩRF t) +
q2
i

32
cos(2ΩRF t)

)
+ βi

qi
2

sin(ωi + φi) sin(ΩRF t) (2.9)

where βi =
√
ai + q2

i /2 [1]. The quickly varying terms in this are expression generally referred to

as the micromotion terms and the motion at frequency ωi is the trap secular motion. In practice,

we operate in conditions where the micromotion is minimized, so it is a reasonable approximation

to consider only the secular motion. This acts as a “pseudopotential”, described by

Φpp(y, z) =
mω2

r

2q
(y2 + z2) (2.10)

where

ωr ≈
qVRF√

2ΩRFmR2
. (2.11)

[1]. I have briefly neglected motion in the axial direction x in this discussion. The x-dependent

piece of Eq. 2.2 is

Φax(x) = κVDCx
2 =

1

2q
mω2

axx
2 (2.12)

describing harmonic confinement with secular frequency

ωax =

√
2κqVDC
m

(2.13)

I will refer to the three secular frequencies as the axial (ωax) and radial (ωr1, ωr2) frequencies, and

motion along the corresponding directions as the axial and radial modes, respectively.

The limit for which we made the pseudopotential approximation, Eq 2.8, is important to

consider because it is a good guide for trap design and selection of trapping parameters. RF and

DC voltage amplitudes and RF frequency should all be chosen so that this limit holds.

2.2 Ion motion in Paul traps

There are two types of ion motion to consider in ion traps: secular motion, the harmonic

oscillator motion of the ion; and micromotion, fast oscillations at the RF frequency.
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2.2.1 Secular motion: the harmonic oscillator

The potential Φpp(~x) + Φz(~x) can be described by the second-order curvature tensor

Cij =
∂2

∂xi∂xj
(Φpp(~x) + Φz(~x)) . (2.14)

In the harmonic limit, we treat that all higher-order curvatures Cijk = 0; this is generally true in

the limit of small amplitude oscillations. An ion in such a potential experiences the Hamiltonian

Ĥ =
~̂p2

2m
+

1

2
m

 ∑
i,j∈(1,2,3)

Cij x̂ix̂j

 (2.15)

We generally operate in the curvature eigenvector basis, in which case this can be rewritten as

Ĥ =
∑

i∈(1,2,3)

(
p̂i

2

2m
+

1

2
mω2

i q̂
2
i

)
(2.16)

where ωi is the eigenvalue of the curvature along the ith direction. and we can treat this as three

decoupled harmonic oscillators. I will refer to the eigenvectors ~qi as the “secular modes” and the

eigenvalues as the “secular frequencies,” as they correspond directly to the direction and frequency

of the ion’s harmonic motion.

In the eigenvector basis, the Hamiltonian decouples into a sum of three independent harmonic

oscillator Hamiltonians. For simplicity of notation, I will for the rest of this treatment discuss

the one-dimensional Hamiltonian of a single secular mode. As is derived in most undergraduate

quantum mechanics textbooks, including [66], the position-space solutions to the harmonic oscillator

Hamiltonian have equally spaced eigenenergies

En = ~ω
(
n+

1

2

)
(2.17)

This is often referred to as the harmonic oscillator “ladder,” since En − En−1 = ~ω for all n.

These energy eigenstates are generally what we work with in trapped ion. It is thus useful to move

from the position/momentum basis described by q̂, p̂ into a basis described by creation/annihilation

operators â†, â, where

â =

√
mω

2~

(
q̂ +

i

mω
p̂

)
â† =

√
mω

2~

(
q̂ − i

mω
p̂

) (2.18)
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Figure 2.3: A phase space illustration of the displacement operator with parameter α = |α|eiφ
acting on the ground state of the harmonic operator |0〉.

This basis is called the Fock basis. These operators are so-called “annihilation” and “creation”

operators, respectively because they transfer the ion from |n〉 → |n± 1〉 by

â|n〉 =
√
n|n− 1〉

â†|n〉 =
√
n+ 1|n+ 1〉

(2.19)

With these operators, we can rewrite the Hamiltonian for a harmonic oscillator as

H = ~ω
(
â†â+

1

2

)
(2.20)

Although I will not work through full derivations of the above relations, these can be found in [67]

or any standard quantum optics text.

Considering a harmonic oscillator’s motion in the Fock basis is a powerful tool that has

enabled the creation of interesting nonclassical states of motion in trapped ions [68][69][70]. I will,

however, limit myself to discussion of a classical operation in this basis: the displacement operator.

D̂(α) = exp
(
αâ† − α∗â

)
(2.21)
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where α is a complex number α = |α|eiφ. The effect of the displacement operator on the ground

state of the harmonic oscillator is shown in (q, p) phase space in Figure 2.3. As the name suggests, it

displaces the state in phase space. A displaced ground state gives the motion classically associated

with a harmonic oscillator: the ion oscillating in its well with amplitude |α| and phase φ. As I will

discuss in Chapter 7, moving a harmonic well relative to an ion is equivalent to acting on the ion

with the displacement operator [71].

2.2.2 Micromotion

In approximating the confining potential as Equation 2.10, I have neglected terms which

oscillate at ΩRF , 2ΩRF , 3ΩRF , etc. This is a good approximation for an ion located on a null of the

RF potential. However, these terms - the ion’s “micromotion” - grow with distance from the axis.

Because an ion which is oscillating at ΩRF can have transition frequencies which are substantially

Doppler shifted, we wish to operate in a regime in which this micromotion is minimized, i.e. with

the ion located on the central trap axis. For a single trapped ion, this is a matter of minimizing

stray electric field, which would push the ion off the RF null. For systems with larger numbers

of ions, micromotion minimization requires both cancelling stray electric field and operating in

conditions in which all of the ions are located on the RF null. This can be ensured by operating

with ωax << ωr1,r2, in which case the ions crystalize in a 1D chain along the pseudopotential null

[1].

2.2.3 Normal Modes

In long chains of ions, we must consider not only the externally applied potential but for the

Coulomb interaction between neighboring ions. So, for the kth ion in an ion chain, the Hamiltonian

is

Ĥ =
~̂p2

2mk
+ Φext(~̂xk) +

1

4πε0

∑
l 6=k

e2

|~̂xl − ~̂xk|
(2.22)

where I allow for different ions in the chain to have different masses, but have forced that all ions

in the chain have charge +e.
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In general, fully solving for the Hamiltonian accounting for the Coulomb interaction is a

challenging problem. However, we can simplify things substantially working in the limit of small

oscillations around equilibrium (~x
(0)
1 ....~x

(0)
N ), where

∂Φ

∂xk

∣∣∣∣
x
(0)
k

= 0 (2.23)

Solving for the equilibrium positions x
(0)
k analytically becomes more challenging for longer, mixed-

species ion crystals, but it is a straightforward numerical problem.

Rather than the 3× 3 curvature matrix of Equation 2.14, we must now consider 3N coordi-

nates, as the three-dimensional position of each ion will define the shape of the potential. So we

actually have

Cij =
∂2Φ

∂xi∂xj

∣∣∣∣
x
(0)
i

(2.24)

where Φ includes both the externally applied field Φapp and the Coulomb potential ΦCoul. This is

a larger matrix than Equation 2.14, but it is still a two dimensional tensor. Then the equations of

motion for dimension j (one of the 3 spatial parameters of ion k) can be written

mkδẍj = −
3N∑
i=1

Cijδxi +O(δx3) (2.25)

where δxi = xi − x(0)
i is the perturbation from equilibrium. In the limit of small perturbations,

we can drop the higher order terms to obtain a linear equation. We can then derive a new set of

coordinates - the “normal modes” - which diagonalize this linear equation.

In the simplest case, consider a two-ion system in one dimension with ions of identical mass,

so

Φ̂ =
p̂2

1 + p̂2
2

2m
+

1

2
mω2(x̂2

1 + x̂2
2) +

1

4πε0

e2

x̂1 − x̂2
, (2.26)

where x1 > x2 was chosen with no loss of generality. The equilibrium positions of such a crystal

are

x
(0)
1,2 = ±

(
1

16πε0

e2

2mω2

)1/3

(2.27)
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relative to the single-ion equilibrium position. The curvature matrix around these equilibrium

positions is given by

Cij =


∂2V
∂x21

∣∣∣∣
x
(0)
1

∂2V
∂x2∂x1

∣∣∣∣
x
(0)
2

∂2V
∂x1∂x2

∣∣∣∣
x
(0)
1

∂2V
∂x22

∣∣∣∣
x
(0)
2

 =

 C −C/2

−C/2 C

 (2.28)

where

C = mω2 (2.29)

This can be diagonalized with eigenvectors

~xcom =

1

1

 ~xstr =

 1

−1

 (2.30)

commonly notated as the “center of mass” and “stretch” modes, respectively. These have eigenen-

ergies mω2/2 and 3mω2/2, corresponding to eigenfrequencies ω and
√

3ω.

2.3 Surface electrode traps

For the hundreds or thousands of qubits which will be necessary for larger scale algorithms,

hundreds or thousands of electrodes will be likely required. As the number of electrodes grows, so

too do the tolerance requirements on the fabrication of these electrodes. If the fabrication scheme

has a 1% fatal error rate per electrode; this is acceptable for a system like Figure 2.1(b) with just

five electrodes but unacceptable for a large-scale system with a thousand electrodes.

However, it is not necessary to reinvent the wheel. Classical computers are built daily with

tolerances on the order of 10’s of nanometers using a whole host of powerful microfabrication

techniques. But in order to take advantage of these technologies, we need a trap which lies on a

single plane. Fortunately, the four-rod trap can be “unwrapped” into a single plane [49]. This is

illustrated in Figure 2.1c. For small perturbations from the potential minimum, the surface trap

produces a RF quadrupole as described by Eq. 2.2.

Such an ion trap - the “surface electrode trap” - introduces new challenges. The approxima-

tion that the electric field is a pure RF quadrupole is valid for much smaller excursions from the RF
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(a) (b) (c)

Figure 2.4: Examples of surface electrode traps. (a) The “high optical access 2.0” trap, fabricated
by Sandia National Labs and distributed to many groups [72]. (b) The “triangle trap,” which
traps ions in three independent wells separated by 30 µm [47]. (c) A linear trap fabricated in a
commercial CMOS facility [32]

.

null [49]. In a shallow trap, the ions are more susceptible to background gas collisions, which are

typically the dominant cause of ion loss in trapped ion experiments. However, with laser cooling

and an apparatus with adequately low vacuum pressure, like the one I will describe in Chapter 4,

it is possible to hold ions in a surface electrode trap for days at a time.

Surface electrode traps can have relatively small ion-electrode distances (as low as 30 µm has

been demonstrated [34]), which enables the application of stronger electric fields and curvatures

(and potentially faster gates) using more moderate electrode voltages. However, with these small

electrode-ion distances, it becomes increasingly challenging to focus lasers tightly onto an ion while

limiting scattering on nearby trap surfaces. This scattering is particularly of concern when working

with ions like 9Be+ or 25Mg+, which have cooling wavelengths near 313 nm and 280 nm, respectively,

since high intensity UV laser scatter on a dielectric will introduce stray charge through to the

photoelectric effect [66].

Due to the reliability of fabrication and the complexity electrode geometries achievable, sur-

face electrode traps are increasingly becoming the workhorse of the trapped ion quantum computing

community. Surface electrode traps are beginning to be produced and distributed more widely so

that every research group need not make their own. The “high optical access 2.0” trap from Sandia
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[72] has been distributed to many trapped ion research groups, and MIT Lincoln Lab has success-

fully trapped ions in traps fabricated in a commercial CMOS foundry [32]. Some representative or

interesting surface electrode traps are shown in Figure 2.4. In this thesis I used surface electrode

traps (discussed in more detail in Section 4.2.1) fabricated in the Boulder Microfabrication Facility

at NIST by Daniel Slichter and Varun Verma.

2.3.1 Simulations of surface electrode traps

In large 3-dimensional traps, it is relatively straightforward to find DC electrode voltages that

produce a harmonic potential well. In a trap with 5 segmented electrodes, as illustrated in Figure

2.1(b), a well can be produced in zone C by applying a high voltage VB = VD > 0 to DC electrodes

B and D, and a low voltage VC < 0 to DC electrode C. Since the electrodes are far from the ion,

the potentials on the end electrodes VA, VE will apply relatively minor corrections to the potential

at the ion’s location. To tune the trap frequency, we can adjust the amplitudes of the electrode

voltages VB, VC , VD. The same general principle can be used to produce trapping potentials in a

surface electrode trap. However, since the ion is an order of magnitude closer to the electrodes, we

must be much more careful to choose voltages that create a deeper and more harmonic trapping

potential.

To find these voltages, we need the electric potential produced at the ion location due each

electrode. The exact geometry of the trap electrode substantially impacts the shape of the potential.

This can be simulated precisely using COMSOL or boundary element methods. However, for a

surface electrode trap, there is a quicker and simpler alternative. For an electrode in a single plane

with a voltage V , there exists an analog to the Biot-Savart law for electrostatics to give the electric

field ~E(~x) at position ~x:

~E(~x) =
V

2π

∮
(~x′ − ~x)× d~s′
|~x′ − ~x|3

(2.31)

where the integration limits are the edges of the electrode [73]. This allows for relatively quick (i.e.

calculable on a laptop) calculation of the electric fields generated by each electrode.
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Electric potentials sum linearly, so we can write a linear equation to find the voltages that will

give our target potential. I will identify a few characteristics of the desired DC electrical potential:

(1) There should be no electric field at the well center:

Ei ∝
∂

∂xi
Φ(~x0) = 0 (2.32)

for xi ∈ (x, y, z).

(2) The second-order curvature tensor (Eq. 2.14) should generate the desired mode frequencies

and orientations. Specifically,

Cxx =
∂2

∂x2
Φ(~x0) = mω2

x (2.33)

where I have, without loss of generality, defined x to lie along the trap axis. The radial

confinement in y, z is provided by the RF potential, not by the externally applied DC

potential. However, the radial curvatures will shift upon application of Cxx, since by

Laplace (
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
Φ(~x) = 0 (2.34)

[65]. So only ∂2Φ/∂x2 and ∂2Φ/∂z2 need to be constrained. From these, ∂2Φ/∂y2 is fully

set. If we wish to shift the frequency of one of the radial modes by a given amount, we

can apply a DC curvature. Typically, to simplify things, one of these shifts to will be set

to zero

∂2

∂x2
Φ(~x0) = 0 (2.35)

We must also consider the off-axis components of the curvature matrix

∂2

∂xi∂xj
Φ(~x0) (2.36)

for i 6= j. The curvature tensor is symmetric, so Cij = Cji. These off-axis components

rotate mode orientations, so a non-zero curvature Cij will rotate the modes around the xixj

axis. For efficient Doppler laser cooling, the modes ~qi should be oriented so that all modes
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have some overlap with the cooling beam. We can work in the coordinate space defined by

the modes C ′ij that have the desired mode orientations and rotate into the xyz frame by

Cij = RTC ′ijR (2.37)

for rotation matrix R. In this frame, all of the off-diagonal terms

C ′xy = C ′yz = C ′xz = 0 . (2.38)

(3) The well should be harmonic. This can be forced to lowest order in the axial dimension by

requiring the third axial derivative to be zero,

Cxxx =
∂3

∂x3
V (~x0) = 0 (2.39)

It is useful to define a vector containing our target derivatives:

~ϕ(0) ≡ [Ex, Ey, Ez, Cxx, Czz, Cxy, Cyz, Cxz, Cxxx]T

= [0, 0, 0,mω2, 0, 0, 0, 0, 0]T .

(2.40)

Using the Biot-Savart analogue for electrostatics (Eq. 2.31), the exact fields and curvatures that

will be generated at a desired trap location by applying 1 V to a given electrode Ei can be simulated:

~ϕ(i) ≡ [E(i)
x , E(i)

y , E(i)
z , C(i)

xx , C
(i)
zz , C

(i)
xy , C

(i)
yz , C

(i)
xz , C

(i)
xxx]T (2.41)

The relationship between ~ϕ(0), ~ϕ(i) is a linear equation:

~ϕ(0) = [~ϕ(1) ~ϕ(2) ... ~ϕ(n)]~V (2.42)

where ~V is an n-dimensional vector describing the voltage that must be applied to each of the n

electrodes to generate the fields and curvatures described by ~ϕ(0). If there are exactly 9 electrodes

then there will be at most a single set of voltages that will produce a potential that fulfilling all nine

constraints. Typically surface traps have many more than 9 electrodes, and there is substantial

space to explore to find an optimal solution.
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Optimization is a well-known field in computer science, and there are multiple built in com-

puter packages which use well-established optimization algorithms to solve linear equations of this

form. I have used cvxopt with Python, but this is largely a choice of personal coding preference.

Similar packages exist which are compatible with MATLAB, C++, etc., and they generally provide

the same algorithms.

More interesting is the choice of cost function. An optimization algorithm requires a cost

function, which ranks different solutions ~V and returns the best. A solution that requires a voltage

of 100 V on each electrode to trap an ion, while it may provide a nice solution on a computer is

impractical, and should be rejected from the solver.

A few cost functions we might imagine:

• Well depth: The well should be sufficiently deep to trap ions for long periods of time.

• Harmonicity : The well should be as harmonic as possible. This could be achieved by

either a cost function that penalizes anharmonicities in the potential or by introducing

more higher order terms into our linear equation.

• Electrode contribution strength: every voltage should be significant, i.e. a large voltage that

has little effect on the potential seen at the ion voltage should be penalized.

• Voltage smoothness: neighboring electrodes should have similar voltages, to minimize ca-

pacitive coupling between electrodes.

• Transport smoothness: for operations like transport or separation that involve time-varying

voltages, the voltage vectors ~V (t) should change as slowly as possible.

In practice, some of these constraints might serve redundant purposes. For example, voltage

smoothness and transport smoothness cost functions will often yield similar solutions. Others

are at odds: a deep, highly harmonic well will likely have higher voltages and less smooth voltages

than we might like. Further, the weighting of different priorities will vary substantially between

apparatuses and even between experiments. In a room temperature trap, where the ion is more
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susceptible to background gas collisions, the well depth requirement would need to be more strin-

gent, whereas a cryogenic apparatus can trap ions for long times in surface traps with quite low

well depths. For the fast transport experiments discussed in Chapter 7, I heavily weighted the

transport smoothness requirement.

2.3.2 Shims and curvatures

All ion traps will have stray fields that must be compensated to controllably create desired

mode frequencies and orientations. This is especially challenging in the system described in Chapter

4 due to the combination of UV laser frequencies, small ion-electrode distance, and a cryogenic

apparatus. With a short ion-electrode distance, the lasers scatter more on the trap and produce

more stray charge because photoelectrons are removed by UV light. At cryogenic temperatures,

stray charges dissipate more slowly than they would at room temperature.

We thus require a set of compensation voltages to correct for these stray fields. We refer to

these compensation voltages as the shims, as we can consider this as if we are “shimming up” the

potential and making it “level” at the trap. The goal is a set of shims that affects a single derivative

of the potential but leaves all others unchanged. We can use the same basic scheme as is described

above, but with a different target state. For example, to find the y shim, we would use the target

vector

~ϕ(0) ≡ [Ex, Ey, Ez, Cxx, Czz, Cxy, Cyz, Cxz, Cxxx]T

= [0, 1, 0, 0, 0, 0, 0, 0, 0]T
(2.43)

to find a set of voltages that produces an electric field in y and otherwise leaves the derivates

unchanged.

2.4 Manipulation of ion crystals

In order to implement the quantum CCD architecture described in Section 1.1.1, we require

the ability to move, split, merge, and reorder ion crystals.
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2.4.1 Ion transport

Ions can be transported from location ~xa to ~xb by linearly changing the DC voltages from

those needed to produce a well at ~xa to those needed to produce a well at ~xb. For sufficiently small

|~xb − ~xa|, the ion will follow the well minimum. More complicated position and velocity profiles

like the ones discussed in Chapter 7 can be produced by breaking this profile up into small pieces

that can be approximated linearly.

2.4.2 Splitting and merging of ion crystals

The goal in splitting an ion crystal is to shift from a single harmonic well to a double well.

This necessarily has higher-than-harmonic terms. Assuming symmetry (i.e. no third-order term)

the axial potential can be described to lowest order as

V (x) = αx2 + βx4 (2.44)

A purely harmonic well has α > 0, β = 0, in which case the ions will be separated by a distance

δx = (e2/πε0α)1/3. Separation is performed by reducing the harmonic term and applying a strong

quartic, which provides confinement even in the absence of a harmonic term. Under a purely

quartic potential α = 0, β > 0, the ions will separate under the Coulomb interaction to a distance

of δx = (4e2/πε0β)1/5. We can then apply a “separation wedge” by applying a negative harmonic

term α < 0. Near the ion equilibrium positions, this produces to lowest order two harmonic wells

centered at x0 = ±(−α/2β)1/2 with curvature α′ = −4α. To merge wells, this process is reversed.

2.4.3 Reordering

I will not discuss reordering in this thesis but note that it is a required component of the

scalable quantum CCD. We need to be able to reorder ion crystals in order to bring together

arbitrary pairs of ions for two-qubit gates. There are two ways in which we could consider reordering

ions: rotating the ion crystal or using a junction. The crystal can be rotated by applying an xy
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(a) (b) (c)

(d) (e)

Figure 2.5: Reordering an ion chain using a junction. The colors identify different ions. We can
rearrange the orders of an ion in a chain using a junction as shown; however, the junction introduces
a “micromotion hump” that can cause ion heating.

shim (or, equivalently, an xz shim):

Vxy =
∂2V

∂x∂y
(2.45)

generated as I have described above in Section 2.3.2. However, this introduces excess micromotion,

since the ions will come off of the line of the RF null as they are rotated. Using a junction, as drawn

in Figure 2.5 makes some intuitive sense. However, junctions also introduce excess micromotion.

Two intersecting RF null lines cannot be created without violating Laplace, so passing through

a junction necessarily means the ion moves off of the RF null. Finding a fast, reliable, cold way

to reorder ion crystals is a critical piece of the puzzle to building a scalable quantum computer.

However, it is beyond the scope of this thesis.



Chapter 3

The 9Be+ Qubit

I have up till now referred to the qubit states in the abstract as |0〉 and |1〉 or as spin states

| ↑〉 and | ↓〉. Any real atomic system is substantially more complex than this simple two-level

approximation and has many more states to consider. However, with careful state preparation and

manipulation, we can operate in a limited subspace where most of the additional energy levels can

be neglected.

Singly-ionized alkaline earth metals make good choices of qubit ion, since they have a single

valence electron and can be understood in a relatively straightforward analysis. In ions with

hyperfine structure, the qubit can be encoded in hyperfine ground states, which have very long

radiative lifetimes. There are multiple options, including 25Mg+, 43Ca+, 133Ba+, and 171Yb+, all

of which have been investigated for quantum computing applications [60][74][75][76]. I will discuss

9Be+, which has the lowest mass of any alkaline earth metal. This low mass increases coupling

strength between neighboring ions and allows trapping with reduced RF amplitudes.

3.1 Beryllium photoionization

We produce 9Be+ ions by photoionization of neutral beryllium using a 235nm laser. The

relevant level structure for neutral beryllium is shown in Figure 3.1. We photoionize in a two-

photon process, first exciting the valence electron from 2s2 1S0 to 2s2p 1P1 and then exciting it

to the continuum. The transition wavelength from 2s2 1S0 ↔ 2s2p 1P1 is 234.9329 nm, and the

transition wavelength from 2s2p 1P1 to the continuum is 306.492 nm [77]. Since the second step is
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Figure 3.1: Relevant level structure for beryllium photoionization. Photoionization is a two-step
process, first exciting the neutral atom in a resonant step from 1S0 to 1P1, then exciting the ion to
the continuum.

lower energy, the electron can be excited first to 2s2p and then to the continuum by two photons

resonant with the first transition. Beryllium can also be ionized by electron beam bombardment.

However, photoionization is species-selective and does not generate as much stray charge.

3.2 Level Structure

In order to reasonably approximate the energy levels of an ion as a two-level system, both

states must be long lived and initializable with high fidelity. A good choice in 9Be+ is to encode the

qubit between the ground state hyperfine sublevels, as shown in Figure 3.2. For this treatment, we

need only consider ions in three energy levels (described by the standard term symbols 2S+1LJ):

1s22s 2S1/2, 1s22s 2P1/2, and 1s22s 2P3/2. All of these states have orbital configuration 1s22s, so I

will drop it from my notation hereafter. The quantum numbers S, L, and J describe the electron

spin, electron orbital angular momentum, and total electron angular momentum, respectively. All

other energy levels are split from the ground state 1s22s by inaccessible laser wavelengths. The

nearest orbital transition, 1s22s↔ 1s23s is at 113 nm [78].

All of the relevant energy structure for 9Be+ is the fine and hyperfine structure and Zeeman

splitting. 9Be+ interacts with a magnetic field by

H = −~µ ·B (3.1)
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State F gF
2S1/2 1 -1/2

2 1/2
2P1/2 1 -1/6

2 1/6
2P3/2 0 N/A

1 2/3
2 2/3
3 2/3

Table 3.1: Lande g-factors for the ground and first excited states of 9Be+

[66]. There are three sources of magnetic field we must consider: (1) spin-orbit coupling between the

valence electron’s spin and orbital angular momentum, (2) spin-spin coupling between the valence

electron and the nucleus, and (3) coupling between the valence electron and an externally applied

magnetic field Bapp. The spin-orbit coupling gives the fine structure splitting between the two

P -state levels, measured as 197.2 GHz [79].

The spin-spin interaction gives the hyperfine structure, splitting the two qubit states. Since

9Be+ has a non-zero nuclear spin I = 3/2, the nuclear spin I will interact with the electronic

angular momentum J. In the low field limit, this spin-spin interaction can be straightforwardly

diagonalized by considering eigenstates of the total angular momentum

F = J + I . (3.2)

This spin-spin interaction introduces a hyperfine shift, dependent on the total angular momentum

quantum number F . In the ground state, the hyperfine shift splits the F = 1 and F = 2 levels by

1250 MHz [81]. In the 2P1/2 state, the hyperfine shift splits F = 1 and F = 2 by 237 MHz [79],

and in the 2P3/2 state, the hyperfine shift splits the F = 0...3 levels by less than 1 MHz [82].

In the low field, the ion will experience a Zeeman shift dependent on F and mF , the projection

of the total angular momentum onto a quantization axis set by the external magnetic field Bapp.

This energy shift is given by

EZ = −gFµBmFB (3.3)
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Figure 3.2: Ground and first excited state energy levels of the 9Be+ ion in a low magnetic field,
adapted from [80]. We use the 2S1/2|F = 2,mF = −2〉 ↔ 2P3/2|F = 3,mF = −3〉 transition
for optical pumping, Doppler cooling, and state detection, plus an additional beam far detuned
from this transition for Doppler cooling of very excited states; these are drawn in blue and labeled
“blue doppler” (BD) and “blue doppler detuned” (BDD), respectively. Assuming that these beams
have pure σ− polarization, this is a cycling transition. To limit state preparation errors, we also
repump on the 2S1/2|F = 2,mF = −1〉 ↔ 2P1/2|F = 2,mF = −2〉 and 2S1/2|F = 1,mF = −1〉 ↔
2P1/2|F = 2,mF = −2〉 transitions, drawn in red.
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[66].The Lande g-factor gF is dependent on the specific F state as

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)
(3.4)

where

gJ =
3

2
+
S(S + 1)− L(L+ 1)

2J(J + 1)
(3.5)

[83]. Values of gF for the relevant states are given in Table 3.1.

The above is true in the low-field limit. It is possible to substantially extend the coherence

time between our two qubit states by choosing a magnetic field at which the energy splitting

between the two qubit states is first-order independent of magnetic field. This requires a magnetic

field high enough that the Zeeman effect depends quadratically on the external magnetic field

Bapp. Coherence times as long as 10 seconds are possible in 9Be+ by operating at such a field [18].

The lowest magnetic field at which this first-order magnetic field insensitivity can be achieved in

9Be+ is 11.94 mT. Details of the high-field energy level configuration of 9Be+ can be found in [80].

Producing such a magnetic field in the lab requires currents on the order of 50−100 A, depending on

the magnetic field coil configuration, and presents a substantial increase in experimental complexity.

Therefore, I will limit my discussion to the low-field limit, in which we apply only a small magnetic

field to break the Zeeman sublevel degeneracy.

States in the 2S1/2 manifold make good qubit states, since the F = 1 states have very long

radiative lifetimes, estimated as 5 × 1014 seconds, or about 16 million years [1]. We could chose

any pair of states within the ground state manifold as qubit states. For all the work discussed in

this thesis, I used the qubit states

| ↓〉 = 2S1/2|F = 2,mF = −2〉

| ↑〉 = 2S1/2|F = 1,mF = −1〉
(3.6)

primarily chosen for ease of state preparation. We apply an external DC magnetic field of 5.7 G,

under which these qubit levels are separated by 1262 MHz.
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3.3 State preparation and control

3.3.1 Doppler cooling

In the experiments discussed in this thesis, we Doppler cool on the 2S1/2|F = 2,mF = −2〉 ↔

2P3/2|F = 3,mF = −3〉 cycling transition, nicknamed the “stretch transition.” This transition is

drawn in Figure 3.2, labelled as the “blue Doppler,” or BD. (The “blue” in “blue Doppler” is

to distinguish it from the repumping beam, nicknamed the “red Doppler” for historical reasons.

Tthe BD is still detuned red of resonance for Doppler cooling.) During cooling cycles, this beam

is detuned 6 MHz to the red of resonance. We also apply a far-detuned Doppler beam tuned

∼ 620 MHz to the red of resonance with approximately 8x higher intensity, which serves to cool

very hot ions. This laser is nicknamed “blue Doppler detuned,” or BDD. With this combination of

far-detuned and near-resonant Doppler cooling, we are able to cool ions in the ith motional mode

to near the Doppler limit [84]

kBT |x̂i · k̂Dop|2 =
~γ
2

(3.7)

where I have modified the usual equation to account for overlap between the mode orientation x̂i

and the cooling laser k̂Dop. The transition linewidth γ = 2π× 19.4 MHz in angular frequency units

[82]. This cools the ion to n̄ ≈ 9 in a 2 MHz mode oriented 45◦ from the Doppler cooling laser.

The ion can be cooled below the Doppler limit by sideband cooling, discussed in Section 3.4.2.

3.3.2 Optical pumping

In order to use the ion as a qubit, it is necessary to controllably produce ions in a single qubit

state. The excited state lifetime of the 2P state is 8.2 ns [82], so in a very short time the ion begins

with all population in the 2S1/2 manifold. This population can be shifted into the | ↓〉 qubit state

by optically pumping on the 2S1/2 ↔2 P3/2 transition using a σ− polarized laser at 313.13 nm.

We use the same laser as that used for Doppler cooling, the “BD,” for this process. This laser is

tuned to near-resonance with the 2S1/2|F = 2,mF = −2〉 ↔ 2P3/2 transition. |F = 2,mF = −2〉

is approximately 1.25 GHz detuned from the F = 1 manifold, so we also use the far-detuned laser
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to clear out the remainder of the 2S1/2 manifold. The BDD is detuned ∼ 620 MHz detuned to the

red of the 2S1/2|F = 2,mF = −2〉 ↔ 2P3/2 transition, making it approximately equally detuned

from the F = 2 and F = 1 manifolds. Although this high detuning gives a lower probability-

per-photon of making a transition than the near-resonant optical pumping laser, this beam has

a higher intensity, and effectively optically pumps the full 2S1/2 manifold. In an ideal case, this

would produce 100% population in the goal qubit state of |F = 2,mF = −2〉, since the population

will eventually be transferred to the 2P3/2|F = 3,mF = −3〉 state. Decay to anything other than

the target qubit state is dipole forbidden, so this state should be a perfect cycling transition.

However, this is an experimental thesis, and experiments are sometimes frustratingly non-

ideal. The primary limitation on our state preparation fidelity is imperfect σ− polarization. Resid-

ual π polarization in the optical pumping beam will excite the qubit state to 2P3/2|mF = −2〉. This

will decay to one of three dipole-allowed hyperfine states in the 2S1/2 manifold. One of these is the

target state |F = 2,mF = −2〉, in which case no infidelity is introduced. However, it can also fall

to either |F = 2,mF = −1〉 or |F = 1,mF = −1〉. In order to clear out these states, we apply two

repumping beams, resonant with the |F = 2,mF = −1〉 → 2P1/2 and |F = 1,mF = −1〉 → 2P1/2

transitions. The 2P1/2 then decays to either one of the same two states or to our target qubit state,

again due to selection rules. I will refer to this laser as the “repumping” laser or, for historical

reasons, the “RD.” These transitions are shown on Figure 3.2 in red. This transition is also used

as the dissipative step in sideband cooling, discussed in 3.4.2.

I will briefly and qualitatively note another issue limiting state preparation fidelity. Our

magnetic field must be well-aligned with the optical pumping beam in order to generate pure σ−

light. This can be straightforwardly achieved with our magnetic field coil configuration, as shown

in Section 4.2.7. However, there is an oscillating component of the magnetic field caused by the

trap itself which causes mixing between the Zeeman sublevels. This effect is negligible in large

three-dimensional Paul traps but is a larger effect in surface electrode traps due to their reduced

symmetry. Still, this is a minor effect at the level of fidelity needed for the experiments discussed

in this thesis.
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3.3.3 Microwave transitions

We require a method of reliably transferring population between our two qubit states | ↑〉

and | ↓〉. This can be achieved with global microwave fields. Consider a 9Be+ ion under an applied

microwave field of amplitude ~B0, angular frequency ω, detuned from our qubit frequency ωqu by

δ = ω − ωqu. The interaction Hamiltonian of the system is then (neglecting all levels besides | ↑〉

and | ↓〉)

ĤI(t) = µ~r · ~B0 cos(ωt) (3.8)

By applying an appropriate rotating wave approximation, an ion that begins in the ground state

| ↓〉 has a probability of being found in the upper qubit state after time t of

P↑ =
Ω2

Ω2 + 4δ2
sin2

(
t
√

Ω2 + 4δ2
)

(3.9)

[85] where the Rabi frequency Ω

Ω =
1

2~
〈↓ |µ~r · ~B0| ↑〉 (3.10)

is set by both the strength of the driving field and the strength of the transition between | ↓〉, | ↑〉. I

will note a historical divergence between the trapped ion community and the broader atomic physics

community in the definition of the Rabi frequency. Following the treatment in [1], the trapped ion

community has defined Ω as I described above in Equation 3.10; much of the neutral atomic physics

community instead defines the Rabi frequency as Ω′ = Ω/2. The dynamics are unchanged by this

definition, but it is worth keeping in mind when directly comparing Rabi frequencies.

In the particular case of δ = 0, i.e. for a microwave field resonant with the qubit frequency

ω = ωqu, Equation 3.9 reduces to

P↑ = sin2 (Ωt) (3.11)

and, by normalization,

P↓ = cos2 (Ωt) . (3.12)

Neglecting global phase, we can write the ion state with no loss of generality as

|ψ〉 = cos (Ωt) | ↓〉+ eiφ sin (Ωt) | ↑〉 (3.13)
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for some relative phase φ. Notice that this is equivalent to an arbitrary rotation on the Bloch

sphere parameterized by φ and Ωt. This rotation is a critical ingredient to quantum computing,

which require single qubit rotations for computational completeness [26].

Due to their frequency of use, I will note two specific cases:

• The π-pulse: After applying a resonant microwave field for tπ = π/(2Ω), all of the popula-

tion has swapped from the initial state | ↓〉 to | ↑〉. This is useful for transferring population

coherently between target states.

• The π/2-pulse: After applying a resonant microwave field for tπ/2 = π/(4Ω), half of

the population has swapped from the initial state | ↓〉 to | ↑〉, so the ion is in an equal

superposition of | ↓〉 and | ↑〉, with the phase relationship defined by the phase of the

magnetic field.

3.3.4 Stimulated Raman transitions

The previous treatment assumed that the transition from | ↓〉 to | ↑〉 is driven by a single

frequency field. Because this field must oscillate at a frequency at or near the transition frequency

ωqu, the transition is mediated by a microwave photon. However, we would like to be able to

use lasers to make these transitions. Lasers can be focused to tight spots, enabling single-qubit

addressing. Additionally, to excite the ion’s motion (which is necessary for two-qubit entangling

gates), we require a large field gradient. This can be challenging to produce in microwaves, but

comes for free in short wavelength light. Although a single optical or ultraviolet photon cannot be

used to make the transition between our two qubit states, separated by ∼ 1.25 GHz, two photons

can make this transition.

For this, we use stimulated Raman transitions. We wish to make a two-photon transition

between our two qubit states | ↓〉 and | ↑〉, separated by angular frequency ωqu. In this treatment, we

must also consider a third, auxiliary state |e〉, far separated from the two qubit transitions so that

ωe,↑, ωe,↓ >>> ωqu. The interaction Hamiltonian (Equation 3.8) can be modified to consider an
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Figure 3.3: Raman transitions used in this experiment, adapted from [80]. We make two-photon
transitions between our | ↓〉 and | ↑〉 states using light detuned by 80 GHz from the 2P1/2 excited

state. Note that this diagram of the 9Be+ energy levels is not to-scale; although the Raman detuning
and the 2P1/2 hyperfine splitting look comparable as drawn, they are two orders of magnitude
different.
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ion interacting with an electromagnetic field containing two frequency components at ω1,2 >> ωqu:

ĤI(t) = qr ·
(
~E1 cos(ω1t) + ~E2 cos(ω2t)

)
(3.14)

I will specifically discuss the case ω1 = ωe,↓ + ∆, ω2 = ωe,↑ + ∆: i.e. the first photon ω1 is detuned

from the | ↓〉 ↔ |e〉 transition by ∆, and the second photon ω2 is detuned from the | ↑〉 ↔ |e〉

transition by the same ∆. In this case, ω2 is detuned from ω1 by the qubit frequency ωqu. This is

drawn for the specific case of 9Be+ with the detunings used in this experiment in Figure 3.3.

Following [85], it can be shown that this acts as a single electric field oscillating at |ω1−ω2|,

with a modified Rabi frequency

Ωeff =
Ω↑,eΩe,↓

2∆
=
〈↑ |q~r · ~E2|e〉〈e|q~r · ~E1| ↓〉

4~2∆
(3.15)

From here out the treatment in Section 3.3.3 is identical, with Ωeff replacing Ω. Because this is a

two photon transition, the probability of it occurring is reduced relative to a single photon dipole-

allowed transition. This is reflected in the quadratic Rabi rate dependence on 〈ψ|q~r · ~E|ψ〉 terms.

However, we can create large electric fields using tightly focused laser beams, so we can produce

comparable π-times with both single-photon microwave and two-photon Raman transitions.

The 9Be+ level structure is shown again in Figure 3.3 with the two Raman laser frequencies

indicated, shown configured for a resonant | ↓〉 ↔ | ↑〉 qubit transition. We use the 2P1/2 excited

state as our auxiliary state |e〉; this state is separated from the 2S1/2 manifold by 950 THz, so

the requirement that the Raman laser frequencies be much greater than the transition frequency

ωqu = 1.25 GHz is well-satisified. The transition |F = 1,mF = −1〉 → |F = 2,mF = −2〉 has a net

angular momentum change of -1, so one beam is σ− polarized and the other is π polarized.

3.4 Ion motional control

3.4.1 Sideband interactions

The other ingredient needed for quantum computational completeness is two-qubit entangling

gates [26]. Two qubit gates are generally produced by coupling the ion’s qubit state to the ion
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motion. This requires a field gradient, so that the ion feels a state dependent force. The force

felt by the ion should depend on the ion’s qubit state, meaning that the field should vary over the

ground state extent of the ion’s secular motion. The wavelength of a 1261.8 MHz photon in vacuum

is 0.24 m, 4 × 106 times the ground state wavefunction extent of 9Be+ in a 2.0 MHz trap. It is

thus challenging to create a substantive magnetic field gradient over this zero-point extent using

microwaves. Challenging is not impossible, and I point to the results in [31][17][34] as evidence of

what is possible using microwave gradients in ion traps. However, I will limit myself to discussing

field gradients produced by UV lasers, which have wavelengths much more comparable in scale to

the ground extent of trapped ions. We specifically use the stimulated Raman interaction, discussed

above in Section 3.3.4 and illustrated for 9Be+ in Figure 3.3, to drive ion motion.

As discussed in Chapter 2, an ion in an RF Paul trap can be treated as if it is trapped in a

harmonic well

Φ(x, r1r2) =
1

2
mω2

xx
2 +

1

2
mω2

r1r1
2 +

1

2
mω2

r2r2
2 . (3.16)

For simplicity, I will discuss a one-dimensional harmonic oscillator with trap frequency ω. This

discussion is directly extendable to the three-dimensional case, since the potential is a linear sum

of 1D harmonic oscillators.

Using Raman transitions, it is possible to transfer population both between our two qubit

states and between motional states, as is shown in Figure 3.4. Instead of the specific case of 9Be+,

I have here shown the general trapped ion case, in which we have a two-level qubit system with a

third, auxiliary level |e〉 enabling Raman transitions. Since the ion is trapped in a harmonic well,

we also must consider the harmonic oscillator energy level ladder. If an ion in the lower qubit state

| ↓〉 and in motional state |n〉 is illuminated with two lasers, detuned from the auxiliary level |e〉

by ∆ and from each other by exactly ω = ωqu, the difference frequency between our two qubit

states, a coherent transition will be stimulated between | ↓〉 and | ↑〉, with the motional state |n〉

unchanged. This class of transition is denoted “carrier” transitions. If the two lasers are instead

detuned from each other by ω = ωqu − ωx, this transition is no longer resonant; however, a “red
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Figure 3.4: Sample stimulated Raman transitions from | ↓〉 to | ↑〉, showing a carrier transition
(black/solid), a red sideband (red/dashed), and a blue sideband (blue/dotted)

sideband” transition will be resonant, and a coherent transition is stimulated between | ↓〉|n〉 and

| ↑〉|n − 1〉. Similarly, if the lasers are detuned by ω = ωqu + ωx, a “blue sideband” transition is

resonant, coherently shifting population from | ↓〉|n〉 to | ↑〉|n+ 1〉.

This is illustrated in Fig. 3.4, but I will formalize it a bit mathematically. The interaction

Hamiltonian for a trapped ion qubit’s interaction with laser light can be written

Ĥ = ~ΩŜ+e
−i(δt−φ) exp(iη[âe−iωxt + â†eiωxt]) + h.c. (3.17)

where Ω is the Rabi rate from Eq. 3.15; Ŝ+ and Ŝ− are the raising and lowering operator for the

ion’s qubit state; â and â† are the annihilation and creation operators, respectively, for the motional

state of the ion; δ = ω − ωqu is the detuning from resonance; ωx is the secular frequency of the

ion’s motion; and η ≡ ∆kx0 is the Lamb-Dicke factor, where x0 is the spatial extent of the ion’s

motional state [1].

The Lamb-Dicke factor can be considered a measure comparing the spatial extent of the ion’s

wavefunction with the wavelength of the light. After Doppler cooling, the ion is in the Lamb-Dicke

regime (η
√
〈(â+ â†)2〉 << 1), where the ion is sufficiently cooled that we can consider only first
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order terms in our Hamiltonian. In the Lamb-Dicke regime, Eq. 3.17 can be approximated

H = ~Ω
{
Ŝ+e

−i(δt−φ) + Ŝ−e
i(δt−φ) + iη

(
Ŝ+e

−i(δt−φ) − Ŝ−ei(δt−φ)
)(

âe−iωxt + â†eiωxt
)}

(3.18)

[1]. Apply a rotating wave approximation that drops quickly varying terms, there are three partic-

ular detunings of interest:

• δ = 0, i.e. carrier transitions: in this case, the Hamiltonian will reduce to

Ĥ = ~Ω
(
S+e

iφ + S−e
−iφ
)

(3.19)

Since the only operators in this Hamiltonian are raising/lowering operators on the ion’s

qubit state, this term enables transitions between the two qubit states. This transition

changes the qubit state but leaves the ion’s motion unchanged.

• δ = −ωx, i.e. red sidebands: in this case, the Hamiltonian reduces to

Ĥ = i~Ωη
(
S+âe

iφ + S−â
†e−iφ

)
(3.20)

This expression contains no pure raising/lowering or creation/annihilation terms. The only

terms remaining are proportional to either S+â or S−â
†, i.e. simultaneous flip of the qubit

state from | ↓〉 to | ↑〉 and annihilation of a phonon or flip from | ↑〉 to | ↓〉 with creation of

a phonon.

• δ = ωx, i.e. blue sidebands: here, the Hamiltonian reduces to

Ĥ = i~Ωη
(
S+â

†eiφ + S−âe
−iφ
)

(3.21)

and we have terms proportional to S+â
†, which flips the ion from | ↓〉 to | ↑〉 and creates a

phonon, and S−â, which flips the ion from | ↑〉 to | ↓〉 and annihilates a phonon.

I have presented something of an oversimplification for readability. The Rabi rate Ω actually

depends on the initial and final motional states |n〉 and |m〉 as

Ωn,m = Ω|〈m|eiη(â+â†)|n〉| (3.22)
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[1]. Accounting for these varying Rabi rates, the probability of finding an ion in | ↑〉 (in any

motional state) after applying a blue sideband for time t is given by

P↑,bsb(t) =
∞∑
n=0

Pn sin2(Ωn,n+1t) (3.23)

But since the ground state |0〉 is insensitive to the red sideband, the probability of finding an ion

in | ↑〉 after applying a red sideband for time t is given by

P↑,rsb(t) =
∞∑
n=1

Pn sin2(Ωn,n−1t) (3.24)

[86].

The ability to drive sidebands and control the ion’s motion is a powerful tool that can be used

for a large number of applications. Ion motional control is key to the most commonly implemented

two-qubit gates [87][88]. Sideband pulses have also been used to produced highly non-classical

states of motion for quantum-enhanced sensing [89][70]. However, for this work, I will focus on the

use of sideband transitions for ground state cooling.

3.4.2 Raman sideband cooling

The idea of sideband cooling arises from observing a fundamental asymmetry in the harmonic

oscillator: while motion can be added to any state, it is not possible to remove motion from the

ground state. Returning to the graphical picture of Raman sideband interactions, modified in

Figure 3.5, consider an ion in the ground state of motion and the lower qubit state |ψ〉 = |0〉| ↓〉.

No energy level exists ωqu − ωx detuned from this level. Therefore, when the ion illuminated

with lasers set to this detuning, no transition is driven. Returning to the rd sideband interaction

Hamiltonian Eq 3.20, noting â|0〉 = 0 and S−| ↓〉 = 0,

Ĥ|0〉| ↓〉 = i~Ωη
(
S+âe

iφ + S−â
†e−iφ

)
|0〉| ↓〉 = 0 (3.25)

Fundamentally, the goal in ground state cooling is to move from some thermal distribution

of states (as is achieved by Doppler cooling) to a pure ground state:

∞∑
n=0

e−n~ωx/kBT

1 + e−~ωx/kBT
|n〉 → |0〉 (3.26)
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Figure 3.5: An illustration of the idea at the heart of Raman sideband cooling: a red sideband on
an ion in the ground state of motion has no resonant level to transfer population to.

The red sideband interaction plays a part in this, since it takes |n〉 → |n − 1〉. However, the red

sideband is a coherent, entropy-preserving interaction; since the ground state |0〉 has zero entropy,

it cannot be reached with purely coherent interactions. Cooling requires a dissipative step.

This dissipative step is achieved with the repumping interaction. We repump on two tran-

sitions, shown on Figure 3.2: 2S1/2|F = 1,mF = −1〉 ↔ 2P1/2|F = 2,mF = −2〉 and 2S1/2|F =

2,mF = −1〉 ↔ 2P1/2|F = 2,mF = −2〉. An ion excited to 2P1/2|F = 2,mF = −2〉 will sponta-

neously decay to either 2S1/2|F = 1,mF = −1〉, 2S1/2|F = 2,mF = −1〉, or to 2S1/2|F = 2,mF =

−2〉 (the | ↓〉 qubit state). All of these except | ↓〉 will continue to be cleared out by the repumping

interaction, so the population will eventually be transferred to | ↓〉. Two features make this a good

choice for use in sideband cooling. One is that in the Lamb-Dicke regime, the ion motional state

|n〉 is unaffected by this interaction. The other is that the interaction is dissipative, so entropy is

lost to the environment.

Red Raman sidebands and repumping give all the ingredients needed to cool the ion to its
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motional ground state. The ion is cooled to the Doppler limit in the qubit state | ↓〉. (1) We apply

a red sideband π-pulse, coherently transferring population from

|n〉| ↑〉 ↓ |n− 1〉| ↑〉 (3.27)

for n 6= 0, neglecting non-idealities. Any population in |0〉| ↓〉 will be insensitive to this interaction.

(2) Then we apply the dissipative step, which in the ideal case drives

|n〉| ↑〉 → |n〉| ↓〉 (3.28)

After many repetitions of (1) and (2), this process will cool the ion asymptotically close to the

ground state |0〉| ↓〉 [1].



Chapter 4

Apparatus

In this chapter, I will present the work that has taken the bulk of my time during my thesis:

the development of a robust, flexible, low-vibration cryogenic apparatus for trapped ion quantum

information experiments. Operation at cryogenic temperatures enables excellent vacuum and re-

duced electric field noise at the ion. This apparatus also has a sufficiently low base temperature

for the operation of integrated superconducting devices. Although in this work only a few trap

designs were used (presented in Section 4.2.1), we anticipate that it will be used for many trap

prototyping-type experiments.

4.1 The cryostat

There are multiple reasons to operate trapped ion experiments cryogenically, chiefly, improved

vacuum, reduced anomalous heating, and potentially reduced overhead for testing new traps. There

are two classes of cryostats that provide the relatively high cooling powers (> 1 W) needed for

trapped ion experiments at around 4 K.

• Wet cryostats: In a wet cryostat, the system is cooled by contact with a cryogenic liquid.

For 4 K operation, this must be liquid helium, since no other cryogen reaches such a low

temperature. This category includes bath cryostats (which are cooled by thermal contact

with a large bath of liquid helium) and flow cryostats (in which liquid helium continu-

ously flows through the system). The primary challenge of a wet cryostat is cost. During

continuous operation, the bath cryostat used in [47] requires helium fills approximately
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twice weekly, with approximately 50 L of liquid helium per fill. Helium is not a renewable

resource, and as the global helium supply dwindles, access to liquid helium may become

tenuous for research groups without access to a helium liquification facility. However, wet

cryostats can have reduced vibration relative to closed-cycle systems, which may make them

ideal for sensitive or high-fidelity experiments. Apparatuses for trapped ion experiments

cooled by bath cryostats are described in [90], [91], [47]. A flow cryostat system is described

in [92].

• Closed-cycle cryostats: An alternative to the wet cryostat is a closed-cycle cryocooler. In

such a system, the cooler does work on a closed volume of helium in order to cool it to

cryogenic temperatures. Cryocoolers are typically based on either a Gifford-McMahon or a

pulse tube cycle. The Gifford-McMahon cycle involves mechanically moving parts and thus

introduces large-amplitude vibration into the system. Pulse tubes have lower amplitude

vibration at higher acoustic frequencies but are typically more expensive. Pulse tubes have

reduced vibration relative to Gifford-McMahon systems, but vibrate with amplitudes of

multiple µm [93], still an inappropriate level for atomic physics experiments. Both Gifford

McMahon and pulse tube cryocoolers can be operated in a low-vibration configuration like

the one described below. Ion trapping apparatuses incorporating both pulse tubes [94][95]

and Gifford-McMahon [96][25] cryocoolers have been demonstrated.

The experiments discussed in this thesis were performed in a two-stage Gifford McMahon

cryocooler in a low vibration configuration (Janis SHI-4XG-15-UHV) with a specified cooling power

of 1.5 W at 4 K.

4.1.1 Vibration

The Gifford-McMahon cycle relies on multiple moving mechanical parts [93][97]. This causes

vibration with 10’s of µm amplitude [93]. This is large on the scale of the laser beam diameters,

which are focused to approximately 30 µm beam diameters.
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Figure 4.1: Low-vibration cryocooler configuration. The cold finger, which vibrates with 10’s of
µm amplitude, is mounted on a steel frame which sits on the laboratory floor. The low-vibration
experiment zone is mounted on a (non-floating) optical table. A thermal link between the two
subsystems is made by filling the exchange space (pink/blue) with helium gas. The two subsystems
are only directly mechanically linked by flexible rubber bellows.

Because of this large amplitude vibration, the cryocooler used in these experiments is operated

in a low-vibration configuration, illustrated schematically in Figure 4.1. In this configuration,

the cryogenic system is broken up into two zones, mechanically decoupled from each other: the

cryocooler cold finger, which has vibration on the order of 10’s of µms, and the experiment zone.

The experiment zone is mounted on a 4’×4’ optical table, while the cold finger is mounted on a

heavy steel frame that stands on the laboratory floor instead of being directly mounted on the

optical table. The only direct mechanical connection between the two subsystems is made by

flexible rubber bellows. The space between the experiment zone and the cryocooler is filled by

helium gas at a pressure of 0.25 psi over atmosphere. This helium gas makes a strong thermal

link but a weak mechanical link between the cold head and the experiment zone, enabling efficient

cooling of the experiment zone without transfer of vibrations.
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4.1.1.1 Vibration measurements

The system’s vibration can be measured by a knife edge test, illustrated in Figure 4.2. A

knife edge was mounted in the cryostat where a trap would be installed. A laser was focused on

this knife edge so that the laser transmission was partially obscured. The laser used for this test

was an Toptica DL Pro IR diode laser with wavelength 850 nm, chosen for its turnkey operation,

reasonably low intensity noise, and availability when this experiment was performed. Assuming a

Gaussian beamshape (a good assumption for the output of a single mode fiber), vibrations of the

knife edge traverse to the laser beam translate into variations of the transmitted laser intensity by

Itrans = I0 +
Imax

2
erf

(√
2(x− x0)

w0

)
(4.1)

for background intensity I0, full beam intensity Imax, and beam waist w0 [98]. Near the center of

the laser beam x = x0, this is approximately linear:

dItrans
dx

≈ Imax√
2w0

. (4.2)

Figure 4.2: Top view of the experimental configuration for vibration measurements. We are looking
at a slice through the cryostat, with all vacuum and shielding layers drawn. A knife edge is placed
at the center of the cryostat where an ion trap would otherwise be located. An 850 nm IR laser
is focused onto the knife edge. Transverse position fluctuations of the knife edge can be extracted
by measuring intensity variations of the transmitted beam. I measured both transverse directions
using this method. I was also able to measure vertical vibration by using the bottom edge of the
knife edge.
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Time-domain vibration data taken using this scheme are shown in Figure 4.3. “Horizontal”

vibration measurements were taken in the plane of the optical table and are likely due to the

pendulum motion of the cryostat. “Vertical” vibration measurements were taken normal to the

plane of the optical table. Horizontal vibrations dominate in this system.

There are a few characteristics of the cryostat vibrations to note:

• The cryostat’s cooling cycle (with a period of approximately 1 second) generates an ap-

proximately 1 Hz envelope in the horizontal data. However, within this envelope, there is

(a) (b)

(c) (d)

Figure 4.3: Cryostat vibrations in the time domain. “Horizontal” vibration (a, c) is in the plane of
the optical table. “Vertical” vibration (b, d) is normal to this plane. (a, c) The horizontal vibration
appears to be driven at the approximately 1 Hz from the cooling cycle of the cryostat. Within a
1 Hz envelope, an approximately 45 Hz resonance dominates. (b, d) Vertical vibrations are lower
in amplitude than the horizontal vibration. The vibration at 6 K (c, d) is reduced relative to the
vibration below the helium condensation temperature (a, b) in both directions.
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Figure 4.4: Cryostat vibrations in the frequency domain, measured with 1 Hz resolution bandwidth.
The 45 Hz vibration dominates. The peak of this spectrum is 0.67 µm/

√
Hz at 3 K, below the

helium condensation point, and 0.18 µm/
√

Hz at 6 K. All other modes are more than an order of
magnitude reduced in amplitude.

a fast oscillation at around 45 Hz. We attribute this to a fundamental pendulum mode of

the system that is driven by the impulse of the cold head motor.

• The vertical vibration does not possess a dominant frequency component when viewed the

eye and is lower in amplitude than the horizontal oscillation.

• The vibration amplitude is reduced by heating the experiment zone from 3 K to 6 K.

This can be attributed to a phase change in the thermal exchange helium. Above 4 K,

the helium providing the thermal link between the cryocooler and the experiment zone

is gaseous. Below this temperature, it condenses to liquid helium, which transmits more

vibration to the experiment zone.

The horizontal vibration was also investigated in frequency space, shown in Figure 4.4. The

data shown was measured on a HP89410A spectrum analyzer, with 1 Hz resolution bandwidth.

A “position spectral density” was obtained by scaling a voltage spectral density (V/
√

Hz) by the

same linear scaling factor (Eq. 4.2) used to convert time domain voltage fluctuations into position
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fluctuations. This spectrum gives similar qualitative information to the time-domain plots, but

enables a better quantitative understanding of frequency content. The 45 Hz frequency mode

dominates, with all higher frequency modes (many of which are higher-order harmonics of the

dominant 45 Hz mode) more than an order of magnitude smaller. The increase in vibration below

4 K is also visible in this measurement.

4.1.1.2 Estimate of vibration-induced errors

There are at least two major potential sources of error that could be introduced by an exper-

iment vibrating with respect to the lasers: laser intensity errors and laser frequency errors induced

by the Doppler shift of an ion moving relative to the laser. I have below roughly estimated the

gate errors that might be introduced to a two-qubit gate by these effects, based on the discussions

in [60] and [99].

Laser intensity errors can be estimated by assuming the ions are at the center of a perfectly

Gaussian beam

I(r) = I0e
−2r2/w2

0 (4.3)

for a beam with peak intensity I0 and beam radius w0 [98]. In this apparatus, the lasers are focused

to a waist of approximately w0 = 15 µm. With a peak-to-peak vibration amplitude of 1 µm, as

can be seen in the 3.5 K data, this introduces a 0.2% variation in laser intensity. For a geometric

phase gate, the gate error caused by Rabi rate error is

εΩ ≈ 2.5×
(
δΩ

Ω

)2

(4.4)

where Ω is the Rabi rate and δΩ is the Rabi rate error [60][99]. The Rabi frequency is directly

related to the laser amplitude [83], so a 0.2% variation in laser intensity would introduce a 0.1%

variation in Rabi rate, giving an estimated Rabi rate error of

εΩ ≈ 2.5× (0.001)2 = 2.5× 10−6 , (4.5)

small on the scale of the lowest demonstrated laser gate errors to date.
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Laser frequency errors would be caused by the Doppler shift of an ion moving within our

laser beam. Consider an ion oscillating at 45 Hz with amplitude 0.67 µm (a reasonable lowest-order

approximation for the cryostat’s vibration at 3.5 K, as can be seen on in Figure 4.4). This ion has

a peak speed of 3× 10−5 m s−1. This introduces a Doppler shift of

δ = 2
vion
λRam

= 192 Hz (4.6)

relative to the Raman lasers. From [99], the infidelity introduced to a simple two-qubit gate for

small detunings is

εδ =
1

16
(δtg)

2 (4.7)

for frequency detuning δ from the ideal value and gate time tg. Using such techniques as multi-loop

gates [99] and dynamical decoupling [100], it is possible to further reduce sensitivity to detuning

errors like this. If the vibrating ion introduces the worst-case value of δ = 192 Hz detuning from

the ideal gate detuning and assuming a 30 µs gate time (based on the gate time in [16]) this error

is εδ = 2× 10−6. It may still be useful to further reduce vibrations before using this apparatus for

high-fidelity gate experiments. For all of the proof-of-principle experiments discuss in this thesis,

intensity and detuning errors at this level are acceptable.

4.1.1.3 Future improvements

Since the vibration of the cryostat pendulum mode appears to dominate, mechanical bracing

of this pendulum should reduce vibration. In previous cryogenic experiments at NIST, discussed

in [47], vibration was reduced by tensioning the internal structure. Due to geometrical differences

between the two apparatuses, this exact solution used in that apparatus would not be feasible in

the closed-cycle system. However, a solution using springs to brace the cold stage to the outer

vacuum wall could reduce vibration of the cold head.

Alternatively, the effects of the vibration could be mitigated by addresssing the qubit in ways

that are not sensitive to vibration. Gates can be performed by an on-chip radiation source, either

using microwaves [31] or integrated optics [32]. Since the vibration would then be common mode
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Estimated heat load (mW)

Thermal links in cabling 100
Black-body radiation 47
Dissipated RF drive 3.2-7.9

Total 150− 155 mW

Table 4.1: Estimated heat loads on the 4 K stage due to various experimental considerations

between the radiation source and the ion, it should not affect the gate fidelity. In one integrated

optics experiment in a similar vibration-isolated cryostat, mechanically linking the cold finger to

the experiment zone, effectively inducing vibrations on the scale of 10’s of µm at the trap, did

not measurably increase qubit errors [101]. At NIST, microwave-driven gates are one of the major

directions of investigation, but beyond the scope of this thesis; see [34][69] for more. We are also

interested in pursuing tests of integrated optics at 313 nm, using samples identical to those in [32].

4.1.2 Heat load estimation and mitigation

There are three major sources of heat load in cryogenic trapped-ion experiments:

• Thermal flow through wiring

• Black-body radiation

• Heat dissipated due to the trap RF

For the experiments discussed in Chapter 6, the trap must be as cold as possible, so efforts were

made to limit these heat loads. These efforts are discussed in detail in Appendix A. The estimated

heat loads due to each source are summarized in Table 4.1.

4.1.3 Temperature measurement

There are two temperature sensors in this apparatus, both calibrated Lakeshore DT-670

silicon diodes. One is buried within the cold head itself (denoted Tcryo), and the other is mounted

on the trap mounting block (denoted Ttrap). The mounting of the trap temperature sensor Ttrap
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is shown in Figure 4.5(a). The temperature in each sensor is measured by a 4-wire measurement,

illustrated schematically in Figure 4.5(b). Trap and cold head temperatures during a standard

cooldown from room temperature to cryogenic temperatures are shown in Figure 4.6. At base

temperature, the temperature on the trap mounting block is v 0.5 K elevated relative to the cold

head temperature, but is cold enough for the applications discussed in this thesis.

4.1.4 Vacuum hygiene

One of the nice features of a cryogenic system is the ability to achieve excellent vacuum

without going through the typical cleaning and baking procedure that achieving ultra-high vacuum

(UHV) at room temperature requires. Room-temperature UHV systems must be rigorously cleaned

to remove any oils and baked for days to remove water that has adsorbed onto the surface but

which will outgas at high vacuum. Additionally, volatile materials like most plastics and many

other synthetic materials cannot be used in room-temperature UHV setups, since they have high

vapor pressures [102]. However, nearly every chemical besides helium has an extremely low vapor

pressure at 4 K, so vacuum baking and careful material selection are unnecessary to generate UHV

at cryogenic temperatures.

For this specific system, a few techniques were adopted from the preparation of UHV systems.

Materials in the cryostat were limited to metals, ceramics, and low-outgassing synthetics like PEEK,

Kapton, and Stycast 2850FT, and all parts were ultrasonically cleaned in propanol, methanol, and

acetone. This is because, although any outgassed material will not have substantial vapor pressure

at 4 K, they can adsorb onto cold surfaces. The previous cryogenic apparatus at NIST has been

hampered by slowly-building contamination on cold windows. We attribute this contamination to

exposure to a room-temperature vacuum space containing oily contaminants. At least one source

of this contamination was made worse by exposure to high-intensity UV light. The exact source of

this contamination is unknown. The closed-cycle system has been run cold for over 15,000 hours

with frequent UV exposure, with no evidence of contamination to date.



59

(a) (b)

Figure 4.5: (a) Mounting of the “trap” temperature sensor. A silicon diode is potted in Stycast
2850FT in a copper mounting block, which is then mounted on the mounting block holding the
trap. The silicon diode has a temperature-depended voltage drop. (b) Schematic for a four-wire
measurement. By driving the current and measuring the voltage using different wires, it is possible
to decouple voltage drop in the line due to non-negligible line-resistance from voltage drop in the
sample.

Figure 4.6: Trap and cold head temperatures while the cryostat cools from room temperature to
4 K. Due to finite thermal resistance between the trap and the cold head, Ttrap lags slightly below
Tcryo. At base temperature, the trap temperature Ttrap is v 0.45 K elevated relative to the cold
head temperature Tcryo.
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4.2 Ion trapping system

The cryostat described above has low vibration, minimal heat load, and ultra-high vacuum.

There is substantial additional experimental hardware needed to trap ions within this cryostat.

4.2.1 Traps

Three ion traps were used for the experiments discussed in this thesis. All are single-layer

surface electrode traps fabricated by Daniel Slichter in the Boulder Microfabrication Facility at

NIST unless otherwise noted.

4.2.1.1 Point trap

Initial loading tests in this apparatus were performed in a point trap with similar electrode

design to that described in [3], but with no integrated detector. A photograph of the trap electrodes

is shown in Figure 4.7. In this trap, the ion is trapped 40 µm above the trap surface by RF

confinement in all three dimensions. Dust on this trap caused large, time-dependent stray electric

fields in the presence of UV lasers, making micromotion minimization challenging, so this trap was

not used for experiments requiring precise control of the ion. However, the point trap was useful

for initial demonstration of the cryostat. It was also the trap used to demonstrate loading 9Be+

ions with laser ablation, discussed in Section 4.2.8.1.

4.2.1.2 The detector trap

The trap used for the experiments discussed in Chapter 6 was fabricated by Daniel Slichter

and Varun Verma and nicknamed the “detector trap.” The fabrication process was similar to what is

described in [3]. The trap is fabricated on a 350 µm thick intrinsic silicon substrate, and trapping

potentials are provided by voltages on 24 electroplated gold electrodes. The electroplated gold

electrodes are 6 µm thick, with 3 − 4 µm gaps between electrodes. This high aspect ratio shields

the ion from electric fields generated by any stray charge on the substrate surface.
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Figure 4.7: Optical microscopy of the point trap, with false color added to identify electrodes. RF
confinement is provides by the red electrode. The blue electrodes were grounded during all work
that used this trap.

Figure 4.8: Layout of the detector trap electrodes. RF is applied to the red electrodes, producing
a linear RF null 39 µm above the trap surface along the central axis of this trap. DC is applied to
the blue electrodes to provide axial confinement. The two purple electrodes can be used to provide
both further DC confinement (primarily used to rotate the radial modes in the yz plane for better
overlap with the cooling beams) and a microwave field. Finally, a superconducting nanowire single
photon detector (SNSPD) is integrated into the geometry of this trap. The SNSPD and its leads
are colored green and yellow, respectively. Detail of the SNSPD is shown in Figure 4.9
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(a) (b)

Figure 4.9: (a) Detailed scanning electron microscope image of the trap-integrated SNSPD. False
color is added to match Figure 4.8. The ion is trapped 35(1)µm above the detector surface for an
effective numerical aperture (NA) of 0.32. (b) Detail on the meandered superconducting nanowire
on a previous generation of this trap, from [3].

The electrode layout is shown in Figure 4.8. The trap is a “five-wire” trap, as described

in Chapter 2. The trap was cut in a “bow-tie” shape, inspired by [72], so that lasers could be

focused more tightly with reduced scatter on the trap surface. This bow-tie shape can be seen in

Figure 4.14. RF applied to the two RF electrodes (colored red in Figure 4.8) will generate a RF

quadrupolar null along a line located approximately 39 µm above the trap surface along the x-axis.

This provides confinement transverse to the x axis. The null is not uniformly 39 µm from the trap.

Due to end effects, it curves about 10 µm closer to the trap towards the right hand end as oriented

in Figure 4.8. Confinement in the axial direction is provided by DC voltages applied to the blue

and purple electrodes. The calculation and generation of these DC voltages is described in detail

in Chapter 2 and Section 4.2.6.2, respectively. These electrodes can also be used to compensate

for stray electric field and to adjust the frequencies and mode orientations of the secular modes.

In order to perform global spin flips, either of the central purple electrodes can act as a microwave

antenna. The microwave input circuit illustrated is in Figure 4.10. This electrode is not a resonant

structure, but acts as an antenna because the ion is much closer to the electrode than a single

microwave wavelength (≈ c/1250 MHz = 0.24 m).

Finally, this trap incorporates a superconducting nanowire single photon detector (SNSPD),
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Figure 4.10: The circuit used to couple DC, microwave, and “tickle” signals onto a single electrode.
The microwave electrodes are double ended, so the DC line is wirebonded to one end and the
microwave to the other end. The DC signal passes through a low-pass filter before being applied to
the electrode. The capacitor on the microwave side of the electrode acts as break for DC signals.
At microwave frequencies, the capacitors provide minimal impedance, so the oscillating microwave
signal is directly applied to the electrode. The other end of the electrode is microwave grounded
through the capacitor in the low-pass filter. Applied microwaves will create a large microwave
current and thus generate a large microwave magnetic field.

shown in green in Figure 4.8 and in more detail in Figure 4.9. The SNSPD consists of 8 nm thick

amorphous Mo0.75Si0.25, which has TC = 5.2 K. This superconductor is fabricated in a meandered

nanowire pattern, shown in Figure 4.9(b), in an active area 20× 22 µm with nanowires of 110 nm

width on a 170 nm pitch. The SNSPD requires a trap temperature Ttrap < 3.65 K to operate.

4.2.1.3 The transport trap

After the detector trap delaminated (discussed in Section 4.2.3) it was replaced with a trap

nicknamed the “transport trap.” This trap also is sometimes referred to as the “detectorless” trap

because it is an identical geometry to the detector trap but has an evaporated gold electrode

replacing the SNSPD. This allows for a simpler trap fabrication process with a higher yield of

functional traps. This trap is appropriate for tests that do not require high fidelity on-chip detection.

The experiments discussed in Chapter 7 were performed in this trap.
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Figure 4.11: Transport trap electrode detail. This trap is identical to the detector trap (shown and
described in Figures 4.8 and 4.9) but the SNSPD is replaced by an evaporated gold electrode. This
replacement simplifies fabrication and increases trap yield. There is an apparent color difference
from the other electrodes on this picture, because the evaporated gold is 50 nm thick, while the
other electrodes are 6 µm thick electroplated gold.

4.2.2 Experiment pillbox

All work involving an exposed trap (trap mounting, wirebonding, connecting cabling, in-

stalling ovens, etc.) is performed in a HEPA-filtered clean room to limit the trap’s exposure to

dust. After this is completed, the trap is enclosed in a copper “pillbox” that can be directly bolted

to the cold head without exposing the trap to the lab. This pillbox, closed and mounted on the cold

head, is shown in Figure 4.12. The pillbox is is vented to the room temperature vacuum chamber

and evacuated at the same time as that space. The venting holes do not have line of sight to the

ion.

The pillbox also serves as a radiation shield, ensuring that the ion only has line of sight to

4 K surfaces.

4.2.3 Trap mounting

The trap mounting apparatus described below was only used with the detector and transport

traps. The point trap was installed in an older generation of the cryostat 4 K mount. This

mount had high thermal resistance to the cold head, vibration-sensitive RF coupling, and floppy,
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Figure 4.12: The pillbox mounted to the cryostat cold head. This copper container protects the
trap from exposure to the lab during installation acts as a 4 K radiation shield. It is vented to the
room temperature vacuum chamber with no line of sight from the ion to any room temperature
surfaces.

challenging to install DC wiring. The entire 4 K mounting apparatus was redesigned between

installation of the point trap and the detector trap, and all of the experimental results discussed in

this thesis were performed using the mounting apparatus described.

The trap is glued or bonded onto a 8× 5 mm oxygen-free high conductivity (OFHC) copper

mounting block. The first-generation detector trap was glued using a thin layer of Epo-tek H21D,

which is electrically and thermally conductive and low-outgassing. Epo-tek H21D is also relatively

brittle and the trap cracked upon cooling to 4 K, as shown in Figure 4.13. We attribute this to

mismatched coefficients of thermal expansion (CTE). Silicon and copper have an order-of-magnitude

mismatch in integrated coefficients of thermal expansion (CTE) between room temperature and

4 K

L4K − L293K

L293K
. (4.8)
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Figure 4.13: A trap mounted by gluing the trap directly onto a copper mounting block using Epo-
tek H21D. The trap cracked upon cooling to cryogenic temperatures. We attribute this behavior to
the thermal expansion mismatch between copper and silicon and to the fact that H21D is relatively
brittle. In the experiments discussed in this thesis, traps were mounted using more flexible glues
or solders and shim layers of materials that can better absorb thermal stresses.

Integrated CTE values for relevant materials are shown in Table 4.2. The effect of mismatched

CTEs can be mitigated by installing a thin shim layer between the copper and the silicon trap chip,

either something more able to absorb thermal expansion stresses or with an intermediate CTE.

Before any traps were installed in the cryostat, all mounting methods were tested by mounting

4-10 sample silicon chips on copper and repeatedly cycling these samples between liquid nitrogen

(LN2) and temperatures. It was important to investigate sample chips cut to the same “bow-tie”

shape as the trap, as the internal strain that determines whether a trap will shatter depends on

the chip geometry.

The detector trap (Section 4.2.1.2) was glued using Master Bond EP21TCHT-1, which is

thermally conductive and low-outgassing but performed better in LN2 submersion tests than the

Epo-tek H21D. To further limit strain, an intermediate 500 µm thick sapphire shim layer was glued

between the copper and the trap. This mounting scheme performed well upon initial cooling and

for over a year of continuous cold operation. However, after the cryostat was warmed to room
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Material L4K − L293K/L293K (%)

Copper -0.324
Indium -0.706
Silicon -0.022

Table 4.2: Integrated coefficients of thermal expansion for relevant materials for trap mounting.
Values from [93]

temperature for routine maintenance, the trap delaminated when it was cooled back down to 4 K.

The above mounting recipe was deemed inappropriate for future traps. The transport trap

(Section 4.2.1.3) was instead bonded to the copper mounting block using indium as a solder. If

indium is soldered directly to copper, the indium diffuses into the copper, creating a brittle alloy

[103]. In order to avoid this, the copper mounting block was gold electroplated. If the entire

mounting block and trap were heated to the indium melting point (> 150◦C), oxidization on

the copper surfaces would be accelerated. Additionally, the bond would be made at an elevated

temperature, which would introduce further thermal expansion mismatch at 4 K Because of this,

traditional soldering techniques were considered inappropriate. Instead, the indium was locally

heated to its melting point using sandwiched layers of NanoFoil® , a material made out of layers

of nickel and aluminum. When mixed, these materials react highly exothermically [104] and the

indium is locally heated without heating or oxidizing the larger copper block.

The traps are mounted individually to a small mounting block by the methods described

above. This mounting block is then bolted into a the octagonal copper block shown in Figure

4.14, nicknamed the “trap puck.” The trap puck also holds the “filterboard,” a circuitboard used

for delivery of electronic signals. Wirebonds deliver signals from the filterboard to the trap. The

filterboard also contains the low pass filters which reduce technical noise on the trap electrodes.

Everything trap-specific inside the vacuum is mounted on this puck. This enables faster exchange

of traps, since the trap puck can be separately assembled while another trap is installed in the

pillbox and actively trapping ions. All connections to this filterboard are made by mechanically

robust connectors so the trap puck can be quickly installed in the pillbox.



68

Figure 4.14: The trap puck and filterboard for the detector trap. The trap is glued or bonded
to a 5 × 8 mm OFHC copper mounting block in the center. All hardware between the mounting
block and the cold head is bulk OFHC copper, limiting thermal resistance between the trap and
the cold head. The mounting block is bolted into the trap puck. Also bolted to the puck is a
“filterboard,” so-called because it includes an RC low-pass filter for each DC electrode. Wirebonds
deliver electrical signals from the filterboard to the trap. Electrical connection from the pillbox
wiring to the filterboard are made by 3x FFC connectors (on the backside) for the DC voltages
and 3x SMP connectors (shown on top) for two microwave antennae and the SNSPD. The RF is
delivered from the step-up resonator by a spring contact on the backside before passing through
a via on to the top layer and being wirebonded to the trap. The filterboard and trap puck are
trap-specific and a new puck is used for every trap.

4.2.4 Beryllium ovens and ablation target

To generate ions for trapping, a flux of of beryllium atoms is produced above the trap and

photoionized by the two-photon process discussed in Section 3.1. A Doppler cooling laser is applied

simultaneously to cool the ions to a low enough temperature for ion trapping. One challenge

in this process is the generation of an adequate flux of neutral beryllium. Beryllium has a low

vapor pressure and a high melting point compared to other atoms used for trapped-ion quantum

computing purposes, shown in Table 4.3. This means that the oven (which must have line of sight

to the trapping zone) must be heated to & 1500 K for ion loading.

A sample beryllium oven is shown in Figure 4.15. The oven is constructed from 50 µm diam-

eter beryllium wire tightly wrapped around a 100 µm diameter tungsten filament. This tungsten
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Element Vapor pressure (at 600 K) Melting point

Be < 10−12 Torr 1560 K
Mg 1.1× 10−4 923
Ca 1.7× 10−7 1112
Sr 3.2× 10−6 1042
Yb 2.9× 10−5 1097

Table 4.3: Vapor pressures and melting points of common elements used for trapped-ion quantum
computing, from [105]. Beryllium has a lower vapor pressure and a higher melting point than other
elements, requiring more heating to generate the atom flux gas used to load an ion trap.

filament is coiled into a tight spring. The coil is then spot welded onto stainless steel wires which

are connected to Accuglass socket contacts crimped onto copper wire. These stainless steel wires

are mounted in alumina tubes to electrically and thermally shield them from the copper mounting

block. The current required in a typical trap loading run is 1− 1.5 A through this 1− 2 Ω oven for

30 − 45 s, generating 10’s of joules of heat. To mitigate the effects of this heat load on the trap,

the ovens are independently mounted with a independent all-copper path to the cold head from

the trap mount. The ovens will still radiatively heat the trap mount. During a typical loading run,

the cold head temperature Tcryo increases by v 0.55 K and the trap temperature Ttrap increases by

v 2.5 K.

An alternate option is to load using laser ablation. This enables very local heating of the

target without heating other areas of the trap. Laser ablation has been demonstrated for ion

trap loading in many previous systems [106][107][108][109][110][111], including surface electrode

traps [112][113] and cryogenic ion trapping experiments [91][114]. In contrast to the ovens, which

require 10’s of joules to load, ions were loaded into the point trap by hitting a 250 µm diameter

beryllium wire with 1-5 laser pulses of 1064 nm light with 1.85− 2.25 mJ per pulse. A quick note

on nomenclature: although ablation generally refers to all processes where a surface is hit with

sufficiently high laser fluence to expel material, many people shortcut ablation to refer specifically

to processes where the laser fluence is high enough to generate a plasma at the surface. This

second process generates ions in a single step. However, these ions have higher energy. It is also
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Figure 4.15: Resistive beryllium ovens. The visible coil is a 100 µm diameter tungsten wire, coiled
into a filament shape. The tungsten is then wrapped in 50 µm diameter beryllium wire and gap
welded to stainless steel leads at each end. These stainless steel leads are mechanically mounted
in alumina tubes. These tubes are held in a copper housing that is directly connected to the cold
head to limit heating of the trap mount.

not species selective. A photoionization laser was still required to trap, indicating that the ablation

laser fluence was low enough that it primarily generated neutral beryllium.

The resistive ovens generate beryllium traveling in all directions, almost all of which are

not useful for loading. The ablation target generates a “plume” of beryllium atoms that is more

directed than the ovens [115], but still broader than the tightly-focused photoionization beam. To

limit both the radiative load on the trap and the risk of neutral beryllium coating and shorting

electrical traces on the trap or filterboard, the ovens and ablation targets are both shielded by a

copper nozzle. Line-of-sight from the trap zone to the ovens and ablation target, respectively, are

shown in Figures 4.16(a) and 4.16(b).

4.2.5 Filters

Technical noise at the trap secular frequency heats the ion, with

ṅ =
e2

2m~ω
SE(ω) , (4.9)

where SE(ω) is the power spectral density of the electric field noise at frequency ω, in units

V2/m2/Hz [1]. In surface electrode traps, the generally smaller ion-electrode distance means that

a given voltage noise on an electrode will translate to a larger electric field noise at the ion lo-



71

(a) (b)

Figure 4.16: View over the trap boards of (a) the ovens and (b) the ablation target. The resistive
ovens generate neutral beryllium in all directions. The ablation target generates a more directed
“plume,” but still generates some beryllium in undesired directions. Since beryllium is electrically
conductive, this stray beryllium risks shorting electrodes if it is not shielded. Therefore the ovens
are housed with a “nozzle” that blocks all but a direct line of sight from the ovens to the trap.

cation than it would for a trap with a longer ion-electrode distance. This is a separate effect

from anomalous ion heating, discussed in Section 1.2.1. Anomalous heating arises from some un-

known microscopic mechanism on the electrode surface that produces electric field noise. Technical

noise arises from voltage noise on the voltage sources and Johnson noise from room temperature

electronics and will also heat the ion.

Unfiltered, the digital-analog converter (DAC) voltage noise alone introduces an unacceptable

level of heating into this experiment. In the fast DACs used in this experiment, discussed in Section

4.2.6.2 and in [116], the voltage noise is dominated by noise from the amplifiers, Analog Devices

AD8250, which is quoted as 180 nV/
√

Hz when the amplifiers are operated with a gain of 10.

The electric field noise at the ion location due to this voltage noise can be simulated using

the same Biot-Savart analogue discussed in Chapter 2. Voltage noise at a level of 180 nV/
√

Hz on

every electrode would produce heating rates of greater than one quantum per microsecond on all

modes. To reduce this, low-pass filters attenuate the noise at high frequencies on each electrode.

These low-pass filters are first-order RC filters with a cutoff frequency

f3dB =
1

2π
√
RC

, (4.10)
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Figure 4.17: A first order RC filter, used to limit electric field noise in this experiment, with a 3
dB cutoff frequency f3dB = 1/(2π

√
RC).

schematically drawn in Figure 4.17. The voltage noise will be attenuated by

Vatt = Vin

∣∣∣∣ 1

1 + iωRC

∣∣∣∣ . (4.11)

.

For the trap integrated-SNSPD experiments, discussed in Chapter 6, the filters had a rela-

tively low cutoff frequency of 7.1 kHz, since this was an untested trap technology. However, for

the fast ion transport experiments, the voltages on each electrode were time dependent with non-

negligible frequency components at or near the secular frequency. Therefore two different sets of

filters were used with the transport trap: a “tight” filter with a 3 dB cutoff frequency of 4.8 kHz

on electrodes whose voltages do not vary much during fast transport, and a loose filter with a 3 dB

cutoff frequency of 23.4 kHz on the electrodes whose voltages vary more during transport. Filter

values for each experiment are shown in Table 4.4.

The values listed in are listed in Table 4.4 are room-temperature resistances and capacitances.

These values will shift at cryogenic temperatures. The resistors used in this experiment are thin film

NiCr resistors, with a measured resistance shift of 3.6% at cryogenic temperatures. The capacitors

use C0G dielectrics, which do not exhibit substantial change in dielectric contrast at cryogenic

temperatures.

Future work in this experiment might explore higher-order low-pass filters or notch filtering
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Filter R (kΩ) C (nF) fcutoff (kHz)

Detector trap 15 1.5 7.1

Transport trap (loose filter) 6.8 1.0 23.4
Transport trap (tight filter) 15 2.2 4.8

Table 4.4: RC filter components used for the experiments discussed in this thesis. The detector
trap was installed with filters with a relatively low cutoff frequency of 7 kHz, since it incorporated a
previously untested trap technology. The transport experiments (discussed in Chapter 7) required
quickly varying waveforms with non-negligible frequency components at or near the trap secular
frequency. This trap was installed with filters with a higher cutoff frequency (labelled “loose filter”).
The voltages on some electrode do not vary much or at all during transport. Electrodes for which
this was the case (CUL, CLL, CUR, CLR, DET, and the mesh) were installed with filters (labelled
“tight filter”) with a lower cutoff frequency to reduce ion heating due to technical noise.

at the trap frequency. Since the trap mounting was designed to enable efficient exchange of traps,

these could be explored with relatively low experimental downtime.

4.2.6 Generation of trapping voltages

4.2.6.1 RF source

A Holzworth HS9002A digital RF synthesizer provides 5.0−9.0 dBm of RF at around 67 MHz.

In a 50 Ω circuit, this would correspond to 0.56− 0.89 V, inappropriately low for ion trapping. We

use a resonant circuit to step-up the RF voltage amplitude. The resonator is on a printed circuit

board, following inspiration from [117]. The circuit is an LC resonator with a SMT capacitor and

an inductor printed on the circuitboard. The printed inductor has reduced vibration sensitivity

over a freestanding coil. The traps used in these experiments have a measured capacitance of 6 pF

so with a coupling capacitor of 1.5 pF, a parallel shunting capacitance of 12 pF, and an inductance

of 315 nH, the circuit has resonant frequency

fres =
1

2π
√
LC
≈ 67 MHz (4.12)

These resonators have a measured Q factor of 169 at 4K and impedance Z =
√
L/C = 132 Ω. The

resonator step-up factor is

Vout
Vin

=
√

(Z/Z0)Q (4.13)
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Figure 4.18: A sample LC resonator of the design used in this experiment. Following inspiration
from [117], the inductor is printed on the circuitboard, using vias through the circuitboard to achieve
a coiled structure. The capacitors are surface mount. Contact to the filterboard is made by a spring
contact. This structure is more compact and mechanically stable than the quarter-wave helical
resonators that have been historically used in ion trapping experiments [119]. The resonators used
in the experiments discussed in this thesis had inductance L = 315 nH and C = 18 pF (combining
the trap, resonator, and stray capacitance), giving a resonant frequency of approximately 67 MHz.
When connected to our cryogenic traps, the resonator has a quality factor Q = 169 and impedance
Z = 132 Ω, giving a step-up factor of 18.5.

[118]. This gives a step-up factor of 18.5, enabling 7.4− 11.6 V amplitude RF drive voltage at the

trap with the described RF power input. This is appropriate for trapping of 9Be+ , a low-mass ion.

4.2.6.2 DC voltage generation

For all of the experiments discussed in this thesis, dynamical control over the trap “DC”

voltages is necessary. (“DC” in in quotes, because truly DC voltages have no dynamical components;

however, they are so-called to distinguish them from the RF voltages) More specifically, these are

the voltages providing axial confinement. In all the experiments discussed in this thesis, time-

dependent control of these voltages is required to compensate stray electric fields and to transport

the ion along the trap axis. The most demanding requirements on the so-called DC voltages arise

in the fast transport experiments, discussed in Chapter 7. In these experiments, the voltages on

the trap electrodes must be on the scale of ±1 V, varying on a time scale of tens of trap periods
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(≈ 10 µs). Further, since the low-pass filters appreciably attenuate the fastest frequency components

of the fast transport waveforms and will warp the fast transport waveforms, DACs must output

predistorted waveforms (discussed in Chapter 7) with voltage amplitudes much larger than ±1 V.

In these experiments, transport waveforms were generated by the fast digital-analog converters

(DACs) discussed in [116]. These DACs have a measured maximum slew rate of 35 − 40 V µs−1

(variable device to device) and a maximum amplitude of ±10 V.

4.2.7 Magnetic field coils

An externally applied magnetic field is required to define the quantization axis and lift the

degeneracy of the Zeeman sublevels. Since the optical pumping in this experiment is polarization

dependent, this magnetic field must be well-aligned with the optical pumping laser (the BD). Five

magnetic field coils generate these fields: two aligned along the BD laser axis, which provide the

quantization field; two aligned perpendicular to the BD laser axis in the plane of the optical table;

and one aligned normal to the optical table. The quantization field is generated by running 3 A

through the first two coils, which creates a 5.7 G magnetic field at the ion location. The other three

coils cancel out Earth’s magnetic field and any other stray global magnetic field in the laboratory.

The magnetic field orientation can be aligned by observing the depumping rate of an ion

prepared in the bright state |F = 2,mF = −2〉. If the magnetic field is well aligned with the BD

and the BD laser polarization is purely σ−, we will measure a Poissonian histogram of counts per

detection. Magnetic field misalignment will depump ions to a dark state. The BD direction and

quantization axis are well aligned when dark state counts are minimized. We generate bright states

with <1% infidelity, with residual infidelity attributed to imperfect polarization in the BD laser.

Although the light is polarized before the vacuum using a Glan-laser polarizer and waveplates, the

laser passes through three fused silica windows before reaching the ion. Strain in these windows

will induce spatially-dependent birefringence, giving unavoidable polarization imperfections at the

ion.
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Figure 4.19: Laser beam configuration. The trap secular modes are oriented along q̂ax = (1, 0, 0)
q̂r1 = (0, sin(15◦), cos(15◦)), and q̂r2 = (0, cos(15◦),− sin(15◦)) so the BD coming in at 45◦ from the
trap axis will have overlap with all three modes. Raman 1 and Raman 2 are counterpropagating,
so ∆~k is oriented along this same axis; this also has overlap with all three secular modes, so
sidebands of all three modes of motion can be driven using this laser configuration. The PI and the
Raman lasers never need to be operated at the same time, so the final mirror for ‘Raman 1’ is on a
magnetic kinematic base that can be removed from the beam path when loading ions, allowing PI
light through. The filterboard surface mount components are placed out of the way of these beam
paths.

4.2.8 Laser sources

There are three major wavelengths needed for these experiments:

• 1064 nm, for laser ablation

• 235 nm, for photo-ionization

• 313 nm, for cooling, optical pumping, state detection, repumping, and Raman transitions.

The laser beam configuration on the trap is shown in Figure 4.19.
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4.2.8.1 Ablation laser

As discussed in Section 4.2.4, laser ablation can be used to generate a flux of neutral beryllium

atoms over the trap zone for ion loading. Laser ablation depends strongly on peak pulse energy

[115]. In this experiment, laser ablation was performed at a wavelength 1064 nm, where commercial

Nd:YAG systems are widely available, using a Continuum Minilite, which can provide peak pulse

energy 0.2− 50 mJ. Initial rough alignment was performed with a co-aligned 532 nm laser pointer.

The alignment wavelength was chosen for ease of use with most cameras and because 532 nm laser

diodes are widely available as cheap, off-the-shelf laser diodes. Since this is the second harmonic of

1064 nm light, co-coated mirrors and lenses for 532 nm and 1064 nm light are available off-the-shelf

with no need for custom coating runs. The beam was aligned by observing scatter on the ablation

target with a CCD camera and a zoom lens. If the ablation laser is not incident on the target, it has

a clear path through the vacuum system. Final alignment was performed by centering the pulsed

1064 nm source (run in low power mode) on the ablation target using a knife edge measurement.

Laser ablation was tested in this apparatus in the point trap, discussed in Section 4.2.1.1.

With similar RF frequencies and amplitudes to loading conditions using the resistive ovens, ions

were reliably loaded with 1-5 1.85− 2.25 mJ pulses focused to 75 microns beam radius, or a peak

fluence of 21− 25 J/cm2.

4.2.8.2 Photo-ionization laser

Previous work with 9Be+ at NIST has photoionized neutral Be using a pulsed, frequency

tripled (one step of frequency doubling plus one step of sum frequency generation) Ti:Sapph laser

to generate 13 − 18 mW of 235 nm light [47]. Pulsed lasers have a higher peak intensity than a

CW laser of the same average power, which is convenient for the nonlinear frequency conversion

necessary to generate 235 nm light. However, this high peak intensity also caused laser-induced

damage on optical components, particularly in the frequency conversion setup.

For the experiments discussed in this thesis, photoionization light was instead generated by
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a continuous wave laser. The CW 235 nm light was generated by two stages of resonant frequency

doublers from a CW Ti:Sapph running at 940 nm. (This is close to a water absorption line, so the

first stage of resonant frequency doubling must be enclosed within a box containing desiccant.) The

frequency was measured using a wavemeter and manually set 319.01924 THz in the IR but not locked

to a physical feature. The power broadened full width at half maximum of the photoionization

transition at typical powers used for loading is 1.7 GHz (measured by Hannah Knaack, publication

forthcoming), so the laser needed to be within v 0.85 GHz of the center frequency to load. Loading

is ideally a quick and infrequent process, so it is sufficient to just occasionally check this frequency.

To ensure beam pointing stability, the PI light is fiber coupled into a single-mode LMA-10

photonic crystal fiber with 10 µm mode field diameter, hydrogen-loaded and cured as described

in [120]. At 235 nm, these fibers have approximately 20-25% transmission for a 20 − 30 mm fiber

length. After the fiber, we measured 0.5 − 2 mW of 235 nm light on the cryostat optical table,

sufficient for loading. This is much lower power than the average power that was needed to load

with the pulsed laser.

4.2.8.3 Resonant and Raman lasers

All of the 313 nm laser beams (the BD and RD resonant lasers and the Raman lasers) are

generated via multiple stages of nonlinear optics. A single 1050 nm fiber seed, amplified with a

Koheras Boostik 10 W fiber amplifier, is used to generate 6 W of infrared laser light at 1050.132 nm.

This single beam is split into three 2 W beams to feed each of the BD, RD, and Raman beamlines.

In each beamline, the 1050 nm light is combined with approximately 1550 nm light in a single-pass

periodically poled lithium niobate (PPLN) waveguide to generate red light at 626 nm via sum

frequency generation (SFG). The BD, RD, and Raman beamlines each need different frequencies,

so three different seed lasers with different frequencies are used. These seed lasers are each amplified

with a 5W fiber amplifier to generate v 3 W IR light at 1550 nm The exact wavelengths of each

beam are listed in Table 4.5. The SFG setup is discussed in more detail in [47] and in [121].

The BD and RD laser beams both drive resonant transitions, so they must be stabilized to
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an absolute wavelength reference. About 10 mW of the red light from each beam are picked off for

frequency stabilization. The picked-off light is shifted using acousto-optic modulators (AOMs) by

−670 MHz and −279 MHz (for the BD and the RD, respectively) into resonance with an iodine

transition. The frequency of these auxiliary beams is measured relative to a hyperfine transition of

molecular iodine using Doppler-free saturated absorption spectroscopy [122] and locked by feeding

back on the piezo of the respective seed lasers. The frequency stabilization setup is discussed in

more detail in [47]

Ultraviolet light on each beamline is then generated with second harmonic generation in a

resonant cavity containing a beta barium borate (BBO) crystal. The cavity resonance frequency is

locked to the laser using a Hänsch-Couillaud lock circuit [123]. These resonant cavity doublers are

described in more detail in [47] and in [121]. A pickoff and an AOM in a noise-eater configuration

are used to stabilize the intensity of the UV output light.

Certain of the frequencies are close enough that they can be produced from the same UV

source. The frequencies that are separated only by the ground state hyperfine splitting - i.e.

the BD and the BDD (split by approximately half the hyperfine splitting, 625 MHz), the two

repumping frequencies (split by approximately the hyperfine splitting, 1.25 MHz), and the two

Raman frequencies (split by approximately the hyperfine splitting) can each be produced from a

single UV doubler. The light can then be shifted to the desired frequencies by AOMs which can

shift frequencies by hundreds of MHz. The use of AOMs also enables fast on/off switching of

each beam through fast switching of the RF driving the corresponding AOM. (These respective

classes of transitions are separated from each other by 80 − 200 GHz, so they cannot be bridged

by AOMs.) This frequency shifting is performed by AOMs in double-pass configurations. The BD

and RD AOM configuration that gives the resonant frequency desired for the BD, BDD, and two

repumping transitions is shown in Figure 4.20. The BD, BDD, and RD beams are fiber coupled

into the same UV single mode fiber (prepared using the method described in [120]) ensuring that

they are well co-aligned on the ion.

The Raman transitions are first-order insensitive to the laser wavelength and thus are not
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Figure 4.20: UV frequency shifting setup for the BD, BD detuned, and repumping beams. The
BD and BDD beams are generated from a single cavity doubler. Similarly, both RD beams are
generated from the same cavity doubler. The output of each doubler is intensity stabilized. Both
beamlines are split with a 50/50 beamsplitter, resulting in four beams, each of which is frequency
shifted by an double-pass AOM at the frequencies shown. Each beamline is then recombined on the
same beamsplitter, then the two are combined together on a beamsplitter which is fiber coupled
and sent to the cryostat. The other port of the beamsplitter goes to the other cryostat.

locked to an absolute reference; however, the two-photon process (discussed in Section 3.3.4) is

highly sensitive to the relative frequency between the two beams, which must be quite stable. The

Raman beam configuration is shown in Figure 4.21. The frequency offset between the two beams

is generated by splitting the beam on a Glan-laser polarizer and sending each of the two resultant

beams through double-pass AOMs driven by the same RF frequency. The +1 order of one AOM

and the -1 order of the other AOM are taken, so in total, the beams are shifted relative to each other

by four times the drive frequency. The two beams are recombined back on the same polarizer, but

slightly offset vertically. This produces a beam with different frequencies in each polarization. The

beam is picked off and fiber coupled to be sent to the trap. On the output, the different frequency

components are split with a Glan-laser polarizer and sent to two different experimental ports as

shown in Figure 4.19.
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Application Wavelength range Wavelength

Photoionization (pre-quadrupling) IR 939.75 nm
Photoionization [82] UV 234.9329 nm

Sum frequency generation (all laser lines) IR 1050.132 nm

BD sum frequency generation IR 1549.408 nm
BD red light Vis 626.267 nm
BD resonant light (cooling, optical pumping, detection) UV 313.133 nm

RD sum frequency generation IR 1550.192 nm
RD red light Vis 626.835 nm
RD resonant light (repumping) UV 313.198 nm

Raman sum frequency generation IR 1550.032 nm
Raman red light Vis 626.46 nm∗

Raman laser (sideband transitions) UV 313.23 nm∗

Table 4.5: Exact laser wavelengths for 9Be+ manipulation (in vacuum). Raman transitions are
only second-order dependent on wavelength, so these lasers are free-running and not locked to an
absolute reference.
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Figure 4.21: UV frequency shifting setup for the Raman lasers. Like the BD/RD (Figure 4.20), the
Raman UV is intensity stabilized after the resonant cavity doubler output. It then passes through
a switch AOM driven at 221MHz. The beam is split into two beams with opposite polarization
by a Glan-laser polarizer. The two beams are shifted by equal and opposite frequencies by taking
the ±1 orders of two double-pass AOMs driven by a single RF drive. The whole setup together is
nicknamed the “quad pass,” since the total frequency shift between the two beams is four times
the AOM drive frequency. The beams are recombined using the same polarizer but there is a slight
vertical offset. The output beams are picked off and sent to the experiment through a single mode
fiber. This process produces a beam where the frequencies are different in each polarization. On
the output of the fiber, the two frequency components of the beam can be split with a Glan-laser
polarizer and sent to two different experimental ports as shown in Figure 4.19. This reduces path
length fluctuations between the two Raman beams.

4.2.9 Imaging system

Ion trapping imaging typically employs custom objectives designed to maximize numerical

apertures at the ion detection wavelengths, in the UV for most species. Imaging in this apparatus

was instead performed by an objective built using off-the-shelf optics. All of the imaging optics

are outside vacuum, enabling modification of the objective without warming the cryostat to room

temperature and breaking vacuum.

In order to shield the cryogenic system from room-temperature blackbody radiation, there

are multiple levels of radiation shielding between the ion and the outside world. This means the

imaging system must have a working distance of more than 35mm, relatively long for a high NA

system. A pair of commercial aspheric lenses (Asphericon AFL50-60-S-U) with 60 mm effective

focal length and 0.39 NA form a relay image with no magnification. This relay image is magnified

by a 40x Thorlabs LMU-40X-UVB with NA 0.5. A ray diagram of this imaging system is shown
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Figure 4.22: Zemax ray tracing of the imaging system used for qubit state readout, shown with
313 nm light.

(a) (b)

Figure 4.23: Typical images of laser scatter off the detector trap surface that would be used for laser
alignment. In both cases, the laser is moved 40 µm closer to the surface and attenuated heavily
so it can be aligned in reference to the trap electrodes. Scattered light off the edge of electrodes
is imaged onto the EMCCD camera. The trap electrode geometry is overlaid in yellow on these
images as a guide to the eye. (a) The BD beam, with the objective positioned to image 313 nm
light. (b) The PI beam, with the objective positioned to image 235 nm light.

in Figure 4.22. Based on Zemax simulations, the system has an overall NA of 0.38.

Although the system is primarily designed to have high NA and low distortion for the 313 nm

light used for state-dependent fluorescence imaging, this imaging system also functions at 235 nm,

which is useful for laser beam alignment. Alignment is performed by scattering the laser off the

trap and imaging scatter off the electrode edges on the camera. The beam can then be positioned

in the plane of the trap based on these trap features before it is moved 40 µm away from the trap
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to the ion height. While scattered light from the BD, RD, and Raman beams are close enough in

wavelength to be imaged at the same working distance, the chromatic shift in the objective requires

a different working distance to image 235 nm light when aligning the PI beam. This imaging can

be performed by moving the lens 7 mm closer to the trap. Figures 4.23(a) and 4.23(b) show typical

images of 313 nm and 235 nm light, respectively, during this alignment process.

Depending on the experiment, we may wish to image ion fluorescence onto either a camera or

a fast, high-quantum efficiency photo-multiplier tube (PMT). To achieve this, the imaging system

includes a motorized mirror that can be switched between two configurations. In one configuration,

the mirror is moved out of the way and fluorescence is imaged onto an electron-multipying CCD

(EMCCD) camera DU-885K-CS0-#VP with a quoted quantum efficiency of 25% at 313 nm. The

camera is used for beam alignment but not for readout. The other flip mirror configuration sends

fluorescence to a Hamamatsu R7600P-203 PMT with a quoted quantum efficiency of 38%. The

PMT is used for qubit state readout. Future experiments (particularly the array trap experiments

discussed in [47]) may wish to make use of the spatial resolution available on the EMCCD. For the

experiments discussed in this thesis, the PMT is sufficient.

The imaging system is mounted in a bore underneath the optical table, making it challenging

to access. In order to control the position of the lens (for both switching between the 235 nm and

313 nm working distances and for imaging an ion in different trap zones), compact stepper motors

control a 3-axis translation stage on which the objective is mounted. The stage is mechanically

mounted on a small platform within the optical table bore. The relay optics are made from

identical aspheres with minimized spherical aberration. However, they are not corrected for off-

axis aberrations like coma. Because of this, the objective performs best when the ion, objective, and

camera sensor are all aligned along a single axis. If the objective is shifted off-axis, the resolution

will be degraded. Because of this, the camera is also mounted on a two-axis translation stage. This

is only rarely adjusted, so it it is not motorized.
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Figure 4.24: A 5 ion chain loaded in the detector trap, fluorescing under BD illumination and
imaged on the EMCCD camera.

4.2.10 Experimental control system

The experiments described in this thesis require microsecond to nanosecond resolution exper-

imental control. High fidelity qubit state detection requires sub-microsecond photon arrival time

information and the transport experiments require sub-microsecond synchronization between all

DACs. These systems must also be well synchronized to each other. This is a nontrivial timing

task beyond the capabilities of many conventional laboratory control systems. Experimental control

is performed using a KC705 field programmable gate array (FPGA) evaluation board to control a

simultaneously clocked set of digital logic (TTL) and direct digital synthesizer (DDS) signals with

1 ns timing resolution. This FPGA is programmed using the Advanced Real-Time Infrastructure

for Quantum physics (ARTIQ) language [124], a compiled Python language developed specifically

for quantum physics applications. “Slow” applications, such as moving motors, are not controlled

from the FPGA but can be integrated with the ARTIQ software or triggered by a TTL pulse from

the ARTIQ hardware.

4.3 Trapping ions in the new apparatus

Ions were first trapped in the detector trap in June 2018. A sample 5 ion 9Be+ chain is shown

in Figure 4.24.
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(a) (b)

Figure 4.25: Heating rates as a function of frequency for ions in the (a) detector and (b) transport
traps. These are measured in trap zone 3, as labelled on Figure 4.8. The heating rate on the
axial mode is measured for multiple axial frequencies by scaling the axial trapping voltages. The
axial mode heating rates are higher in the transport trap than in the detector trap. This can be
attributed this to the higher corner-frequency filters on the transport trap, which will transmit a
higher level of electric field noise at the trap secular frequencies.

4.3.1 Ion lifetime

One of the goals of this cryogenic apparatus was a sufficiently good vacuum level that ions

are not lost frequently due to background gas collisions, even with the reduced trap depths of

surface traps. In fact, the ions are so infrequently lost due to background gas collisions that it

is impractical to measure a trap lifetime. Doppler-cooled ions in both the detector and transport

traps were regularly held for days at a time in all trapping zones, with the lifetime limited by user

error and not background gas collisions.

4.3.2 Heating rates

The heating rate was measured in both the detector trap and the transport trap and the

results are shown in Figure 4.25. In both cases, the heating rate was measured for an ion trapped

zone 3 over electroplated gold (as indicated on Figure 4.8). The heating rate for an ion trapped

over the SNSPD is discussed in Chapter 6.
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The ion heating rate and electric field noise spectral density SE(ω) are related by

ṅ =
q2

2m~ω
SE(ω) (4.14)

[1] so heating rates can be used as a probe of electric field noise. SE(ω) is the power spectral density

of the electric field in units (V2/m2)Hz−1. Figure 4.26 shows the product of the frequency and the

electric field noise for these measurements. These can be compared to the canonical “heating rate

scatter plot” in Figure 4.27. The scatter plot compiles ωSE(ω) from a large set of trapped ion

experiments and shows a roughly 1/d4 dependence on ion-electrode spacing. It shows a v 100x

order of magnitude reduction in cryogenic heating rates over room temperature heating rates.

The choice of ωSE(ω) as a figure of merit assumes that the electric field noise arises from a

single noise source with a power-law scaling SE(ω) ∝ ω−1. This is not known to be generally true,

and a compilation of frequency scalings measured in different experiments has shown frequency

dependencies varying between SE(ω) ∝ ω and SE(ω) ∝ ω−6, which SE(ω) ∝ ω−1 the most fre-

quently measured [125]. Nevertheless, ωSE(ω) is a frequently used figure of merit within the ion

trapping community and is useful for comparing heating rates between ions of different masses or

with different motional frequencies.

The measured heating rates in these experiments give ωSE(ω) between 7 × 10−6 and 3 ×

10−5 V2/m2. The electric field noise for the axial modes is elevated by around a factor of two in the

transport trap relative to the detector trap. This can be attributed to the higher corner frequency

f3dB on the low-pass filters used in the transport trap, which will transmit more voltage noise at

the trap secular frequencies. This range of values for ωSE(ω) is plotted compared to previously

measured values of ωSE(ω) in Figure 4.27. The measured electric field noise in these experiments

is comparable to other cryogenic surface electrode traps with ≈ 40 µm ion-electrode distance.
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(a) (b)

Figure 4.26: Electric field noise ωSE(ω) as a function of frequency in the (a) detector and (b)
transport traps. The radial modes values are statistically indistinguishable. The axial heating
rates are elevated in the transport trap relative to the detector trap, but are comparable to other
experiments with short ion-electrode distance, shown in Figure 4.27.

Figure 4.27: Electric field noise vs ion electrode distance as measured in a large number of exper-
iments. ωSE(ω) is plotted, which assumes that the electric field noise spectral density varies with
ω−1. Ion heating is not entirely understood, but this plot is commonly pointed to as evidence that
the heating rate depends on ion-electrode distance with a roughly 1/d4 scaling, and cooling traps
to cryogenic temperatures introduces a v 100x reduction in heating rate. The range of ωSE(ω)
measured in this experiment is shown as a purple rectangle. Modified from [50].



Chapter 5

Methods

5.1 Qubit state detection

Any pure two-level quantum state can be completely described by

|ψ〉 = cos θ| ↑〉+ eiφ sin θ| ↓〉 (5.1)

I will describe a method for identifying the probabilities of being found in | ↑〉 or | ↓〉, i.e. P↑ =

|〈↑ |ψ〉|2 and P↓ = |〈↓ |ψ〉|2. Detection of the phase φ to fully identify |ψ〉 requires quantum state

tomography (QST), beyond the scope of this thesis. For more, see [126] and [60].

The qubit state is detected by state-selective fluorescence. We drive the | ↓〉 ↔ 2P3/2

transition with the BD laser tuned to resonance. An ion in the | ↓〉 qubit state will be excited into

the 2P3/2 and will quickly decay back to | ↓〉, emitting a photon into 4π, where it can be detected

by a single photon detector. This light is > 1 GHz off-resonance for an ion in | ↑〉. Because of this,

I will refer to | ↑〉 = 2S1/2|F = 1,mF = −1〉 as the “dark” state and | ↓〉 = 2S1/2|F = 2,mF = −2〉

as the “bright” state.

We perform detection by illuminating the ion with our detection laser for some chosen period

of time tdetect and counting ion fluorescence during this time. The challenge is accurately identifying,

from the number of photon events if the ion is in the bright state or dark state. I will discuss two

techniques for making this identification: thresholding, a simple way of identifying the ion state,

and adaptive Bayesian methods, which we can use to achieve higher detection fidelities but which

require photon arrival time information.
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For both of these, it is useful to have a precise and consistent definition of detection fidelity.

Figure 5.1: Relevant transitions for qubit state detection in 9Be+ , adapted from [80]. The detection
laser is resonant with the | ↓〉 ↔ 2P3/2 transition, which drives state-dependent fluorescence,
causing an ion in | ↓〉 to fluoresce, but not an ion in | ↑〉. To maximize detection fidelity, dark ions
are shelved in the |F = 1,mF = 1〉 level.
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Following definitions in [127], I will define the detection fidelity

F = 1− ε = 1− εb + εd
2

(5.2)

where εb is the bright state error, i.e. the probability of mis-labeling a bright ion as dark, and εd

is the dark state error, i.e. the probability of mislabeling a dark ion as bright. This is dependent

both on the apparatus and on the analysis.

5.1.1 Thresholding

In the absence of errors caused by off-resonant transitions or imperfect closing of the cycling

transition, minimization of state detection errors would be a relatively straightforward process.

Consider an ion in the state

|ψ〉 = a| ↓〉+ b| ↑〉 (5.3)

If the ion is measured in the bright state | ↓〉, it will scatter photons that will be detected at

some rate Rb. In the ion is measured in the dark state, it should not scatter photons; however,

there will be some rate of dark counts Rd due to detector dark counts and background scatter.

Upon many repetitions, the number of counts measured during detection time tdetect will take a

double-Poissonian distribution:

P (n) = |a|2
(
λb
ne−λb

n!

)
+ |b|2

(
λd

ne−λd

n!

)
(5.4)

where λb = Rbtdetect and λd = Rdtdetect. This distribution is shown in Figure 5.2. Two cases are

shown, with identical Rb and Rd, but with two different choices of tdetect.

Under these ideal conditions, the ion state can be identified with high fidelity using a simple

thresholding method. We choose a threshold cutoff value nc and count runs. Any run in which

n ≥ nc counts were detected is labelled bright; any run in which n < nc counts were detected is

labelled dark. The optimal threshold is the number of photons at which the bright and dark state

Poissonian distributions intersect

nc =
λb

ln
(

1 + λb
λd

) (5.5)
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(a) (b)

Figure 5.2: Ideal Poissonian histograms for an ion in an equal superposition of the bright and dark
states, shown on a logarithmic scale. In (a), Poissonian parameters are (λB, λD) = (10, 1). In (b),
Poissonian parameters are (λB, λD) = (30, 3). This is equivalent to the case in which (a) and (b)
are detected from systems with equal scattering rates, but the detection time for (b) is three times
as long as for (a). Depumping and repumping are entirely neglected.

[127] where λb and λd are the means of the bright and dark state Poissonians, respectively. However,

there is some statistical probability that a purely bright state Poissonian will produce fewer counts

than the threshold and conversely that a purely dark state Poissonian will produce more counts

than the threshold. This introduces bright state and dark state errors εB and εD:

εb = P (measure dark|bright) =

nc∑
i=0

λb
ie−λb

i!
(5.6)

εd = P (measure bright|dark) = 1−
nc∑
i=0

λd
ie−λd

i!
(5.7)

In the examples shown in Figure 5.2, Eq. 5.5 gives cutoff thresholds of nc = 4.2 and 12.5 for the

short and long detections, respectively. In practice, this means that when thresholding the short

detection, runs in which n ≤ 4 counts were detected would be labelled as dark, and all other would

be labelled as bright. For the long detection, runs in which n ≤ 12 counts are detected would be

labelled dark, with all others labelled bright. In the first case, there is substantial overlap between

the bright and dark Poissonians, so many runs will be mislabelled by this method. From Eqs. 5.6

and 5.7, εb = 0.029 and dark state error εd = 0.004, for an overall detection fidelity F = 98.3%. If

we instead consider the second case (the long detection case), we label all runs in which 13 or more
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counts are measured are bright ions; all runs with 12 or fewer counts are labelled dark. This gives a

probability εb = 1.7×10−4 of mislabeling the bright state as dark and a probability εd = 1.6×10−5

of mislabeling the dark state as bright, for an overall detection fidelity F = 99.99%.

From this, it appears that high fidelity detection is simply a matter of choosing tdetect such

that the bright and dark state histograms are well separated. However, I have critically neglected

a major source of error. The histograms are in fact non-Poissonian, primarily due to off-resonant

transitions and imperfections in our cycling transition.

5.1.2 Depumping and repumping

The leading source of error in our detection is caused by errors that flip ions between our

qubit states during the detection process. There are two types of these errors, depending on where

the ion starts.

• Repumping: an ion that is dark at the start of the detection flips to bright during tdetect.

These events are primarily caused by off-resonant transitions.

• Depumping: an ion that is bright at the start of the detection flips to dark during

tdetect. These events are primarily caused by imperfect σ− polarization and by misalignment

between the detection beam and the quantization axis.

The rate of depumping and repumping events is constant per unit time; therefore, with increasing

detection times, the probability that a depumping or repumping event has occurred grows.

These errors will negatively impact our ability to accurately label an ion’s state using thresh-

olding. For an illustration, consider the data shown in Figure 5.3. This plot shows the times at

which photons were detected for two different detections. In both cases, 15 photons were counted in

a 500 µs detection period. However, the photon arrival time illustrates that these ions are likely in

different states. In Figure 5.3(a), the ion begins bright and scatters photons at a high rate; however,

at around 100 µs, the ion appears to be depumped and is dark for the rest of the detection interval.

In 5.3(b), the ion scatters no photons until before 200 µs, after which point it scatters photons at
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(a)

(b)

Figure 5.3: Photon arrival times for (a) an initially bright ion which is depumped dark during
detection and (b) an initially dark ion that is repumped bright during detection. Both plots show
runs in which 15 photon counts were collected, so state identification using thresholding would label
them as identical.

a high rate, likely indicating that the ion was repumped from the dark state to the bright state at

this time. Thresholding would identify both of these cases as identical.

In practice, repumping and depumping introduce a “tail” in between the two peaks of the dou-

ble Poissonian, as can be seen in Figure 5.4. Since the probability that an ion has been depumped

or repumped grows with increasing detection time, we now have two competing factors. We need

to detect for long enough that the two Poissonians are well-separated. After they are separated, we

should detect for as short a detection time as possible, in order to limit depumping and repumping

errors.

There several techniques we use to mitigate errors due to repumping and depumping:

• Microwave shelving - as I will discuss below, we can reduce the repumping rate by transfer-

ring dark ions to a state that requires multiple off-resonant scattering events to transition

back to the bright state.
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Figure 5.4: Simulated histograms for a perfect cycling transition with no depumping or repump-
ing (blue) compared with real, experimental histograms (red). Notice the tail between the two
histogram peaks in the data, introducing error into qubit state detection using thresholding.

• Improvements to the readout beam polarization and and its alignment with the quantization

axis, ensuring that the detection transition is as close to a cycling transition as possible

• Improved rate of detection: if, by increasing Rb, the bright and dark histograms separate

from each other faster, we can use a shorter tdetect, reducing the probability of depumping

or repumping.

• Statistical methods that take advantage of time stamping information to better identify

bright and dark ions.

With the combined use of all of these techniques, including a detector with higher quantum efficiency

than the best photomultiplier tubes at 313 nm, as I will discuss in Chapter 6, we are able to detect

9Be+ states with detection fidelity F > 99.9%.
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5.1.3 Shelving

Microwave shelving allows us to reduce repumping errors. Although the probability of an

ion in the dark state | ↑〉 being excited by the detection laser is small, if such an event does occur,

the ion will be excited to the 2P3/2|mF = −2〉 state, which has a non-negligible probability of

decaying to the | ↓〉 qubit state, which is bright. Instead consider a “shelved” ion, which stored

in the |F = 1,mF = 1〉 state by applying two microwave π-pulses to transfer the population. If

such an ion is excited off-resonantly by the detection laser, it will require at least one additional

off-resonant scattering events to decay to the bright state. This shelving is shown on the 9Be+ level

diagram in Figure 5.1.

5.1.4 High fidelity state detection using adaptive Bayesian statistics

The thresholding method discussed above uses a single piece of information - counts collected

during some detection window - to identify an ion as bright or dark. However, we can also use

information about photon arrival times. Intuitively, one can look at the arrival time data in Figure

5.3 and see that this can give us information about whether the ion was the dark or bright state

at the start of the detection. We can formalize this instinct for a method that gives both improved

detection fidelity and shorter average detection times. This is not a new method but instead follows

the work described in [127].

In practice, to perform this measurement, we break the detection window up into a large

number of time bins. Say in the kth time bin, nk photons are measured. There are two sets of

probabilities we must consider:

• P (nk|b): the probability of measuring nk photons given the ion is in a bright state

• P (nk|d): the probability of measuring nk photons given the ion is in a dark state

In the absence of depumping and repumping, we can then write the overall probability that an ion

is bright after i measurements {n1, ..., ni} as

P (b|{n1, ..., ni}) =
1

N
P (b|{n1, ..., ni−1})P (ni|b) (5.8)



97

and correspondingly

P (d|{n1, ..., ni}) =
1

N
P (d|{n1, ..., ni−1})P (ni|d)/N (5.9)

where N is a normalization factor. However, this assumes that if we had a bright ion in the ith time

bin, this ion was also bright in the (i − 1)th time bin. This is usually true, but does not account

for repumping or depumping. A depumping event during the kth time bin, with probability PDP

will take the ion from the bright state to the dark state. Correspondingly, a repumping event, with

probability PRP , will take the ion from dark to bright. We can use these to modify the probability

that an ion is bright given measurement history {n0, ..., ni} as

P (b|{n0, ..., ni}) =
1

N
((1− PDP )P (b|{n0, ..., ni−1})P (ni|b) + PRPP (d|{n0, ..., ni−1})P (ni|b)) .

(5.10)

We have here assumed that depumping and repumping events only happen at the beginning of every

time bin, so this holds in the limit of small time bins. Similarly, accounting for the probability of

depumping during the ith time bin, the dark state probability is modified as

P (d|{n0, ..., ni}) =
1

N
((1− PRP )P (d|{n0, ..., ni−1})P (ni|d) + PDPP (b|{n0, ..., ni−1})P (ni|d))

(5.11)

To normalize, we require

P (b|{n0, ..., ni}) + P (d|{n0, ..., ni}) = 1 (5.12)

These probabilities {P (ni|b), P (ni|d), PRP , PDP } are dependent on the count rate from a bright

ion, the dark count rate, and the depumping and repumping rates. I will discuss in Chapter 6 how

we measure each of these rates, but for now, assume that these are measureable. Note that these

measurements must also be independent - i.e. we cannot use the same dataset for calibration and

for state measurement.

For high detection fidelity measurements, we keep track of continuously updating probabilities

as described by Eqs. 5.10 and 5.11. After one of them hits a desired threshold Pth, the state is

assigned.
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To summarize: we break our measurement into a large number of time bins, where each bin

contains some number of detector counts. This gives us updated information about the true state

of the ion. Depending on the number of counts in a bin, we update our probabilities to indicate

that it is more or less likely that the ion is in a bright state. If either P (b) or P (d) exceeds some

threshold, we stop the measurement and assign the state; otherwise, we repeat with the next time

bin. This method enables higher fidelity and shorter detection times than thresholding.

It is possible to use this method in real time in an experiment, provided the bright count, dark

count, depumping, and repumping rates are well-calibrated [127]. However, this has not to date

been performed on this experiment. We instead used this method in post-processing to determine

the maximum detection fidelity achievable using the SNSPD; for most other experiments, we used

thresholding, which is good enough for the proof-of-principle experiments I describe in this work.

5.2 Ion motional state measurement

For a thermal state of ion motion, a measurement of the mean phonon number can be

efficiently made with only two measurements. In such a state, the probability Pn of the ion being

found in the n-th harmonic oscillator state is given by

Pn =
e−n~ωsec/kBT

1 + e−~ωsec/kBT
(5.13)

Following the derivation from [86] and plugging this into Equation 3.24,

Irsb(τ) =

∞∑
n=1

e−n~ωsec/kBT

1 + e−~ωsec/kBT
sin2(Ωn,n−1τ) (5.14)

If we reindex the sum, we see

Irsb(τ) =

∞∑
m=0

e−(m+1)~ωsec/kBT

1 + e−~ωsec/kBT
sin2(Ωm+1,mτ)

= e−~ωsec/kBT
∞∑
m=0

e−m~ωsec/kBT

1 + e~ωsec/kBT
sin2(Ωm+1,mτ)

= e−~ωsec/kBT Ibsb(τ)

(5.15)



99

where I have substituted Ibsb(t) from Equation 3.23. Note that, for phonons in a thermal distribu-

tion,

n̄ =
1

e~ω/kBT − 1
(5.16)

[128]. So

Irsb(τ) =
n̄

1 + n̄
Ibsb(τ) . (5.17)

Thus the average phonon occupation of the harmonic oscillator can be straightforwardly extracted

for a thermal state by measuring the ratio of the red and blue sidebands intensities, by

n̄ =
1

Ibsb(τ)/Irsb(τ)− 1
(5.18)

Notice that this ratio is independent of interrogation time τ .

In practice, we don’t exactly measure what I have described. The lasers, discussed in Chapter

4 and in more detail in [47], can have some intensity dependence on frequency, primarily due to

finite AOM bandwidth. In order to eliminate avoid this dependence, we compare bright and dark

ion populations after the two following pulse sequences:

• (1) Microwave π-pulse, transferring population from | ↓〉 to | ↑〉; (2) Raman π-pulse at

ω = ωqu−ωsec, transferring population back to | ↓〉. Although the Raman laser beatnote is

at the red sideband frequency, since we start in the upper qubit state, it acts as a “motion

adding sideband” (MAS).

• (1) Raman π-pulse at ω = ωqu−ωsec, transferring population to | ↑〉; (2) Microwave π-pulse,

transferring population from | ↑〉 to | ↓〉. This is the traditional red sideband, which I will

refer to as the “motion subtracting sideband” (MSS).

We then compare the populations in | ↓〉 for these two. The physics here is equivalent to comparing

red and blue sideband pulses. However, we are able to keep the Raman laser detuned at the same

frequency for both pulses, eliminating frequency-dependent intensity variations. An example of this

measurement is shown in Figure 5.5 for a sideband cooled ion with average occupation n̄ = 0.17(4).
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Figure 5.5: Sample sideband cooling data, demonstrating a sideband imbalance. The motion adding
sideband is in blue, and the motion subtracting sideband is in red. Error bars are smaller than
the data points shown. The data is fit to a sinc2 lineshape P (f) = A sinc2(w(f − f0)) + P0. This
gives amplitude AMAS = 0.71(2) for the motion adding sideband and AMSS = 0.10(2) for the
motion-subtracting sideband, giving a measured temperature n̄ = 0.17(4).

Also note that this measurement scheme assumes a thermal state of motion. In general, the

ion may not be in such a state; particularly, sideband-cooled ions are not generally in a thermal

state described by Eq. 5.13. In such a case, the ion temperature can be measured by taking a

Fourier decomposition of carrier flops, since different Fock states have different Rabi rates. This is

discussed in more detail in [89]. This is also useful for investigating the temperature of hotter ions,

where the sideband imbalance IMAS/IMSS is close to 1. However, for the work in this thesis, I have

assumed that the ion is in a thermal state with low average n̄. This is a reasonable assumption

based on the predicted Doppler-cooled motional mode occupation nax ≈ 9.2 based on a typical

secular frequency ωax = 2.0 MHz for a mode oriented 45◦ degrees from the Doppler cooling laser.

5.3 Calibrations

This section describes the day-to-day methods of calibrating and tweaking up the experiment.

I include it primarily as a reference for future users of the experiment, who may wish to be aware

of some of its quirks.
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5.3.1 Loading Ions

Ions are loaded in Zone 2 or 3, as labelled on Figure 4.8. One set of DC voltages that produces

harmonic wells in the detector trap in each zone are listed in Appendix B. It is possible to load in

the transport trap with the same set of voltages as those used in the detector trap with the “det”

electrode grounded. The BD/BDD and PI beams are aligned over this zone with the frequencies

set as listed in Table 4.5. Typical loading RF powers are 6.0− 9.0 dBm. It is possible to keep an

ion trapped with as low as 5.0 dBm RF power for long times, but it is challenging to load with such

a low trapping potential. The ovens generate visible and IR light, which will generally swamp ion

fluorescence. With a filter that blocks visible and IR light but transmits UV (Thorlabs FGUV11-

UV) to reduce this background light, the ion’s fluorescence is visible on the EMCCD when it is

trapped. At this point, the ovens and PI are turned off.

On a timescale of 1-3 months, the level of cryo-pumped gases in the pillbox slowly grows,

either due to a slow leak or due to other parts of the apparatus outgassing. This doesn’t impact

normal operation of the trap, as all gasses besides helium will adsorb to surfaces at 4 K. However,

during loading, some surfaces are heated by the ovens and may release cryo-pumped gases. If

enough gas is released in this process, we can see ions “pop in” to the trap and briefly fluoresce

but not remain trapped. We attribute this to collisions with the background gas ejecting the ion.

Since the 4 K pillbox is vented to the room temperature vacuum chamber, this background gas can

be pumped up without warming to room temperature and breaking vacuum. The pillbox can be

degassed by warm up the cold head to 25 K and pumping on the outer vacuum space with an ion

pump. After this process, the trap reliably loads again upon cooling back to 4 K.

5.3.2 Stray fields

Ion loading and high-intensity UV scatter will generate stray electric fields. These stray fields

can be measured and corrected for by adding “shims” potentials to the trapping potential. The

shims are arrays of electrode voltages that are designed to adjust only one derivative of the trapping
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potential without impacting any others. The generation of these shim potentials is discussed in

Section 2.3.2.

Stray fields along either of the two radial directions will push the ion off of the RF potential

null and introduce micromotion. Micromotion that overlaps with the cooling light will frequency

modulate the cooling light in the frame of the ion, introducing sidebands at fBD ± ΩRF /2π. This

effectively reduces the amount of light that is resonant with the cooling transition [129]. The

micromotion can be minimized by applying a variable shim along ŷ (the radial direction in the plane

of the trap) and maximizing ion fluorescence counts. The fluorescence counts vs shim magnitude

are described by a Bessel function [129], so it is important to scan the shim magnitude broadly

enough to confirm that the counts correspond to the maximum of the Bessel function and not

simply a local maximum.

This method minimizes micromotion that overlaps with ŷ direction but does not address

micromotion perpendicular to the trap in the ẑ direction, since that is not addressed by the BD

laser. This requires a different technique. The microwave antenna introduces a small magnetic

field gradient at the trap location. Micromotion in the plane perpendicular to the trap surface

will modulate the amplitude of the magnetic field seen by the ion at the RF frequency ΩRF /2π.

This will generate sidebands on the carrier microwave frequency at (ωqu ± ΩRF )/2π [130]. When

the micromotion is minimized, the amplitude of these sidebands will also be minimized. Therefore

micromotion can be minimized by minimizing the Rabi frequency (or equivalently, by maximizing

the duration of a Rabi π-pulse) for this sideband.

An axial stray field shifts the ion along the trap axis but does not generate any micromotion.

Stray fields in the axial direction can be compensated for by changing the axial trapping potential.

If an ion is at the center of a harmonic well, changes to the xx curvature of that well will not shift

its equilibrium position. If it is pushed off-center by a stray electric field, its equilibrium position

will shift if the curvature of the trapping potential is changed. An axial stray field can be seen

by changing the curvature of the trapping well and watching the ion on the camera. If the ion

is at the center of the well, it will not shift position. For more precise measurement, the readout
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beam can be moved so that the ion is on the slope of the Gaussian beam profile. If the ion moves

slightly here, the fluorescence will shift. To compensate for stray electric field along x̂, the x shim

is manually varied until changes in the trap xx curvature do not change the ion position.

The above methods of stray field compensation also serve as measurements of the stray

electric field ~Es since the compensation shims will generate − ~Es. The magnitude of the electric

field generated by a given shim amplitude is known from simulation. In the experiments discussed in

this thesis, typical stray electric field magnitudes were |Es,x|, |Es,y| ≤ 300 V m−1, |Ez| ≈ 750 V m−1.

These stray fields are spatially varying, so they can cause a stray electric field curvature

at the ion location, which will shift the trap secular frequencies. These stray curvatures can be

compensated for by measuring the trap secular frequencies as described in Section 5.3.5. If the

secular frequency ωi is not at the desired values, it can be adjusted by applying an ii shim. In the

experiments described in this thesis, only the axial frequency was controlled using this method.

The stray fields typically drift over the first 12-24 hours after loading an ion. We speculate

that this is due to charging from the 235 nm light and from ions and electrons which end up on

the trap surface during the loading process.

5.3.3 Polarization and magnetic fields

For best optical pumping, the polarization must be pure σ− and the magnetic field must be

well-aligned with the BD laser beam. Both of these can be optimized using the same process. This

is performed by increasing the intensity of the BD detection beam (to increase the probability of

depumping and repumping) and then adjusting both the BD beam polarization and current in the

magnetic field offset coils to maximize the population in the bright state and minimize depumping.

This is a multiparameter process and requires “walking” (a process in which one parameter is

adjusted so that the state quality is degraded and a second parameter is scanned to find the best

state quality. If the overall state quality was improved by this process, it was a “step” in the correct

direction.).
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5.3.4 Microwave pulse times and frequencies

In order to use microwave shelving (discussed in Section 5.1.3) to improve dark state fidelity,

it is necessary to calibrate microwave π-pulse durations and frequencies on three transitions, all

within the 2S1/2 manifold: |F = 2,mF = −2〉 ↔ |F = 1,mF = −1〉, |F = 1,mF = −1〉 ↔ |F =

2,mF = 0〉, and |F = 2,mF = 0〉 ↔ |F = 1,mF = +1〉. These can be tuned up by a combination of

measurements: a time scan on a given transition with a constant microwave frequency, to calibrate

the π-pulse duration; and a frequency scan with a constant π-pulse duration, to calibrate the

transition frequency. This typically does not require frequent recalibration, but if conditions in the

lab have changed frequencies may shift on the order of 10’s of kHz.

5.3.5 Secular frequency measurement

Trap frequencies can be measured in two ways. The first is a “tickle” measurement. An

oscillating electric field at the trap secular frequency will coherently displace the ion’s secular

motion. If this coherent displacement is sufficiently large, it will cause a dip in fluorescence counts.

The secular frequencies can be measured by scanning the frequency of this “tickle” signal and fitting

to the minimum of the fluorescence counts.

This oscillating field could be generated by applying an oscillating voltage to any trap elec-

trode. However, the trap electrodes have low-pass filters that strongly attenuate signals oscillating

the trap secular frequencies. The microwave antenna generates electric fields which overlap with

all three secular modes of the ion and it is configured for the application of high-frequency voltage

signals, as shown in Figure 4.10. Because of this, the tickle signal is combined with the microwave

signal using a directional coupler and the microwave antenna is also used to apply the electric field

for the tickle measurement.

The trap frequencies can also be measured by measuring the frequencies of Raman sidebands,

discussed below. As discussed in Section 3.4.1, the Raman lasers can drive transitions both when the

Raman beatnote is ∆ = ωqu (carrier transitions) and when the beatnote is tuned to ∆ = ωqu ± ωi
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for the ith secular mode (sideband transitions). The trap secular frequencies can therefore be

measured by preparing the ion in a bright state and applying a Raman pulse of an appropriate

duration with a variable frequency.

5.3.6 Sideband cooling calibration

The first step in the calibration of sideband cooling is to find appropriate frequencies and π-

pulse durations. As in the microwave pulse time and frequency calibration, these must be calibrated

by the combination of two measurements: a time scan on a given transition with a constant Raman

beatnote frequency, to calibrate the π-pulse duration; and a frequency scan with a constant π-pulse

duration, to calibrate the Raman beatnote frequency. Once these values are known, the ion can

be sideband cooled by the repeated application of motion-subtracting sidebands and repumping

pulses, as discussed in Section 3.4.2

One detail that should be considered when calibrating the pulse time duration is that the

Rabi frequencies Ωn,m depend on the ion motional state [1]. When the ion is in a superposition of

motional states, an effective π-pulse duration can be used that is a weighted average of the π-pulse

durations for the individual states. However, this means that as the ion is cooled to a lower average

motional state, this effective π-pulse duration will change. This should be considered and it may

be desirable to have cooling pulse sequences with where subsequent pulses have longer durations.

In these experiments, we observed a change the π-pulse duration after the ion was cooled, but did

not reach a lower final n̄ by applying pulse sequences with variable pulse durations.



Chapter 6

Trap-integrated qubit state detection

Qubit state detection has been performed in ions in times as short as 11 µs [131] and with

fidelity exceeding 99.99% [132], but these experiments have relied on components which may be

challenging to scale to large numbers of ions. All previous high-fidelity results have been performed

with bulky objectives with limited fields of view. The ratio of field of view to objective diameter is

on the order of 0.004. In a large-scale quantum computer, it may be desirable to have simultaneous

state detection of qubits spread over a trap active area that may be larger than the field of view

achievable in a high-NA, high-magnification objective, as shown in Figure 6.1(b). In this chap-

ter, I will discuss demonstration of a high-efficiency trap-integrated single-photon sensor. Larger,

more complex traps could incorporate multiple of these detectors for parallel detection in spatially

separated zones.

6.1 Maximizing detection efficiency

In order to perform fast, high fidelity qubit state detection, we wish to detect as many of

the photons emitted by the ion as possible. I will define the overall detection efficiency η as the

probability that a photon emitted by the ion is counted by the detector. For the purposes of this

discussion, I will group the detection efficiency η into two components:

• Geometric efficiency (α): the percentage of emitted photons which are incident on our

photon-counting sensor. This accounts for both solid angle over which photons are collected,
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(a) (b)

Figure 6.1: (a) A cartoon image of traditional fluorescence detection, in which ion fluorescence is
collected by a large out-of-vacuum, high-NA objective and focused onto a high-quantum efficiency
detector. The need for high-NA and high magnification are in conflict with a wide field of view,
and this ultimately limits the number of ion qubits that can be imaged using such a scheme. (b)
Scalable detection using on-chip single photon counting. In this scheme, nearby, trap-integrated
single photon sensors convert photon detections into electrical signals on-chip, and the signal can
leave the vacuum as an electrical signal. Here, the same numerical aperture can be achieved with a
much smaller active area, since the detector is so close to the ion; this would enable readout from
multiple neighboring ions in parallel. (b) adapted from [3].

the angular dependence of the fluorescence intensity, and other sources of loss such as fiber

coupling inefficiency and surface reflections.

• Detector efficiency (β): the probability that a photon incident on a sensor will be counted

by the detector.

Overall,

η = α× β . (6.1)

Previous high-fidelity detection experiments [132][131] used custom imaging objectives with

high numerical aperture (NA). These objectives are typically bulky and expensive. In this appara-

tus, we image using a simple 0.38 NA objective built from off-the-shelf parts, described in Section
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4.2.9. An NA of 0.38 is equivalent to a solid angle of 0.45 steradians, meaning that this system

would detect 3.6% of photons emitted from an unpolarized emitter. (The cycling transition which

we detect on in 9Be+ is, in fact not an unpolarized emitter. Since it is a σ− transition, it emits

photons in the “peanut” pattern shown in Figure 6.7, meaning that we detect an smaller percentage

of photons from the ion than this estimate suggests.) Additionally, the light is transmitted through

12 optical surfaces before hitting the PMT, introducing further loss into our geometric efficiency.

Instead consider an ion trapped over the detector shown in Figure 4.9. The detector has an

area of 20× 22 µm. The ion is trapped a measured 29 µm above the electroplated gold surface; the

detector is recessed an additional 6 µm from the electroplated gold surface, so the ion is 35 µm from

the detector surface. This subtends a solid angle of 0.32 steradians, viewed from the ion position.

Since there are no intermediate surfaces between the ion and the detector, the geometric efficiency

is entirely accounted for by this solid angle.

6.1.1 Single photon detectors

Instead of improving detection efficiency by increasing geometric efficiency, one might focus

on improvements to the sensor detector efficiency. Typical photon counting in our trapped ion ex-

periments is performed by a Hamamatsu R7600P-203 photo-multiplier tube (PMT), with a quoted

38% quantum efficiency at 313nm. (This is integrated with the imaging system discussed in Section

4.2.9). To date, the best reported quantum efficiency of a single photon counter is 98% for 1550nm,

measured using a superconducting nanowire single photon detector (SNSPD) [133].

High fidelity detection of trapped ion states have been made using high-NA imaging systems

and sensitive single-photon counters in 40Ca+ with 99.991(1)% fidelity [132] and in 171Yb+ with

99.931(6)% fidelity [131].

6.1.2 Superconducting nanowire single photon detectors

SNSPDs are an appealing technology for qubit state detection, since they can count up to

v 107 events per second, sufficient to handle trapped ion fluorescent rates. Additionally, SNSPDs
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have been demonstrated with > 90% quantum efficiency at 1550 nm [134][135] and can have dark

counts below 10−4 per second [136] which would be helpful for for high-fidelity qubit state detection.

The principles of operation of an SNSPD are illustrated in in Figure 6.2. Initially (i), a DC

bias current IDC is passed through a superconducting nanowire. Below the superconducting critical

temperature TC , the current sees no resistance and there will be no voltage drop. If, at a time t = 0,

an incident photon hits the superconducting nanowire, it will create a local hotspot. The current

will continue to follow the path of least resistance and will flow around the (non-superconducting,

R 6= 0) hotspot. However, this will cause a local increase in current density. For a sufficiently high

bias current IDC , the current density in the nanowire will exceed the critical current density of

the superconductor, causing a full “bridge” in which the superconductor goes normal across the

entire width of the nanowire. The typical resistance of such a bridge is kΩ or more. We can view

this as flipping open a switch, illustrated schematically in the lumped-element diagram in Figure

6.2(b). At this point, the current, instead of passing through the superconductor, passes through

some external shunt resistance (as configured in this apparatus, simply the 50 Ω impedance of

the measurement circuit), creating a voltage drop. The timescale of this initial process is < 1 ns,

making these sensors appropriate for experiments where photon arrival time information is critical.

The timing jitter of SNSPDs can be made as low as v 3 ps [137].

With the current passing through the shunt impedance, the bridge rethermalizes and the

nanowire goes superconducting again. The shunt resistance R and the superconductor kinetic

inductance L form a parallel LR circuit. Once the nanowire is superconducting again, the bias

current will re-enter the superconductor on a characteristic filter timescale τ = L/R, and the

output voltage on the shunt resistance will decay with this same timescale. A typical timescale is

τ = 20− 50 ns, a reasonable timescale given typical trapped ion photon emission rates.

One question when considering any detector for 9Be+ is what the detector efficiency is at

313 nm. Most of the demonstrations of SNSPDs have been performed at 1550 nm wavelengths,

where the ubiquity of applications drives development. However, SNSPDs have been fabricated

which operate with > 70% detection efficiency at 315 nm [3] and at 370 nm [63]. They have been
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(a)

(b) (c)

Figure 6.2: Principles of operation for a superconducting nanowire single photon detector (SNSPD).
The SNSPD can be modeled as a lumped element circuit as shown in (b), where the nanowire
detector consists of some kinetic inductance Lk and has some normal resistance Rn. (i) Below the
superconducting critical temperature TC , the nanowire can be modeled as a closed switch with zero
resistance. A bias current IDC will pass through it and experience no voltage drop. (ii) If a photon
hits the nanowire, it will create a local hotspot where the superconductor goes normal. (iii) The
current will bunch around the local hotspot, causing an increase in the local current density. (iv)
For sufficiently high IDC , the increase in the local current density will exceed the superconductor
critical current, causing a full normal “bridge” in the nanowire. This can be modeled in the lumped-
element picture in (b) as the switch suddenly opening. Rn is much larger than the 50 Ω impedance
Z0, so the bias current will pass through the Z0, causing a measurable voltage spike. As the heat
dissipates, the current will return back into the superconducting nanowire on a timescale given by
the characteristic timescale of the circuit τ = Lk/Z0. A typical voltage pulse corresponding to a
SNSPD photon click event is shown in (c). SNSPD operation schematic taken from [59].
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used for high fidelity qubit state detection in 171Yb+ at 369.5 nm [131].

SNSPDs introduce one major overhead challenge, which is the need for a cryostat. In order

to operate, an SNSPD must be below the superconducting transition temperature of the nanowire.

However, as discussed in Chapter 4, there are multiple independent reasons to operate trapped ion

experiments cryogenically. The apparatus I built during my Ph.D. is a good platform for exploring

the integration of SNSPDs with trapped-ion experiments, since it has a low base temperature

compared to other trapped-ion cryostats.

6.2 Trap-integrated detection

The goal of this experiment is not only to demonstrate high fidelity state detection but

to do so in a potentially scalable way that enables parallel readout from multiple ions. Other

groups have proposed and fabricated systems which use microfabricated optical components such

as microfabricated Fresnel lenses [138], diffractive lenses [38], or trap-integrated mirrors [33][39] for

photon collection. However, these still require imaging using a remote, high-quantum efficiency

sensor, and require the fluorescence photons pass through multiple optical surfaces. Our approach

is to instead use a single photon sensor directly below the ion, and to collect a large enough fraction

of photons simply by being very close. The photon count information will then exit the system as

an electronic signal.

There are many reasons to push towards microfabricated surface-electrode traps, as discussed

in Section 2.3. By using the same technologies integrate this detector into the ion trap itself, we can

include more of the ion trapping system in a robust, compact package. However, this introduces

new challenges; chiefly, that the detector must be able to operate in the high-RF environment of

an ion trap, where there will be non-negligible coupling between the RF electrode and the detector.

We must also consider the effect of the detector on the ion. Electric field noise will cause ion

heating, so it is critical that this detector generate sufficiently low electric field noise that the ion

can still be well-enough-controlled for quantum computing applications.

There are several major questions we wish to answer about a trap-integrated single photon
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detector:

• What effect does the RF trap drive have on the SNSPD performance?

• What is the detector efficiency of a trap-integrated SNSPD? Do the further fabrication

steps required to fabricate both an SNSPD and an ion trap on the same chip degrade the

SNSPD performance?

• What is the spatial sensitivity of the SNSPD? We envision a scalable setup in which neigh-

boring ions each have individual SNSPDs for parallel readout. By how far would these

ions have to be separated so that the crosstalk between neighboring ion-detector pairs is

acceptable?

• What is the effect of the SNSPD on the ion? Does it introduce unacceptable electric field

noise for high-fidelity quantum computing applications?

I will answer all of these questions in this chapter, and demonstrate that trap-integrated SNSPDs

are promising technologies for trapped-ion quantum computing applications and high-fidelity state

detection.

6.2.1 Previous work

Investigations into trap-integrated detectors to date have been limited to just a few research

groups. As a proof-of-principle experiment, a cloud of 88Sr+ ions was been trapped over a trans-

parent indium tin-oxide (ITO) substrate with a silicon diode underneath operating for detection

[41]. Fluorescence from 24Mg+ has also been observed using a multimode fiber tip located directly

below a hole in a trap electrode [36]. Other work has been done to integrate avalanche photodiodes

(APDs) into trap chip geometries, with the benefit that every step of this process can be performed

in a commercial CMOS chip foundry [32]. However, initial results in this system had a large, time-

varying noise floor and a low overall signal-to-noise ratio [139]. Traps with an integrated SNSPD

have been fabricated, and photons were counted in the presence of trap-like RF amplitudes and
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frequencies [3]. However, prior to this work, ions had never been successfully trapped in a trap

with an integrated SNSPD. Further, high fidelity qubit state detection had never been performed

in a system with a trap-integrated detector.

6.3 Hardware for SNSPD readout

I here report results collected in the so-called “detector trap,” discussed in Chapter 4, fabri-

cated at NIST using a similar process to that discussed in [3]. This trap is a five-wire style surface

electrode trap in which the ion can be trapped anywhere along the trap axis. An SNSPD made

from a MoSi superconducting alloy is fabricated at one end. With the exception of the detector

itself, all electrodes are made of electroplated gold 6 µm thick. This allows ions to be loaded at one

end (the “load zone”) with no line-of-sight to the detector. We load ions on the side of the trap

that is furthest from the SNSPD. By applying time-varying potentials to the trap DC electrodes,

the ion can be shuttled from the load zone to anywhere else in the trap, including over the detector.

In either the load zone or directly over the detector, the Doppler-cooled lifetime of ions in the trap

is days.

The ion is trapped 39 µm above the electroplated gold trap surface. However, close to

the detector, the pseudopotential null moves closer to the surface, dropping to 29 µm above the

electroplated gold when centered over the detector. This represents a distance of 35 µm from the

SNSPD, which is recessed relative to the thick electroplated gold. This drop is illustrated in Figure

6.3. We attribute this to a combination of end-effects from the end of the RF electrodes and failures

of the Biot-Savart analog I discussed in Chapter 2. The Biot-Savart analog assumes all electrodes

are in a two-dimensional plane [73], which is generally a good approximation, but fails over the

detector, where the difference in electrode height between the SNSPD and the electroplated gold

electrodes is large on the scale of the ion height.

The vacuum and ion trapping apparatus were discussed in Chapter 4. However, there is

additional hardware that is specific to the operation of the SNSPD.



114

Figure 6.3: Schematic showing ion position over the detector. Due to end-effects of the end of the
RF electrode and due to breakdowns in the assumption that the trap can be approximated as a
two-dimensional surface, the ion moves v 10 µm closer to the trap surface over the detector.

6.3.1 Readout circuit

The current supply and readout circuit is shown in Figure 6.4. For SNSPD operation, there

must be some bias current running through the detector nanowire. This bias is typically on the

order of a few µA. We wish to avoid the detector being biased at all times, since detector pulses

may introduce electric field noise at the ion. We drive the detector bias using a pulse generated

by an arbitrary waveform generator; this waveform is triggered by a TTL pulse from the ARTIQ

experiment control system. This waveform is ramped on and off over 11 µs, which limits ringing

in the bias tee and capacitive coupling to other electrodes. This waveform is attenuated by 20

dB and then passes through a 10 kΩ resistor. This gives a supply voltage to bias current ratio of

100 mV : 1.05 µA.

The detector current supply and the readout circuit are connected to the detector via the

same cryostat coaxial line. The bias current is a DC signal and the detector pulse is a quickly

varying waveform with many high frequency components. This means the DC bias supply can be

coupled into the detection circuit using a bias tee, as is shown on Figure 6.4. The readout circuit

is connected to the detector by this bias tee; the other end of the detector is grounded. If there is

a detected photon, the short to ground of the superconducting nanowire will “open” and the input

side of the detector will quickly go to V = Ibias × 50 Ω. We can see this pulse this on the output
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Figure 6.4: SNSPD readout circuit. The DC bias current and the readout signal are connected to
the same cryostat port by a bias tee. The bias current is supplied by an AWG providing a pulse
with 100 − 500 mV amplitude. This signal is attenuated by 20 dB and passes through a 10 kΩ
resistor that converts the voltage bias into a current bias. It then passes through the DC port of
the bias tee to reach the detector. We read out the detector signal at the high frequency port of
the bias tee. It is amplified by two stages of amplification and then filtered with a notch filter at
the trap RF frequency plus a second low-pass filter with a corner frequency of 25 MHz before going
to a discriminator to be counted.

of the bias tee.

The SNSPD output pulse is small on the scale of the TTL logic we want it to eventually be

converted to (< 1 mV vs 1−5 V), so we pass the detector output through two stages of amplification

for a total 46 dB gain. Before amplification, the SNSPD output pulse is on the order of 250 µV

peak. This signal is small compared to the RF pickup on the SNSPD output. However, this RF

pickup is at a specific, known frequency and can be removed using a narrow band notch filter with

40 dB attenuation at the RF frequency. For improved signal processing, we also apply a Gaussian

low-pass filter with a corner frequency f = 25 MHz. This amplified, filtered signal is then sent

to a discriminator where it is converted to a TTL signal that can be counted by the experimental

control software. Filtered SNSPD pulses are shown in Figure 6.5. The amplitude of the pulses

varies from pulse to pulse. This is because, due to RF pickup on the nanowire, the bias current in

the nanowire will vary with the phase of the RF drive at the time of photon arrival.
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Figure 6.5: Sample SNSPD output pulses. The height of the pulses is given by the bias current by
Vpulse = ibias×50 Ω. Because of RF pickup on the SNSPD, the bias current Ibias is time dependent
as Ibias(t) = IDC +Ipickup cos(ΩRF t+φRF ), so the height of the voltage pulse depends on the phase
of the RF drive when the photon hits the detector.

6.4 Trap-integrated SNSPD performance

6.4.1 RF sensitivity

One of the main questions about the trap-integrated SNPSD is the effect of the RF drive.

Paul traps require an RF drive to trap the ions, typically on the scale of 10 V − 100 V amplitude

at frequencies of 10−100 MHz. Since the RF electrodes and the SNSPD are near each other, there

is capacitive coupling between the two. We filter the RF pickup out of the output signal. However,

the corresponding induced RF currents affect the detector efficiency.

The impact of the RF is shown in Figure 6.6. We plot four different curves showing the count

rate of the SNSPD as a function of applied bias current, each for a different RF amplitude. The

SNSPD is not illuminated by an ion (since in all but one case, the RF amplitude is too low to

trap an ion) but instead by “ion-like” light levels. This was achieved by moving the detection laser

closer to the trap surface until the stray scatter caused as many counts in a detection interval as a

typical ion at around saturation parameter s = 1/3.

The blue curve shows performance with the RF off. Under these conditions, we see the classic



117

Figure 6.6: SNSPD click rate vs DC bias current for a variety of RF amplitude levels. It is impossible
to trap a 9Be+ ion at all but the highest RF level, so for a fair comparison, bright counts were
created by adjusting the detection beam to a height at which the scattered counts in a single 200 µs
detection period were similar to those produced by an ion in the bright state at around saturation
parameter s = 1/3. Counts vs. bias current for the RF amplitude used for ion trapping are shown
in red. We operate at a bias current point level that gives about 1 dark count per detection period.
At higher RF amplitudes than our trapping RF, with peak voltage VRF = 9.1 V, the detector did
not operate at all.

SNSPD response. At lower bias current levels, there are no counts at all. Even if a photon hits the

nanowire, the increase in current density caused by the bias current bunching around the hot spot

is still low enough that the detector does not go normal across the full width of the nanowire. Then

there is some “turn-on” range, here between 2− 4 µA, in which whether the photon is counted or

not depends on where the photon hits the nanowire. At high bias current, the detector exhibits a

“plateau,” where the count rate is largely independent of bias current. Finally, as the bias current

approaches the nanowire critical current, the dark counts start to rise. At higher bias current than

the critical current, the detector is no longer superconducting.

As the RF amplitude is turned up, we can see two effects. First, the bias current that can
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be applied before the SNSPD goes normal decreases with increasing RF amplitude. Second, the

slope of detector count rate vs. bias current in the “turn-on” range decreases with increasing bias

current. We attribute this to the effect of RF pickup on the nanowires. Figure 6.6 shows bright

counts vs. applied DC bias current; however, the local bias current “seen” by the SNSPD is

Ibias(t) = IDC + Ipickup cos(ΩRF t+ φRF ) (6.2)

Depending on the phase of the RF pickup when a photon hits the nanowire, the actual bias current

thus may be larger or smaller than IDC by as much as Ipickup.

In previous samples[3], it was possible to cancel this effect by applying a cancellation tone

directed down the SNSPD output line at the RF frequency ΩRF /2π with a suitable phase. However,

this did not reduce the effect of the RF pickup in this sample. We attribute this to the fact that

there is increased coupling between the RF electrode and the SNSPD meander in this sample.

Based on simulations, RF pickup coupled onto the SNSPD leads will have the same effect on the

current in the nanowire as a cancellation tone applied to the SNSPD output line and can therefore

be cancelled coherently. However, RF pickup due to capacitive coupling to the nanowire itself

will induce currents in the nanowire with spatially varying amplitude and phase, which cannot be

cancelled by a cancellation tone applied to the SNSPD output line.

The count rate vs bias current for the operating RF amplitude at which we are able to trap

an ion is shown in red in Figure 6.6. I emphasize two features of this curve:

(1) The maximum useable DC bias is sufficiently reduced that the current limit is reached

before the count rate reaches the “plateau” of the maximum count rate.

(2) There is a nonzero count rate even with no applied DC bias current, so this detector cannot

be truly “turned off” when the RF is at a trappable level.

Although these will both affect the performance of the SNSPD, it measures at a high enough count

rate for ion state detection. We operate at a bias current level that produces v 1 dark count per

detection. At this bias current, the bright counts are 83% of the maximum no-RF count rate.
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Figure 6.7: Photon emission pattern for a σ− transition. The quantization axis is shown in the
black arrow. Notice that perpendicular to the quantization axis, where we detect fluorescence
photons, the probability of photon emission is lower than along the quantization axis.

6.4.2 Detector efficiency measurement

Typically, detector efficiency measurements are made using well-calibrated light sources. A

saturated single ion serves as an high quality self-calibrating light source. The scattering rate of

an ion in a laser field is given by

γp =
s0γ/2

1 + s0 + (2δ/γ)2
(6.3)

where s0 is the saturation parameter, γ is the transition linewidth, and δ is the detuning of the laser

frequency from the transition frequency [84]. For high saturation parameters s0, this approaches

γp →
γ

2
(6.4)

The linewidth of the detection transition 2S1/2|F = 2,mF = −2〉 ↔ 2P3/2|F = 3,mF = −3〉 is

γ = 2π × 19.4 MHz [82].

The measured height of the ion above the electroplated surface is 29 µm, and the thin SNSPD

wires are further recessed from the surface of the electroplated electrodes by 6 µm. The detector

has dimensions 20 × 22 µm, so this gives an effective solid angle of 0.32 steradians. To know the

absolute number of photons scattered on the detector, we must also take into account the non-

uniform scattering pattern for a σ− transition (illustrated in Figure 6.7). Taking both of these

factors into account, 2% of photons scattered by the ion will be incident on the detector.

These calculations give the absolute number of photons that are incident on the detector in

a 200 µs detection period for a saturated ion, with the leading source of error being the uncertainty
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in the measurement of the ion height over the detector (approximately ±1 µm). We can then

determine the detector efficiency by measuring the saturated detector count rate. One might

näıvely measure this by scanning the laser intensity and measuring the detector counts; however,

this will also cause an increase in background counts due to laser scatter which will grow linearly

with the laser intensity. We instead prepare the ion in

|ψ〉 =
1√
2

(| ↑〉+ | ↓〉) (6.5)

by applying a π/2-pulse before detection and measuring full histograms at each laser intensity,

which will give a double Poisson distribution of observed counts. The difference between the

Poissonian means nbright − ndark is purely due to photons scattered from a bright ion. These

counts nbright − ndark are plotted as a function of detection laser power in Figure 6.8 and level

off with increasing laser intensity, as would be expected for a saturated ion. From this, we can

fit to determine the detector count rate due to photons scattering from a saturated ion. Since we

know from the geometry and the transition linewidth the rate at which photons are incident on the

SNSPD, we can extract a quantum efficiency of 0.44(2) at our operating RF level of 9.1 V. The

error is dominated by the 1 µm uncertainty in the ion height.

6.4.3 Spatial sensitivity

The long-term vision for this technology involves traps with multiple integrated SNSPDs. We

first need to be confident that detector counts come from an ion directly over the detector instead

of from a neighboring ion. To quantify the sensitivity of the detector to fluorescence from ions in

different trap zones, we measured the saturated count rate for an ion in various locations along

the trap axis relative to the detector. By measuring the saturated count rate, we can ensure that

imperfect beam alignment on the ion does not impact the measurement. The saturated count rate

as a function of well position is shown in Figure 6.9(b), normalized to the saturated count rate of

an ion centered on the detector. An ion 80 µm from the center of the detector (less than the width

of two trap electrodes) counts photons at less than 2% of the rate of an ion on the center of the
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Figure 6.8: Detector bright count rate vs laser power. In order to cancel out the effect of increasing
dark counts due to laser scatter, this was measured by preparing an ion in a superposition of the
bright and dark states and measuring the difference between the bright and dark Poissonian means.
By fitting the data to Eq. 6.3, we calculate a detector efficiency of 44(2)%.

(a) (b)

Figure 6.9: Normalized saturated ion counts as a function of ion distance from the detector center.
The colors of the points on (b) match the position of the ion shown on (a). With the ion translated
less than 80 µm from the detector center, a distance of less than two electrode widths, the detector
count rate is less than 2% of the count rate from an ion over the center.

detector. This would have only minor impacts on state identification using either a thresholded or

adaptive Bayesian readout method.
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Figure 6.10: Simultaneous 200µs detection of an ion prepared in (| ↑〉 + | ↓〉)/
√

(2) using the
SNSPD and the PMT with the traditional imaging system. Threshold values for each histogram
are indicated as dashed lines. The SNSPD bright count average nbright is 2.5 times larger than that
of the PMT, allowing for improved state discrimination in a shorter time.

6.5 High fidelity state detection using a trap-integrated SNSPD

Using the ARTIQ experimental control system, we can count photons during the same detec-

tion period using both the SNSPD and the PMT integrated with the external bulk imaging system.

This enables apples-to-apples comparisons of the two detection methods, since all calibrations -

beam alignment, micromotion, polarization, etc - will be identical. I show photon count histograms

for an ion prepared in (| ↑〉+ | ↓〉)/
√

(2) in Figure 6.10. In the same detection period, the SNSPD

counts about 2.5 times as many bright counts than the PMT does. A quick visible inspection of this

histograms indicates that the fact SNSPD should have improved detection fidelity, since the bright

and dark state histograms are further spread apart in the same detection time. I will formalize this

instinct and give a detection fidelity number for the SNSPD.

6.5.1 Post-selection

Recall from Chapter 5 that detection fidelity is defined

F = 1− εB + εD
2

(6.6)
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where εB, is the bright state error and εD is the dark state error. Typically, we would measure εB

by preparing an ion in a pure bright state and counting the number of runs that are mislabelled as

dark. Similarly, εD is measured by preparing an ion in a pure dark state and counting the number

of runs that are mislabelled as bright. In systems in which the state preparation error is small

compared to the detection error, this works well. Our experiment shows state preparation errors

at the v 0.5% level, dominated by errors from imperfect optical pumping. These are larger than

the measurement errors we seek to characterize. In order to get a clean estimate of our detection

fidelity, we use post-selection to improve the state preparation fidelity.

Since we have timestamps for all photon arrivals, we can choose the time interval used for

qubit state detection in post processing. For post-selected state preparation, we consider only the

first 50 µs of detection. If in that first 50 µs, we measure a number of counts at or above a certain

threshold nb, we are confident that the ion has been prepared in the bright state. If it at or is

below a different threshold nd, we are confident that the ion has been prepared in the dark state.

If the number of counts is between the two thresholds, we do not use this trial in further analysis.

In this data, we used (nb, nd) = (8, 0). We then consider the detection time to start at the end of

this 50 µs heralding period, and do not use any data from the heralding period in the subsequent

analysis of readout fidelity. This technique gives improved state preparation fidelity, allowing for

more accurate characterization of readout fidelity. The bright and dark state histograms collected

using this method are shown in Figure 6.11(a) for a detection time of 125 µs.

6.5.2 Calibrations for high fidelity detection measurements

The detection fidelity was evaluated using the protocol from [132] described in Section 5.1.4.

We require four independently measured rates for high fidelity state detection:

• P (ni|b): the probability that ni counts will be measured from a bright ion during a given

time bin

• P (ni|d): the probability that ni counts will be measured from a dark ion during a given
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time bin

• PRP : the probability of a repumping event during this bin

• PDP : the probability of a depumping event during this bin

All of these rates are per time bin, where the time bin is the small step used to generate the

detection fidelity as discussed in Section 5.1.4. In the following discussion, we used 1 µs time bins.

We must use a different set of data to calibrate these rates than the data set that we will use to

measure the detection fidelity.

6.5.2.1 Depumping and repumping rates

Depumping and repumping rates were calibrated using data from the conventional imaging

system and PMT. This data was collected simultaneously with the SNSPD data. Since we have

photon arrival time data, these “experiments” can be performed in post-processing.

The depumping rate can be measured by preparing an ion in the bright state and waiting a

variable time. The rate at which the average counts decrease is related to to the depumping rate.

We pick a time tcal > 0 and investigate the histograms at this time. We measure the populations

using thresholding to measure PB(t = tcal) and PD(t = tcal). We then can scale the measurements

of bright counts and dark counts versus time to find PB(t). The slope of PB(t) is exactly the

depumping rate per unit time, assuming the rate is small enough that we can approximate an

exponential decay as a line.

The method for finding the repumping rate is basically the same. We measure counts after

preparing an ion in the dark state and waiting a variable time. We measure the bright and dark

populations using thresholding at some tcal > 0 to obtain a scaling factor to convert counts into

PD(t). The slope of PD(t) is the repumping rate per unit time.

In previous work, the final high fidelity results were relatively insensitive to the exact re-

pumping and depumping rates [132] and that holds in this case as well. Varying these rates by
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10% in the detection fidelity calculation below gave only minor corrections to the final detection

fidelity, well within the statistical uncertainty.

6.5.2.2 Bright and dark measurement rates

We also need to independently measure P (ni|b) and P (ni|d), the probabilities that a bright

and dark ion, respectively, will produce ni detection events in a given time bin. These will each be

Poisson distributed, so we simply need to find the mean of the respective distributions as a function

of time to extract a count rate. We cannot use the same dataset that we use for determining the

readout fidelity. However, recall that in the post-selection process, 21% of the nominally “bright”

runs and 48% of the nominally “dark” runs were dropped. These unused data sets can be used to

calculate the bright and dark Poisson parameters needed. Our goal is to find λB(td) and λD(td),

the Poissonian parameters for the bright and dark states as a function of integrated detection time.

We can build a histogram for every td and fit to a Poissonian to obtain λB(td) and λD(td). Then

P (ni|b) =
λ2
B(tbin)e−λB(tbin)

ni!
(6.7)

and correspondingly,

P (ni|d) =
λ2
D(tbin)e−λD(tbin)

ni!
, (6.8)

where λB(tbin) and λD(tbin) are obtained by fitting to the extracted slopes of λB(td) and λD(td),

which are linear in detection time.

6.5.3 SNSPD readout fidelity

Eqs. 5.10 and 5.11 give P (b|{n0, ..., ni}) and P (d|{n0, ..., ni}) where {n0, ..., ni} is a sequence

of the numbers of clicks in each of i time bins. These probabilities depend on the probabilities of

depumping and repumping PDP and PRP and on the probabilities P (ni|b) and P (ni|d), which can be

measured as described above. In general, one would calculate P (b|{n0, ..., ni}) and P (d|{n0, ..., ni})

for an increasing number of bins until one of them reaches a desired error threshold, at which point

the calculation would terminate and the state would be declared to be determined. Using this
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Figure 6.11: (a) Histograms generated from the bright- and dark-ion preparations after post-
selection, with a 125 µs detection time. (b) Detection fidelity as a function of readout time for
both a threshold method and adaptive Bayesian scheme, following the scheme described in [132].
Thresholding gives a maximum detection fidelity of F = 99.88(1)%, while the adaptive Bayesian
method gives F = 99.91(1)% with approximately 1/3 the average detection time

method, we can calculate bright state and dark state errors as described in Section 6.5.1. The

infidelity as a function of time is shown in Figure 6.11(b). This method reaches a higher fidelity

than the threshold method in a shorter time. We ultimately achieve F = 99.88(1)% fidelity in

125 µs using thresholding and F = 99.91(1)% fidelity in 46 µs using the adaptive Bayesian method.

6.6 Ion heating due to the SNSPD

One of the major questions about this detector is what effect it will have on the ion. Tra-

ditional detection involves a sensor that is very distant from the ion. Here we discuss a detector

situated just one ion-electrode distance away. Further, the detection process involves the produc-

tion of a fast voltage pulse which may heat or excite the motion of the ion. We are not concerned

with heating during the detection process, as the detection later will be the dominant source of

heating or cooling during readout. However, if other laser-based operations, such as stimulated Ra-

man transitions, induce an elevated heating rate, this will limit our ability to perform interesting

quantum algorithms over the detector.

The average motional occupation of an ion at the Doppler limit depends on the frequency as

ω

(
n̄+

1

2

)
|x̂i · k̂Dop|2 =

γ

2
(6.9)
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Figure 6.12: Heating rate as a function of the rate of detector events during the delay. The trend
is roughly linear, indicating a rate of 0.010(4) quanta of heating per detector event.

[84]. By working at a high enough trap secular frequency, we can start at a lower average motional

occupation that gives the measurable sideband imbalance we need for a heating rate measurement.

For heating rate measurements over the detector, we Doppler cooled to approximately n̄ = 2 in a

trap with axial frequency ωax = 5.34 MHz and a 45◦ angle between the cooling beam and the axial

mode.

The heating rate in the conventional way: cool the ion motion, wait for a variable delay

time, and measure the the final temperature using a motion-adding/motion-subtracting sideband

imbalance. By fitting n̄ versus time to a linear fit, a heating rate was measured to be 108(14)

quanta/s. This corresponds to an electric field nose level ωSE(ω) = 1.56× 10−5 V2/m2, consistent

with other cryogenic heating rates given the trap with an ion-electrode distance of 35 µm, as shown

in Figure 4.27.

However, as I have mentioned, we were not able to sideband cool to the motional ground

state while the ion was over the detector. We attribute this to heating due to detector “clicks.”

Since the RF pickup in the nanowire is such that the detector cannot truly be turned off, any stray

light incident on the detector will cause detection events, albeit with reduced efficiency relative

to when an external bias current is applied. These events are fast voltage spikes, so they should
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provide fast delta-function impulses to the ion motion, heating it. To test this, we turned on an

off-resonant Raman beam during the variable delay in a heating rate measurement. Although we

tightly focus all laser beams, there is still some residual stray light scattered off the trap; this

residual stray light caused a elevated rate of detector counts during the delay, arising from residual

RF current in the SNSPD. The heating rate is plotted as a function of this rate of detector counts

in Figure 6.12. Based on a linear fit, we estimate 0.010(4) quanta of heating per detector click.

This is a manageable heating level when working with relatively dim beams as are needed for

Doppler cooling and state detection. However, it becomes more challenging when working with

high-intensity Raman beams.

The highest intensity off-resonant Raman beam I used in this measurement generated 21

clicks per millisecond. However, this beam intensity is 300-1000 times reduced in intensity from the

powers that were typically used for Raman sideband cooling in this experiment. A heating rate of

3-10 quanta per millisecond during sideband cooling pulses likely explains why we were unable to

sideband cool over the detector. The axial mode was sideband cooled using 25 10µs pulses, which

would heat the ion 0.75-2.5 quanta. We would likely also be unable to perform laser-mediated

two-qubit gates over the detector, since these also require high-intensity beams.

6.7 Outlook

This is a promising first demonstration of a trap-integrated single photon detector, showing

not only that an on-chip detector continues to operate but that it does so at a level capable or

producing high-fidelity qubit state detection. To return to the four open questions that I identified

previously:

• What effect does the RF trap drive have on the SNSPD performance? It degrades the

performance, but not to a level where the SNSPD fails to operate.

• What is the quantum efficiency of a trap-integrated SNSPD? We measured this as 0.44(2),

a reduction from reported efficiencies in the absence of RF, but an improvement over the
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best commercially available PMTs.

• What is the spatial sensitivity of the SNSPD? The SNSPD count rate is low enough from

ions in neighboring zones that high fidelity parallel readout is not precluded.

• What is the effect of the SNSPD on the ion? The SNSPD does cause an elevated heating

rate, but only in the presense stray laser light. This means we are unable to Raman

sideband cool or perform laser gates over the detector, but the heating rate is similar to

that of the rest of the trap when the light is turned off.

Still, a few issues remain that must be addressed before this technology can be broadly

adopted for quantum computing applications. In particular, the low operating temperature and

sensitivity to on-chip RF would make this a challenging technology for heavier ions than 9Be+ ,

which require higher RF trapping amplitudes that also typically heat trap chip more. However,

for systems using 9Be+, the temperature and RF pickup can be managed to a level appropriate

for trapped ion quantum computing applications. The elevated heating rate due to laser scatter

is a more concerning issue, as cooling to near the ground motional state is a necessary component

of all high-fidelity gates demonstrated to date [16][15]. There are a few approaches that future

experiments could take to address this issue. One approach might be to explore working with a

smaller detector, in which we may be successfully able apply an RF cancellation tone [3]. This

would let us reduce the induced RF currents to prevent detector counts from occurring when the

external bias current is turned off. Another option would be to add a layer of an electrically

conductive but transparent thin film to a future device to shield the ion from the electric fields

generated by the SNPSD.

Another option is to operate the SNSPD in an architecture where there is no need to apply

Raman beams over the SNSPD. The quantum CCD offers a clear solution. In a QCCD-type device,

the SNSPD could be operated in a detection zone, far from sideband cooling, two qubit gates, or

any other operations requiring high-intensity lasers.



Chapter 7

Cold, fast ion transport

Two-qubit gates for ions in a shared harmonic well can be performed on few microsecond

timescales. Two-qubit gates have been demonstrated with 99.8% fidelity in 1.6 µs [43] and with

99.9% fidelity in 30 µs [16]. These gate durations are still long on the timescale of superconducting

qubits, in which gates can be performed on the order of 10’s to 100’s of nanoseconds [140], but

are not the most time-intensive step in a typical trapped-ion quantum algorithm. In the case of

the QCCD, major contributions to the duration of a quantum algorithm come from transport,

separation, and merge steps, each of which are typically performed on hundred’s of microsecond

timescales [64].

To reduce the duration of transport steps in the QCCD, one might näıvely move the well

more quickly. However, accelerating the ion from a well at rest to a moving well imparts momentum

∆p = m∆v to the ion, heating it. If the transport duration is long, ∆v is small and the energy

imparted by momentum kick will be small relative to the energy scale of a harmonic well ~ωsec. For

a faster transport, this momentum kick is proportionally larger and the ion can end up in a highly

excited state after the end of transport. Performing two-qubit gates requires ions to be cooled

to near the ground state of motion [16][15]. We wish wish to avoid require potentially lengthy

recooling after transport, so transport should end with the ion still close to the motional ground

state.

The solution lies in thinking carefully about transport boundary conditions. Starting and

stopping the transport will both give a momentum kick. If the ion were not oscillating in its
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harmonic well, this would not be a problem. The ion would receive equal and opposite momentum

kicks at the start and end of the transport and return to its initial motional state. However, the

ion is oscillating in a harmonic well, and thus the timing of the kicks relative to the phase of this

oscillation must be considered.

7.1 Previous work

Faster-than-adiabatic transport has been performed in three dimensional microstructured

traps that are large compared to surface traps. Ions were transported 370 µm in 8 µs [4] with 0.1

quanta of excitation and 280 µm in 3.6 µs with 0.1 quanta of excitation [5]. Both of these distances

are the width of a single trap electrode (i.e. a single zone in the QCCD) in their respective

experiments. These experiments were performed by transporting the ion with nominally constant

velocity in an integer number of trap periods, in which case the ion theoretically sees exactly

opposite momentum kicks from starting and stopping transport and ends up back in the ground

state. This method is highly sensitive to the exact duration of the transport and requires careful

calibration, making it more complicated to use in a larger QCCD device.

7.2 Theory of fast transport

7.2.1 Classical treatment

For simplicity, start by considering transport classically. I also make the simplifying assump-

tion that the the ion’s motional modes are well-decoupled from each other and we can consider

only the center-of-mass motion along the direction of transport. This is a good assumption for a

single ion or a single-species crystal but breaks in the case of a multi-species ion crystal [141]. The

case of a single ion is discussed in detail, but much of this analysis is identical for the center of

mass mode of a single-species chain.

Consider ion is in a well that is rigidly (i.e. with unchanging frequency) moving. The ion
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sees the potential

Φ(x, t) =
1

2
mω2(x−X(t))2 (7.1)

where X(t) is the time-dependent center of the well, and ω is the well’s (unchanging) secular

frequency.

I will take a moment here for a quick note about nomenclature. There are two positions here

that we must keep track of: the position of the ion and the position of the harmonic well. The

position of the harmonic well is a control parameter that can be changed by applying appropriate

voltages to trap electrodes. The position of the ion is a dependent parameter, which we seek to

understand and control. I denote the position of the ion as x(t) and the position of the well as

X(t).

The ion’s motion in such a potential can be described by the classical equation of motion

F = mẍ = −∂Φ(x, t)

∂x
(7.2)

Consider the simplest case of a well that moves with constant velocity X(t) = vt + X0 from time

t = 0 to t = T :

ẍ = − 1

m

∂Φ(x, t)

∂x
= −ω2(x− vt−X0) (7.3)

(For the time being, I will neglect the fact that a well instantaneously changing from sitting at rest

at time t < 0 and moving with constant velocity at t > 0 requires infinitely acceleration.) For an

ion that starts at rest (ẋ(0) = 0) at the center of the harmonic well (x(0) = X0) (i.e. a well-cooled

and micromotion-compensated ion), this is solved by

x(t) =
( v
ω

)
cos
(
ωt+

π

2

)
+ vt+X0 (7.4)

We wish to transport a distance L in time T . In this simple linear transport scheme, then v = L/T ,

and at time T the ion has kinetic energy

EK =
1

2
m(ẋ(T ))2 =

mL2

2T 2

(
1− sin

(
ωT +

π

2

))2
(7.5)

We wish to find solutions in which EK is minimized at the end of the transport time. This classical

kinetic energy can be expressed in units of “motional quanta” to get a classical estimate of the final
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quantum occupation of the motional mode after transport by

n̄ =
EK
~ω

. (7.6)

The final excitation, in “quanta,” is plotted in Figure 7.1(a) for a single 9Be+ ion transported 45 µm

(approximately the width of a single electrode in the transport trap) in a 2 MHz trap as a function

of the the transport duration. Around 250 µs, the adiabatic transport duration used in [60], the

final excitation is less than one quantum, independent of precise transport duration. As transport

becomes shorter, the excitation is larger. For transport of approximately 100 µs duration, the final

excitation is generally more than 1 quantum, a level which would recooling before performing high

fidelity gates. At shorter time periods (< 10 µs), timescales which are comparable to the timescale

of gates, the excitation can be hundreds or even thousands of quanta.

As can be seen by zooming in in Figure 7.1(b), the final transport excitation is quickly varying

with periodicity equal to the trap secular period 2π/ω. For transport times equal to an integer

number of ion oscillations in the trap T = 2πN/ω, the ion can have low final excitation (n̄ < 1)

after transport.

I have discussed the simple case of a well moving with constant velocity for purposes of

illustration. For more general transport profiles X(t), we can evaluate the profile classically by

numerically solving Eq. 7.2 and evaluating n̄(T ).

7.2.2 Quantum Treatment

In a quantum mechanical picture, the ion motion is described by the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2(x̂−X(t))2 (7.7)

where, again, we are considering a rigid well with unchanging trap frequency ω with time-dependent

well minimum position X(t). As is derived in [71], the equation of motion of an ion in state |ψ̃〉

relative to the moving frame of the well is identical to the equation of motion of a displaced coherent

state

∂

∂t
|ψ̃〉 = i~

√
mω

2~
Ẋ(t)

(
â†eiωt − âe−iωt

)
(7.8)
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(a) (b)

Figure 7.1: Final excitation n̄ = EK/~ω after a constant velocity, 45 µm transport of a 2 MHz, as
a function of transport duration, (a) plotted from T = 0 to 250 µs, the transport time used in [60],
and (b) zoomed in to see the fast oscillations. The final excitation oscillates quickly at the secular
frequency ω. For transport times shorter than 100 µs, the ion’s final excitation will be more than 1
quantum unless the transport time is carefully calibrated. If the transport time is exactly an integer
number of trap periods T = 2πN/ω, the final excitation can still be well below one quantum.

with displacement parameter

α(t) ≡ Ẋ(t)eiωt
√
mω

2~
(7.9)

[142]. This can be integrate to find

α(t) =

√
mω

2~

∫ t

0
Ẋ(t′)eiωt

′
dt′ (7.10)

To find transport profiles with low net excitation, the goal is to find X(t) such that α(T ) = 0 at

the end of the transport. We allow nonzero α(t) for values of t during transport, as long as net

displacement at the end of the transport is zero.

The expected value of the ion’s final position in the lab frame is

x(t) = X(t)−
∫ t

0
Ẋ(t) cos[ω(t− t′)]dt′ (7.11)

[71]. In the simplest case of a constant velocity transport, Ẋ(t) = v = L/T , where L is the distance

of transport and T is the transport duration, so

x(t) =
Lt

T
− L

T

∫ t

0
cos[ω(t− t′)]dt′ = L

T

(
t− 1

ω
sin(ωt)

)
(7.12)
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The ion velocity is then

ẋ(t) =
L

T
(1− cos(ωt)) (7.13)

This is identical to the classical result. The quantum treatment is illustrative of how we can find

more transport profiles X(t) that give a low final motional excitation. In particular, this gives us

a place to look for solutions which are relatively insensitive to calibration errors and which might

scale more favorably to larger systems with more degrees of freedom.

7.2.3 Transport of ion chains

For transport of multi-ion crystals, we must consider not only the externally applied harmonic

potential but also the Coulomb interaction between ions:

Ĥ =
∑
i

 p̂2
i

2mi
+

1

2
miω

2(x̂i −X(t))2 +
1

4πε0

∑
j>i

e2

|xi − xj |

 (7.14)

In general, solving the Hamiltonian fully accounting for the Coulomb interaction is a hard problem.

In the limit of small oscillations about the ion equilibrium position, we can work in the normal

mode-picture, discussed in Section 2.2.3. In this picture, the Hamiltonian of an N ion crystal

can be approximated as a sum of 3N harmonic oscillators. The treatment of a transported ion

crystal should be identical to the treatment of a single ion discussed above, with minor adaptations

to replace harmonic oscillator operators with sums over 3N operators. In the case of a rigid

harmonic well that is translated axially, only the center-of-mass (COM) mode should be excited by

the transport, so transport profiles that translate a single ion with low net excitation should also

transport a single-species ion chain with low net excitation.

Much of the ion trapping community has begun to move towards mixed-species operation

[143][61]. Mixed-species crystals are challenging because the modes can no longer be treated as inde-

pendent harmonic oscillators, so this treatment of ion transport would not apply to a mixed-species

crystal. Although theoretical proposals have suggested methods for fast multi-species transport

[141], these have not been implemented to date.
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7.2.4 Finding transport profiles

The above discussion presents methods for understanding ion motion during transport and

for predicting the final ion motional state occupation n̄ after applying a transport profile X(t).

However, we wish to have a method to derive optimal transport profiles X(t) such that n̄ is

minimized after transport is minimized.

We choose desired boundary conditions for transport profiles, where X(t) is the position of

the well as a function of time:

X(0) = 0 (7.15)

X(T ) = L (7.16)

Ẋ(0) = 0 (7.17)

Ẋ(T ) = 0 (7.18)

namely, the well should move from X = 0 to X = L in time T . Further, the well should start and

end at rest. This requirement is not fulfilled by constant velocity transport, which assumes that

the well can instantaneously jump from sitting at rest to moving with constant velocity. The final

boundary condition is that the ion should experience no net displacement relative to the frame of

the well, from Eq. 7.10:

α(t) =

√
mω

2~

∫ t

0
Ẋ(t′)eiωt

′
dt′ = 0 . (7.19)

To find an X(t) that fulfills these boundary conditions, make the ansatz

X(t) =
L

2
+

N∑
n=1

an cos

(
(2n− 1)πt

T

)
(7.20)

for some maximum number of terms N. This automatically fulfills the derivative boundary condi-

tions Ẋ(0) = Ẋ(T ) = 0. Eq. 7.15 and Eq. 7.16 both set the constraint

N∑
n=1

an = −L
2
. (7.21)

For readability, I will make the definition

Cn(ω, T ) ≡ −π(2n− 1)

T

∫ T

0
sin

(
(2n− 1)πt

T

)
eiωtdt =

1 + eiωT

(ωT/(2n− 1)π)2 − 1
. (7.22)
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In this case, the displacement boundary condition Eq. 7.19 can be rewritten

N∑
n=1

anCn(ω, T ) = 0 (7.23)

Noting that 1 + eiωT is a common factor, I will make the further definition

C̃n(ω, T ) ≡ 1

(ωT/(2n− 1)π)2 − 1
(7.24)

from which we can rewrite Eq. 7.19 as

N∑
n=1

anC̃n(ω, T ) = 0 . (7.25)

Eqs. 7.21 and 7.25 make a system of two linear equations. This can be analytically solved for

N = 2, and the solution {a1(ω, T ), a2(ω, T )} defines the transport profile X(t) that I have used

in these experiments. If more terms are included in the sum, i.e. N > 2, the problem is un-

derconstrained. Optimization of this underconstrained problem could yield more robust or more

physically achievable transport profiles. As a first demonstration I have chosen to work with the

N = 2 profiles.

7.3 Waveform Generation

I have discussed finding transport profiles X(t) that are optimized to minimize ion excitation

at the end of the transport. However, these profiles must be physically implementable in the lab.

I will describe the generation of a set of voltage waveforms {Vel(t)} for each of the 23 electrodes of

the transport trap that produce the desired transport profile.

7.3.1 Fast DACs

These waveforms are generated on fast arbitrary waveform generators, nicknamed “PDQs,”

as described in [116]. The limiting factor in our ability to produce quickly changing voltages is set

by the AD8250 output amplifiers. These amplifiers have a maximum amplitude of ±10 V. The

slew rate was measured to be > 35 V/µs for every PDQ. These amplifiers, combined with the low-
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pass filters on the trap electrodes, are the limiting factor in our ability to produce fast transport

waveforms.

7.3.2 Finding potentials

The transport profile X(t) is continuous in time. In order to find the transport potentials, we

break this profile up into discrete time steps Xi(ti). In the work described, we have used 16 discrete

time steps per “trap zone,” i.e. 16 steps per 44 µm of travel. At each time step, we generate a set of

voltages {Vel,i(ti)} that produces a well with the desired position Xi(ti) using the method described

in Section 2.3.1. As discussed in that section, solving to find the voltages that produce a well at

the desired location with appropriate curvatures is an underconstrained problem, and multiple sets

of voltages can produce first-order identical harmonic wells. We can then choose within this class

of voltage sets to find an optimum solution. The waveforms were optimized to maximize transport

speed using two cost functions:

• Voltage smoothness: The voltages on each electrode should vary as slowly as possible

in time. This is achieved by cost function

CV S =

imax−1∑
i=0

|Vel,i+1 − Vel,i| (7.26)

that applies a penalty for large variations between the voltage on electrode el at timestep

i and i+ 1.

• Electrode contribution strength: The voltages on each electrode should have a non-

negligible impact on the shape of the potential. This is achieved by cost function

CECS =
∑
el,i

|Vel,i|
| ~Eel,i|2

(7.27)

where ~Eel,i is the electric field produced at the ion position Xi(ti) in time step i due to

the voltage Vel,i on electrode el. This applies a penalty for large voltages that produce

small electric fields at the ion location and tends to keep voltages at zero if they have little

impact on the properties of the confining well.
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Figure 7.2: A first order RC filter, used to limit electric field noise in this experiment. This has a
3 dB cutoff frequency f3dB = 1/(2π

√
RC).

The full cost function is a weighted sum of both of these

C = wV SCV S + wECSCECS . (7.28)

The weighting is chosen by manually varying wV S and wECS to find the shortest transport duration

where the necessary voltages could be produced by the fast DACs.

There is also a constraint that requires |Vel,i| ≤ 10 V for all electrodes and times.

7.3.3 Predistortion

As discussed in Section 4.2.5, there are low-pass filters on each electrode to reduce electric field

noise at the ion. The 3dB cutoff frequency of the filters used in these experiments are 5− 23 kHz,

so they will attenuate the fastest-varying components of the waveforms and distort the waveforms

produced by the fast DACs. We must instead generate waveforms that are predistorted, i.e. that

have the effect of the filter taken into account. This ensures that the waveform after the filter will

look as designed.

The filter circuit is shown in Figure 7.2. By consideration of Kirchoff’s current law, we can

determine the relation between Vin(t) and Vout(t) as

Vin(t) = Vout(t) +RCV̇out(t) . (7.29)

We wish to use this to derive Vin(t), the predistorted waveform that produces Vout(t), the desired
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Figure 7.3: Predistorted and target waveforms on electrode DC4 for a transport profile in which the
ion is transported four trap zones (176 µm) and back in 5 µs. The target waveform is shown in green.
The predistorted waveform assuming a first-order RC filter is shown in blue. The predistorted
waveform for a second order filter, accounting for line resistance and parasitic capacitance, is
shown in orange.

waveform on the electrode. This is simply a matter of calculating Vout(t) and V̇out(t) and plugging

them into Eq. 7.29. A predistortion of a sample waveform (green) for (R,C) = (6.8 kΩ, 1 nF) is

shown in Figure 7.3 in blue.

This relationship can also be considered in the frequency domain by noting that the circuit

can be modeled as a voltage divider. The voltage on the electrode Vout(ω) is then

Vout(ω) =
ZC

ZC + ZR
Vin(ω) =

1/iωC

1/iωC +R
Vin(ω) =

1

1 + iωRC
Vin(ω) (7.30)

This can be used to determine the 3 dB cutoff frequency for the filter, i.e. the frequency f3dB at

which the output power (which is proportional to |Vout|2) is reduced from the input power by 3 dB.

In the first order filter shown in Figure 7.2,

f3dB =
1

2πRC
(7.31)

Two sets of filters were used in this trap: “loose” filters, with (R,C) = (6.8 kΩ, 1.0 nF) for
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a corner frequency 23 kHz, and “tight” filters, with (R,C) = (15 kΩ, 2.2 nF) for corner frequency

4.8 kHz. The tight filters are connected to electrodes whose waveforms only vary by small amounts

during transport. The remaining electrodes are filtered by loose filters.

The predistortion is the limiting factor in our ability to generate fast transport profiles. The

most quickly varying components of the waveform overshoot the target voltage, as can be seen in

Figure 7.3. We are unable to generate waveforms with larger than ±10 V, so we are speed-limited

to the transport duration at which the overshoot hits this ±10 V limit. There is some variation

depending on the specific waveforms, but we are limited by the fast DACs to waveforms that move

an ion with an approximate average speed 15 µm/µs. For faster waveforms, the maximum voltages

on the predistorted waveforms exceed the ±10 V limit of the DACs.

7.3.3.1 Higher order effects

The prior discussion holds for a filter that can be well-described as a first order RC fil-

ter. The cryostat wiring has non-negligible parasitic capacitance and line resistance (Rs, Cs) ≈

(150 Ω, 125 pF). This stray resistance and capacitance are small compared to the filter values and

only have a minor effect on the filter behavior at low frequencies. At higher frequencies, the stray

resistance and capacitance have more of an effect on the filter attenuation.

To lowest order, the filter circuit accounting for stray resistance and capacitance can be

modeled as the second-order RC filter drawn in Figure 7.2. By consideration of Kirchoff’s voltage

and current laws, we can derive the characteristic relationship between input and output waveforms

in this circuit as

Vin(t) = Vout(t) + (RC +RCS +RSCS) V̇out(t) + (RC)(RSCS)V̈out(t) (7.32)

This can also be expressed in the frequency domain as

Vout(ω) = T (ω)Vin(ω) =
Vin(ω)

1 + i (RC +RCS +RSCS)ω − (RC)(RSCS)ω2
. (7.33)

A predistorted waveform taking second order effects into account is shown in Figure 7.3.

A comparison of T (ω) ≡ Re(Vout(ω)/Vin(ω)) between the the first order and second order filter
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(a) (b)

Figure 7.4: Transfer functions for the (a) loose filters R = 6.8 kΩ, C = 1.0 nF and (b) tight filters
R = 15 kΩ, C = 2.2 nF as a function of frequency. First order transfer functions are shown in
blue, neglecting parasitic capacitance and line resistance effects. Second-order transfer functions,
assuming (RS , CS) = 150 Ω, 125 pF), are shown in red.

approximations is shown in Figure 7.4. This effect is small but should be taken into account for

faster transport profiles, which have more high frequency components.

One question that remains is whether this second-order approximation is appropriate. The

second-order RC filter modeled in Figure 7.2(b) assumes that the stray resistance and capacitance

can be treated as lumped circuit elements; however, they are in fact distributed throughout the

cryostat wiring. The exact transfer function of this system is unknown, and it may impact our

ability to predistort the fastest waveforms accurately.

7.4 Results

We do not have the ability to move our laser beams on the timescales we are interested

in investigating for fast transport, so we investigated waveforms in which we transport a desired

distance, wait some variable wait time, and return. The figure of merit is the change in the ion’s

motional state occupation, measured using the sideband imbalance method. All measurements

were compared to a “calibration scan,” in which the ion was identically prepared and waited in the

start well without being moved for a time equal to the time of transport, wait, and return.

Before all fast transport tests, we compensated for stray fields and axial curvature at every



143

(a) (b)

Figure 7.5: (a) Raman red sideband scan after an ion in a 2.0 MHz well was transported 88 µm
in 25 µs transport with 0.03(2) quanta of heating per transport. The sideband frequency is shifted
after transport by 7.5 kHz for unknown reasons. This behavior requires further investigation. (b)
Net excitation per transport after an optimized transport for transport durations between 25 µs
and 25.5 µs, scanning the duration over a full trap period. For comparison, net excitation per
transport for an ion transported the same distance with constant velocity is shown in teal. There
is only a small range of durations from 25.1 µs to 25.15 µs where the ion is cold enough after
constant velocity transport that the sideband imbalance method of temperature measurement is
useful. At all transport durations, the ion transported using the optimized transport profiles had
lower excitation due to transport than the lowest net excitation achieved with a constant velocity
transport.

Xi(ti) in the transport profile. Particular attention was paid when compensating for axial stray

fields, since axial stray fields push the ion out of the design transport profile. These shims were

added to the transport waveforms {Vel,i} to generate a set of transport voltage arrays accounting for

stray fields. “Buffer points” were added to the end of these arrays to generate a desired wait time,

and then the reverse waveform was attached. These voltage arrays were smoothed by a Gaussian

filter with a width of one time step and then predistorted as described above. Finally, the arrays

were converted into cubic splines to be generated by the fast DACs [116].

Raman sidebands after the ion was transported 88 µm with 25 µs duration are shown in

Figure 7.5(a). This transport is equal to the width of two trap zones, requiring more complex

waveforms than transporting a single zone does. The calibration scan Raman sidebands (in which

the ion was cooled and then waited an identical delay) indicate an ion motional state occupation

n̄ = 0.17(4). The sidebands after transport indicate an ion motional state occupation n̄ = 0.22(2).
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This gives a “per transport” net excitation of 0.03(2) quanta. To confirm that the ion was actually

transported, we also turned on the laser and measured counts during the delay between transporting

and returning, when the ion is not in the initial well. These were indistinguishable from background

laser counts, indicating that the ion was successfully transported out of the initial trap zone.

One unanswered question from these measurements is apparent in the Raman frequency

scan in Figure 7.5(a). The sideband frequency after transport is shifted +7.5 kHz relative to the

sideband frequency in the calibration measurement. This is consistent across measurements and

unexplained. One possible explanation is that the electrode voltages were slightly different at the

times of the two measurement. If this is the case, it would likely be an effect of the RC filters,

indicating that the waveforms were not correctly predistorted. This is likely due to the higher order

filtering effects of stray resistance and capacitance. This behavior merits further investigations.

The final transport temperature did not strongly depend on transport duration. Net exci-

tation per transport for transport durations of 25 µs to 25.5 µs (scanning over a full period of

trap motion) are shown in purple in Figure 7.5(b). The temperature added due to transport is

less than one quantum for all transport durations. In contrast, the motion added per transport

after transporting an ion with constant velocity is shown in teal. Using this method, there is only

a small range of v 50 ns transport duration for which the final trap temperature is cold enough

to be accurately measured using the sideband imbalance technique. Furthermore, the motional

excitation using our new optimized method at all transport durations is less than that of the best

constant velocity transport.

Since we only measured ion temperatures after transporting and return, there is a possibility

that only the “out and back” transport profile is cold but the ion is heated after one-way transport.

To ensure that this was not the case, we scanned the delay time between the two transport segments

If the ion were excited to a coherent state of motion at the end of the first transport, then the

final temperature would depend on delay time. The change in ion temperature due to transport

is plotted as a function of delay time for a 25 µs transport in Figure 7.6. The data are consistent

along the delay times, indicating that the ion motion is not excited after one-way transport.
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Figure 7.6: Change in n̄ for an ion transported 88 µm in 25 µs, delayed variable wait time, and
transported back to the readout zone in 25 µs. The change in temperature due to transport does
not depend on delay duration outside of the error bars, indicating that one-way transport is cold.

At shorter transport durations than 25 µs, the transport was no longer insensitive to transport

duration. The behavior at these shorter transport durations resembled the behavior of ions trans-

ported with constant velocity, in that was possible to find specific transport durations for which the

transport was cold. An example is shown in Figure 7.7(a), in which an ion was transported 88 µm

in 9.1 µs with 0.28(4) quanta of heating due to transport. However, after a 9.2 µs transport, the ion

was heated so much that the ion temperature could not be measured with a sideband imbalance,

shown in Figure 7.7(b). We attribute this to failures in the predistortion arising from the fact

that the exact filter transfer function is unknown. At short transport durations, we are no longer

applying the design waveforms to the electrode so we are no longer able to controllably transport

the ion with no net displacement.

7.5 Summary

We have demonstrated a method for fast, multi-zone transport of ions in surface electrode

traps. This method requires less careful calibration of transport duration than the previously

demonstrated faster-than-adiabatic transport, making it more useful for practical application as

part of a longer quantum algorithm. We have used this method to demonstrated faster-than-

adiabatic transport of ions with less net excitation than has been previously demonstrated in other
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(a)

(b)

Figure 7.7: (a) Raman scan after an ion in a 2.0 MHz well was transported 88 µm in 9.1 µs.
The calibration Raman sideband scan indicates n̄ = 0.14(4) and the Raman sideband scan after
transport indicates n̄ = 0.70(7). This corresponds to 0.28(4) quanta of heating per transport. (b)
Raman scan after an ion in a 2.0 MHz well was transported 88 µm in 9.2 µs. The ion is heated
so much that the sideband imbalance method for measurement of motional state occupation is not
useful.

faster-than-adiabatic transport experiments. At the shortest transport durations, we are limited

by our ability to accurately apply the design waveforms to the trap electrodes.



Chapter 8

Conclusions and future directions

The quantum CCD is just one of many promising visions for scaling the trapped-ion quantum

computer. I have presented work motivated by a QCCD approach. However, it is my hope that the

technical achievements presented in this thesis are of use to the broader ion-trapping community,

beyond the subset of people studying the QCCD.

8.1 Trap-integrated detection

Before this work, SNSPDs appeared to be a good technology for integration into surface

electrode traps, but successful integration had not yet been demonstrated. We have seen that it

is possible to reliably trap ions over a SNSPD with no degradation to ion lifetime. Further, even

with some performance degradation caused by RF pickup, the SNSPD count rates exceed those of

the best commercially available PMTs. This enables qubit state detection in short times and with

high fidelities.

8.1.1 Next-generation trap-integrated SNSPDs

Major challenges still remain before trap-integrated SNSPDs are appropriate for all trapped-

ion quantum computing applications. In particular, the behavior of the detector in the presence of

RF introduces a major challenge for many applications. It is not clear that at present, the detector

could be integrated with any ion other than 9Be+ due to the higher RF amplitudes needed to trap

heavier ions. One possibility to mitigate this effect is to fabricate the detector under a grounded,
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electrically-conductive transparent film such as ITO or similar. This could act as a shielding layer,

protecting the detector from RF pickup. Such a layer would also serve to shield the ion from the

electric field noise caused by detection pulses.

It also may be possible to explore different superconducting materials, possibly with a higher

critical temperature. A higher TC would be helpful for trapping other ions, since the higher ampli-

tude RF used to trap heavier ions would likely heat the cryostat past the 3.65 K limit at which we

were able to operate this device. The higher TC would also be helpful for limiting dependence on

RF pickup and reducing stray detector clicks. If an SNSPD is operated further below its TC , the

“plateau” where detector efficiency is not dependent on bias current level becomes broader. With a

sufficiently large plateau, the reduction in efficiency caused by RF pickup could be reduced or even

eliminated. Additionally, it might be possible to operate in a way where the detector can be fully

turned off by not applying a DC bias current, meaning that stray clicks could be eliminated outside

of the detection window. This would eliminate the ion heating due to detector pulses caused by

stray light and would enable operation of high-intensity lasers over the SNSPD.

8.1.2 Integration into a larger device

Many groups are pursuing integration of more and more components of a trapped-ion quan-

tum computer onto a single chip. On-chip detection using trap-integrated SNSPDs is a major piece

of that puzzle, since it eliminates the need for a bulky objective, camera, and PMT. Other pieces

might include on-chip delivery of cooling and detection laser light or integration of microwave

antennae for two-qubit gates. Integrated optics for delivery of cooling and detection light is a

naturally complementary technology to the SNSPD, since SNSPDs must be operated at cryogenic

temperatures and on-chip laser light delivery has been demonstrated to reduce an ion’s sensitivity

to vibration-induced errors [101].

A larger device could also include multiple detection zones by incorporating multiple spatially-

separated detectors. This would allow us to measure crosstalk from ions simultaneous trapped over

different trap-integrated SNSPDs
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8.2 Fast manipulation of ion chains

In this work, I have presented optimized waveforms for fast transport of ions with reduced

dependence on transport duration that introduced very little motional excitation. This addresses

one piece of the puzzle for fast manipulation of ions chains in the quantum CCD. However, recall

that in order to fully be able to arbitrarily rearrange qubits in the quantum CCD, we need four

operations: transport, separation, merge, and reorder.

8.2.1 Separation

To date, separation has not been performed at timescales comparable to those of laser gates.

Separation has been demonstrated in a “quasi-adiabatic” regime, but has still been within the limit

dω

dt

1

ω2
<< 1 . (8.1)

The fastest cold separation of ions to date has been performed in 55 µs with v 2 quanta of excitation

[4] and in 80 µs with v 4 quanta of excitation [144]. These are both slower and introduce more

excitation than fast transport experiments in the same systems.

One proposal for fast separation that has to-date not been implemented is the idea of a

“release and catch” method of separation. This would involve quickly dropping axial confinement

and letting the ions separate under Coulomb repulsion. These ions would separate coherently. They

could then be caught in harmonic wells after separating a desired distance. The harmonic wells

would have to be a shallower frequency because the ion waveforms will spread during separation.

If this method could be implemented, it could be used to separate two 9Be+ ions in less than

1 µs. This experiment would require the ability to apply very quickly changing trap potentials and

to carefully control the stray field in this trap. Both of these features were demonstrated in the

transport trap, making it an ideal platform for testing this idea.
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and Hartmut Häffner. Electric-field noise from thermally activated fluctuators in a surface
ion trap. Physical Review A, 99(6):1–11, 2019.

[59] M Natarajan Chandra, G Tanner Michael, and H Hadfield Robert. Superconducting nanowire
single-photon detectors: physics and applications. Superconductor Science and Technology,
25(6):63001, 2012.

[60] Ting Rei Tan. High-Fidelity Entangling Gates with Trapped-Ions. PhD thesis, 2016.

[61] C D Bruzewicz, R Mcconnell, J Stuart, J M Sage, and J Chiaverini. Dual-Species, Multi-Qubit
Logic Primitives for Ca + /Sr + Trapped-Ion Crystals. arXiv:1905.13122, 2019.

[62] F. Marsili, V. B. Verma, J. A. Stern, S. Harrington, A. E. Lita, T. Gerrits, I. Vayshenker,
B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam. Detecting single infrared photons with
93% system efficiency. Nature Photonics, 7(3):210–214, 2013.



155

[63] E. E. Wollman, V. B. Verma, A. D. Beyer, R. M. Briggs, B. Korzh, J. P. Allmaras, F. Marsili,
A. E. Lita, R. P. Mirin, S. W. Nam, and M. D. Shaw. UV superconducting nanowire single-
photon detectors with high efficiency, low noise, and 4 K operating temperature. Optics
Express, 25(22):26792, 2017.

[64] Ryan Bowler. Coherent Ion Transport in a Multi-electrode Trap Array. PhD thesis, Univer-
sity of Colorado, 2015.

[65] David J Griffiths. Introduction to Electrodynamics. Prentice-Hall, 3rd edition, 1999.

[66] John Townsend. A modern approach to quantum mechanics. University Science Books, 2000.

[67] Claude Cohen-Tannoudji, Bernard Diu, and Franck Laloe. Quantum Mechanics. Wiley-VCH,
1977.

[68] C. Flühmann, T. L. Nguyen, M. Marinelli, V. Negnevitsky, K. Mehta, and J. P. Home.
Encoding a qubit in a trapped-ion mechanical oscillator. Nature, 566(7745):513–517, 2019.

[69] S C Burd, R Srinivas, J J Bollinger, A C Wilson, D J Wineland, D Leibfried, D H Slichter,
and D. T.C. Allcock. Quantum amplification of mechanical oscillator motion. Science,
364(6446):1163–1165, 2019.

[70] Katherine C. McCormick, Jonas Keller, Shaun C. Burd, David J. Wineland, Andrew C. Wil-
son, and Dietrich Leibfried. Quantum-enhanced sensing of a single-ion mechanical oscillator.
Nature, 572:86–90, 2019.

[71] Hoi Kwan Lau and Daniel F V James. Decoherence and dephasing errors caused by the dc
Stark effect in rapid ion transport. Physical Review A - Atomic, Molecular, and Optical
Physics, 83:062330, 2011.

[72] Peter Maunz. High Optical Access Trap 2 . 0. Technical report, Sandia National Laboratories,
Albuquerque, NM, 2016.
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lenković, C. Langer, T. Rosenband, and D. J. Wineland. Experimental demonstration of a
robust, high-fidelity geometric two ion-qubit phase gate. Nature, 422(6930):412–415, 2003.

[89] D. M. Meekhof, C. Monroe, B. E. King, W. M. Itano, and D. J. Wineland. Generation of
nonclassical motional states of a trapped atom. Physical Review Letters, 76(11):1796–1799,
1996.

[90] M E Poitzch, J C Berquist, W M Itano, and D J Wineland. Cryogenic linear ion trap for
accurate spectroscopy. Review of Scientific Instruments, 67:129, 2016.

[91] P B Antohi, D Schuster, G M Akselrod, J Labaziewicz, Y Ge, Z Lin, W S Bakr, and I L
Chuang. Cryogenic ion trapping systems with surface- electrode traps. Review of Scientific
Instruments, page 013103, 2009.

[92] M F Brandl, M W Van Mourik, L Postler, A Nolf, K Lakhmanskiy, R R Paiva, S Möller,
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Appendix A

Heat load estimation

A.0.0.1 Thermal links

Operation of the trap described in Section 4.2.1 requires 30 electrical connections in addition

to the ground reference:

• 22 DC connections to provide DC trapping potentials

• One coaxial connection to drive the RF trapping potential

• One coaxial cable to drive the microwave antenna providing global qubit spin flips

• One coaxial cable for detector bias current and readout

• One DC connection to drive oven current

• Four connections for a four-wire temperature measurement

In general, we wish to be able to test many devices with this apparatus with quick exchange of

traps, taking full advantage of the reduced requirements for vacuum hygiene that a cryogenic system

enables; therefore, we wish to have many electrical connections, in order to enable functionality

with increasingly complex traps. As an example, consider the “triangle trap” described in [47],

which has two independent trapping regions with 30 and 36 electrodes each; we would require 66

DC connections and two RF lines in order to provide all trapping voltages. We would then require

even more connections to control hardware like oven connections, microwave antennae, temperature

measurement, etc.
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However, one runs into a trade-off when considering large numbers of electrical connections

for cryogenic operation. In normal (non-superconducting) metals, electrical and thermal resistivity

are directly related [128]. So the low electrical resistivity we would typically desire for electrical

connections (particularly for high-current operations) would also provide low thermal resistivity

between the 4 K experimental stage and the 295 K laboratory. We find a solution by considering

the specific needs of our electrical connections. The 22 lines driving our DC trapping potential

generally do not need high current, since these voltages are generally static; thus we can accept

a higher electrical resistance in these lines in order to provide a greater thermal resistance. (This

higher resistance will provide a filtering effect on any time-varying waveforms applied to the trap

electrodes, but that can be compensated for, as I will discuss in Chapter 7) However, the oven

lines, which typically need 1 − 1.5 A to generate sufficient neutral beryllium for loading, must be

much lower resistance; higher resistance lines would not only heat the cryostat substantially but

risk damage with such high currents.

The full wiring configuration in this apparatus is:

• 100 × “high resistance” lines, configured as 4 × 25 wire “looms” (so-called because the

wires are woven together, for robustness). The individual wires are 38-gauge constantan,

which has thermal resistivity of [xxxx] at room temperature and [xxxx] at 4 K (compared

to high purity copper’s [xxxxx], respectively). The looms are configured as 12 twisted pairs

with 1 lone wire. The looms are connectorized with micro-D connectors.

• 8 × “low resistance” lines, for ovens and any other applications which require a lower-

resistance connection to the cryogenic stage. These low resistance wires are kapton-wrapped

30-gauge copper, connected on either end to a PEEK DSUB connector.

• 4 × semirigid coaxial cables. We use [xxx] coax from [xxx], which has a [xxxx] BeCu

core and [xxxx] stainless steel shielding. These cables provide good thermal resistance but

are challenging to work with, due to the stiff stainless steel outer conductor. At the room

temperature and 4 K stages, the stainless steel cables are connected to short lengths of hand
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formable coax, which introduce negligible thermal resistance but enable simpler mechanical

connections.

All cables are thermally and mechanically anchored at the 30 K stage and the 4 K stage.

The looms and the low resistance lines are wrapped around copper bobbins and potted in Stycast

2850FT, a low-outgassing, thermally conductive but electrically resistive epoxy commonly used

for cryogenic potting applications. The four coax cables are thermally anchored by mechanical

connections to the shielding of the SMA connectors.

We can estimate the heat load on the 4 K stage due to the cable connections by assuming

that the thermal anchors are perfectly efficient. In this case, we can treat each wire or cable as

a uniform rod thermally anchored on either end, with the small concession that we must consider

the temperature-dependent thermal conductivities k(T ) of each material:

q = −k(T )
∂T

∂x
(A.1)

Although the thermal conductivity k(T ) is not an analytical function of temperature, this is a

numerically solvable differential equation. There are four configurations we much consider:

• 100x flow from 30 K to 4 K, 38 gauge constantan, 0.5 m: xxx

• 8x flow from 30 K to 4 K, 30 gauge copper, 0.5 m: xxx

• 4x flow from 30 K to 4 K, [xxxx] area stainless steel, 0.5 m: xxx

• Noting that the core of the coaxial cables are not thermally anchored at the intermediate

stage, 4x flow from 295 K to 4 K, xxxx gauge BeCu, 1 m: xxx

This gives us in total 100 mW of heat load from the cabling.

A.0.0.2 Black-body radiation

We know from the Stefan-Boltzmann Law thatan ideal black-body emitter of surface area A

will emit

P = σAT 4 (A.2)
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where σ = 5.67 × 10−8 Wm−2K−4 is the Stefan-Boltzmann constant. Estimating the cryostat as

having a surface area of 1 m2, the cryostat would then absorb 430 W from the ambient room

temperature black-body radiation (T = 295 K), unacceptable for a cryostat with cooling power

1.5 W. Recall that this cryostat has an intermediate stage at approximately 30 K, as illustrated in

Figure 4.1. This intermediate stage has substantially higher cooling power. We anchor a radiation

shield on this intermediate stage, shown in Figure A.1(a) to reflect the bulk of this radiation.

Assuming this radiation shield perfectly thermalizes with the 30 K stage, the 4 K cold stage would

instead absorb 46 mW of black-body radiation, again estimating 1 m2 surface area.

A perfect radiation shield is not appropriate for atomic physics experiments, since we require

optical access for laser addressing and fluorescence imaging. As seen in Figure A.1(a), the radiation

shield has eight 1” viewports for laser access, as well as a 2” viewport on the bottom flange for

fluorescence imaging; we cover two with aluminum shields and install windows in the other six.

These windows are UV fused silica (UVFS), which is transparent at all relevant laser wavelengths.

The UVFS transmission spectrum (shown in blue in Figure A.2) mostly blocks room temperature

blackbody radiation; however, there is a small but non-negligible overlap around 4 µm wavelength.

Integrating over this overlap, the windows transmit 0.07% of incident blackbody radiation, or

1.4 mW.

A.0.0.3 Dissipated RF drive

All Paul traps require an RF drive to trap ions. 9Be+ is a light ion, so we are able to trap with

relatively low rf trapping voltages; we further reduce the trapping voltages needed by applying an

RF drive with a relatively low (for 9Be+) drive frequency of ≈ 67 MHz. Recall that the trap radial

frequencies are proportional to V0/ΩRF [1], so we can achieve comparable trap stability with lower

RF amplitude by lowering amplitude and frequency simultaneously. This comes with the trade-off

of reduced trap depths; however, with the very low rate of background gas collisions provided by a

cryogenic environment, low trap depths are less of a concern.
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(a) (b)

Figure A.1: Radiation shields at (a) 30 K and (b) 4 K. Both are vented to the larger cryostat
vacuum space, with no line-of-sight from the vents to the ions. Laser access is available through
eight viewports; we use six of them, and cover the final two with aluminum shields. Fused silica
windows are installed into the other six.

Figure A.2: In pink: the radiation spectrum for a 293K black-body emitter, normalized to arbitrary
units. In blue: the transmission spectrum for a 10mm uncoated fused silica window. Note that
there is a small but non-negligible overlap around 4 µm.



Appendix B

Trapping Potentials

Table B.1 lists voltages that generate a trap with 2.0 MHz axial frequency in all seven

zones of the detector trap according to simulations using the Biot-Savart method for simulating

trap potentials. These can be adapted to trapping in the transport trap by grounding the ‘det’

electrode.
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Electrode Zone 2 Zone 3 Zone 4 Zone 5 Zone 6 Zone 7 Zone 8

DC1 0.65V 0.67V 0.61V 0.23V 0.20V 0.23V 0.2V
DC2 -1.38 0.13 0.29 0.41 0.24 0.20 0.14
DC3 0.11 -1.07 -0.23 0.56 0.44 0.36 0.23
DC4 1.26 -0.22 1.19 -0.35 0.52 0.62 0.38
DC5 0.55 1.13 -0.35 -1.21 -0.39 0.65 0.45
DC6 0.12 0.63 0.47 -0.18 -1.17 -0.25 0.39
DC7 -0.04 0.11 0.35 0.31 -0.13 -1.06 -0.45
DC8 -0.08 -0.09 0.15 0.30 0.28 -0.08 -0.96
DC9 -0.34 -0.56 0.08 0.61 0.58 0.57 0.28
DC10 0.54 0.61 0.58 0.21 0.19 0.23 0.20
DC11 -1.54 0.04 0.24 0.38 0.22 0.19 0.13
DC12 -0.07 -1.22 -0.33 0.49 0.40 0.35 0.23
DC13 1.15 -0.35 -1.33 -0.48 0.44 0.58 0.37
DC14 0.50 1.06 -0.46 -1.37 -0.54 0.54 0.42
DC15 0.10 0.60 0.41 -0.29 -1.32 -0.43 0.34
DC16 -0.05 0.10 0.33 0.26 -0.21 -1.24 -0.53
DC17 -0.09 -0.09 0.14 0.28 0.25 -0.18 -1.05
DC18 -0.34 -0.57 0.08 0.59 0.56 0.50 0.17
CUL 0.04 -0.01 -0.08 -0.07 -0.07 -0.01 0.03
CLL 0.15 0.08 -0.01 0.01 0.01 0.09 0.01
CUR -0.01 0.14 0.32 -0.06 -0.07 -0.01 -0.06
CLR -0.01 0.14 0.32 -0.06 -0.06 0.13 0.05

Table B.1: Trap voltages that generate a trap with 2.0 MHz axial frequency in all seven trap zones.



Appendix C

Code



Appendix D

Derivation of transport as a displacement operator

In a quantum mechanical picture, the ion motion is described by the Hamiltonian

Ĥ =
p̂2

2m
+

1

2
mω2(x̂−X(t))2 (D.1)

where, again, we are considering a rigid well with unchanging trap frequency ω with time-dependent

well minimum position X(t). Following the derivation in [71], we can shift into the moving frame

of the well using the translation operator

T̂ (X(t)) = exp

(
− iX(t)p̂

~

)
(D.2)

Consider the Schrödinger Equation acting on the translated wavefunction |χ〉 ≡ T̂ (X(t))|ψ〉:

i~
∂

∂t
|χ〉 = i~

∂

∂t

(
T̂ (X(t))|ψ〉

)
= i~

∂

∂t

(
T̂
)
|ψ〉+ i~T̂

∂

∂t
|ψ〉

= i~
∂

∂t
(exp(−iX(t)p̂/~)) |ψ〉+ i~T̂ Ĥ|ψ〉

= Ẋ(t)p̂T̂ |ψ〉+
(
T̂ ĤT̂ †

)
T̂ |ψ〉

=
(
Ĥ0 + Ẋ(t)p̂

)
|χ〉

(D.3)

Move into the interaction picture |χ〉 ≡ exp(−iĤ0t/~)|χ̃〉, so

∂

∂t
|χ̃〉 = i~

∂

∂t

(
exp(iĤ0t/~)|χ〉

)
= −Ĥ0 exp(iĤ0t~)|χ〉+ i~ exp(iĤ0t/~)

∂

∂t
|χ〉

= −Ĥ0 exp(iĤ0t/~)|χ〉+ exp(iĤ0t/~)
(
Ĥ0 + Ẋ(t)p̂

)
|χ〉

(D.4)
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Noting that [Â, f(Â)] = 0, this simplifies to

∂

∂t
|χ̃〉 = exp(iĤ0t/~)Ẋ(t)p̂

(
exp(−iĤ0t/~) exp(iĤ0t/~)

)
|χ〉

= Ẋ(t)
[
exp(iĤ0t/~)p̂ exp(−iĤ0t/~)

]
|χ̃〉

(D.5)

Note that the operator ˆ̃p ≡ exp(iĤ0t/~)p̂ exp(−iĤ0t/~) is a momentum operator in the frame

rotating with Ĥ0 relative to the moving frame.

Up until, this derivation has been entirely general to any rigid moving potential. If the ion

is in a harmonic oscillator potential, then, in a frame rotating with angular frequency ω

Ĥ0 = ~ω
(
â†â+

1

2

)
ˆ̃p = i

√
~mω

2

(
â†eiωt − âe−iωt

)
ˆ̃x =

√
~

2mω

(
â†eiωt + âe−iωt

)
(D.6)

where â†, â are the creation and annihilation operators, respectively. So

∂

∂t
|χ̃〉 = i~

√
mω

2~
Ẋ(t)

(
â†eiωt − âe−iωt

)
= −i~

(
α̇(t)â− α̇∗(t)â†

) (D.7)

where

α̇(t) ≡ Ẋ(t)e−iωt
√
mω

2~
(D.8)


