Surgical Robots and Phantom (Artifact) Devices

Peter Kazanzides Johns Hopkins University November 14, 2006

My Background

1989-1990 Postdoctoral research at IBM on ROBODOC

1990-2002 Co-Founder of Integrated Surgical Systems

- Commercial development of ROBODOC® System
- Commercial sales in Europe (CE Mark)
- Clinical trials in U.S. and Japan

2002-present Research faculty at JHU ERC-CISST

9

Outline

- Surgical robot classifications
 - Surgical CAD/CAM, Surgical Assistants
 - Active, semi-active, and passive
- Review of surgical robots
 - Focus on orthopaedics
- Safety and Performance Issues
- Metrology and Standards

Active or Passive Robots?

- Some ambiguity in terminology
 - Is a robot active by definition because it contains motors?
 - What if motors cannot cause motion?
 - Cobot, PADyC
 - What about an active robot used passively?
 - Instrument guide, etc.

One Classification

• Active: robot autonomously performs part of the procedure

- ROBODOC, Caspar

- Semi-active: robot performs the procedure under direct control of surgeon
 - Acrobot, JHU Steady Hand Robot
- **Passive**: robot does not actively perform any part of the procedure (e.g., positions instrument guide)
 - Neuromate, Galileo, GP System

A comment about active robots

- The goal **is not** to replace the surgeon!
 - Bad for the business
 - Bad for technical reasons as well
- The goal **is** to give the surgeon better instruments
 - coupling information to action
 - "power tools for surgeons"

Outline

- Surgical robot classifications
 - Surgical CAD/CAM, Surgical Assistants
 - Active, semi-active, and passive
- Review of surgical robots
 - Focus on orthopaedics
- Safety and Performance Issues
- Metrology and Standards

Why Orthopaedics?

- Bones are rigid
 - Minimal deformation or motion during procedure (if fixtured)
- Good image contrast
 - Preoperative CT, X-ray
 - Intraoperative X-ray, Ultrasound
- Some high volume applications
 - Total hip and knee replacement
 - Sports medicine (ACL)

Total Joint Replacement

- Goal is to replace failing joint with metal or plastic prosthesis (implant)
 - Position/orientation important for restoring joint biomechanics
 - Prosthesis fit may be important
 - Cementless: rely on bone ingrowth

ROBODOC® System

- First clinical system for orthopaedics
- Initially developed to assist with Total Hip Replacement (THR) surgery
 - machine femur for cementless prosthesis (femoral stem)

Ś

Conventional THR Procedure

- Pre-operative planning using X-rays and acetate overlays
- Surgical preparation using mallet and broach or reamer (relies on surgeon's "feel")

ROBODOC THR Procedure

- Pre-operative planning using 3-D CT scan data and implant models (ORTHODOC®)
- Surgical preparation of bone by robot using milling tool

ROBODOC Benefits

- Intended benefits:
 - Increased dimensional accuracy
 - Increased placement accuracy
 - More consistent outcome

Broach

ROBODOC Hip Surgery (1995)

(Pin-based registration)

Credit: M. Börner, A. Bauer, A. Lahmer, BGU Frankfurt

Copyright © CISST ERC, 2006

ROBODOC Knee Surgery (2000)

Credit: M. Börner, A. Bauer, A. Lahmer, BGU Frankfurt

ROBODOC Status

- Approximately 50 systems installed worldwide
 - Europe (Germany, Austria, Switz., France, Spain)
 - Asia (Japan, Korea, India)
 - U.S. (Clinical trial for FDA approval)
- Over 10,000 hip replacement surgeries
- Several hundred knee replacement surgeries
- ISS "ceased operations" on June 2, 2005
- ISS resumed operations in Sept. 2006 (investment by Novatrix Biomedical)

9

Other Robots for Hip/Knee Surgery

- Large, floor-mounted robots
 - ROBODOC, <u>CASPAR</u>, <u>Acrobot</u>
 - Research systems at Univ. Washington,
 Northwestern Univ., Rizzoli Clinic (Italy)
- Compact, bone-mounted robots

 <u>MBARS</u>, Arthrobot, Galileo, <u>Praxiteles</u>, GP System
- Hand-held robots
 - <u>PFS</u>, ITD

CASPAR™ System

- Direct competitor to ROBODOC
 - Introduced 1997 by Orto Maquet
 - About 50-100 installations
 - Total hip and knee replacement
 - ACL repair
 - No longer in business

Acrobot System

- Developed at Imperial College, London
- Currently being commercialized for knee surgery
- Active constraint control: surgeon moves cutting tool (force control), robot restricts motion based on preoperative plan

- Semi-active robot

Acrobot System

Courtesy of Acrobot Co. Limited, UK

Copyright © CISST ERC, 2006

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

MBARS

- Mini Bone-Attached Robotic System
- Developed at CMU
 - developer now at Technion
- Small parallel robot for knee surgery (patello-femoral arthroplasty)

Courtesy of Alon Wolf, Ph.D.

NSF Engineering Research Center for Computer Integrated Surgical Systems and Technology

Praxiteles

- Developed by Praxim-Medivision (France)
- Integrates with Surgetics navigation system
- Two active joints to position saw/drill guide
- Developed for knee surgery

Courtesy of Christopher Plaskos, Praxim-Medivision

PFS

- Precision Freehand Sculptor, developed at CMU
- Position of hand-held tool tracked by optical navigation system
- Computer-controlled retractable blade
 - Retracted when bone should not be cut

Courtesy of Gabriel Brisson, CMU

Outline

- Surgical robot classifications
 - Surgical CAD/CAM, Surgical Assistants
 - Active, semi-active, and passive
- Review of surgical robots
 - Focus on orthopaedics
- Safety and Performance Issues
- Metrology and Standards

Safety and Performance Issues

Q: What are people most worried about?

- 1. Robot going out of control ("going crazy")
- 2. Robot with large errors ("off by a mile")
- 3. Robot with small errors ("off by a few mm")
- 4. Robot being misused ("user error")
- A: Depends on who you ask*
 - General public? Surgeons? Patients? FDA?
 - My vote (developer): #3, followed by #4
 - *And on the application

The Problem of Small Errors

- Can be caused by many factors
 - Calibration error (of robot or robot tool)
 - Registration error (e.g., robot to preoperative plan)
- Difficult for humans to detect
- This issue is not unique to autonomous robots.
 - If a "trusted" passive robot or navigation system positions an instrument guide in the wrong place, the surgeon will perform the procedure in the wrong place!
- Metrology and standards can address this

Still Have to Worry About...

- Don't let robot get out of control
 - Good engineering techniques exist
 - Risk management
 - Fail-safe or fault-tolerant design
 - Standards (beyond IEC 60601) may be needed
- Enable surgeon to detect/prevent errors
 - The surgeon must always be informed and in control!
- Ensure that robot is used correctly
 - Human factors design (UI standards?)
 - Training

9

Safety Design

- Fail-Safe: system fails to a safe state (e.g., turn off robot motor power)
 - Many medical devices (if surgeon can remove device and finish manually).
- Fault-Tolerant: system continues to operate in presence of failures
 - Aircraft, critical life support equipment

Safety Design

- Q: How large of an error is tolerable before the system fails to a safe state?
- Example: Software comparison of primary and redundant robot position sensors:
 - Performed periodically (sample period ΔT)
 - Error tolerance, E, to account for differences in sensor performance, synchronization of readings, etc.

MaxError = E + $V_{max}^*\Delta T + \Delta P_{off}$

V_{max} = maximum velocity

 ΔP_{off} = robot stopping distance

MaxError can be several millimeters!

- Primary encoder (failed)
- Redundant encoder

Safety Design

- Q: How large of an error is tolerable before the system fails to a safe state?
- A: Depends on the application (consult application expert/surgeon)
- ROBODOC Case: Although position accuracy of cavity must be within 1 mm, a "glitch" of several millimeters would be acceptable
- For systems operating near critical structures, this would not be acceptable; possible solutions:
 - Reduce V_{max} , ΔP_{off} , ΔT
 - Decoupled kinematics, such as RCM robot
 - Passive systems

Safety Design Approaches

- Eliminate (undetected) single points of failure:
 - Redundant sensors
 - Sensors to detect failures in other components
 - Redundant software
 - Periodic diagnostic testing
 - Watchdogs
- Ensure that safety system(s) can act independently
 - Often achieved via hardware "safety loop"

8

Safety Design Approaches

- Design system with minimum (speed, torque, workspace, ...) needed for task
 - Reduce severity of failure (S)
- Involve user in safety loop:
 - Enhanced information display
 - Controls: stop button, deadman switch, ...

Outline

- Surgical robot classifications
 - Surgical CAD/CAM, Surgical Assistants
 - Active, semi-active, and passive
- Review of surgical robots
 - Focus on orthopaedics
- Safety and Performance Issues
- Metrology and Standards

Metrology and Standards

- Accuracy of surgical robots and navigation systems is critical
 - Many applications require sub-millimeter accuracy
 - Can systems satisfy this requirement?
- Clinically achieved accuracy is "bottom line"
 - Difficult to measure routinely
 - Some studies have used postoperative CT
 - Alternative is to test with phantoms (artifacts)
 - Try to replicate clinical conditions as much as possible
 - Ultimate goal is "task specific measurement uncertainty"

ASTM F04.05 Committee

- "Standard Practice for Measurement of Positional Accuracy of Computer Assisted Surgical Systems"
 - Draft standard in development
 - Initial focus is on accuracy of underlying measurement device (e.g., optical, mechanical, electromagnetic) using generic phantom

ISO 10360

- Set of standards for Coordinate Measuring Machines (CMMs)
 - 10360-1: Vocabulary
 - 10360-2: CMMs for measuring size
- Measure one point at each end of test object
- Size measurement error, MPE_E

```
MPE_{E} = \pm min(A+L/K, B)MPE_{E} = \pm (A+L/K)MPE_{E} = \pm B
```

where L is the length and A, B, and K are constants

NIST Phantom

- Designed to mimic hip joint
 - Quantify "task specific measurement uncertainty"
- Uses magnetic ball-and-socket joint

Courtesy of Nicholas Dagalakis, NIST

Summary

- Robots can implement "Surgical CAD/CAM" and/or be "Surgical Assistants" that extend surgeon's capabilities
- Most surgical robots have similar safety and performance issues:
 - 1. Must maintain control (no "runaway")
 - 2. Must meet accuracy requirements
 - 3. Must be used correctly
- Metrology and standards to address this F04.05 focusing on accuracy (#2)

