Tensile Ductility and Localized Fracture of AHSS

Xin Sun Pacific Northwest National laboratory

Workshop for Addressing Key Technology Gaps in Implementing Advanced High-Strength Steels for Automotive Lightweighting

Pacific Northwes NATIONAL LABORATORY

Key Technology Gaps in Implementing 1st GEN Advanced High Strength Steel – Ductility and Localized Fracture

- Ductility under uniform loading:
 - Macroscopic phenomenological approach
 - Meso-scale microstructure based approach
- Fracture under localized loading:
 - Occurs in bending (especially under tension)
 - Edge stretching
 - Conventional FLD does not apply
 - Difficult to predict analytically

MIT's fracture modeling framework

Fracture calibration tests

A complete representation of various stress states and ranges covered by various tests

Hybrid experimental-numerical calibration

Various types of fracture specimens

Careful correlation between experiments and FEA ensures accurate local strain and stress state evolution

Results: Fracture initiation location

Square punch

Failure location shifting is accurately predicted.

Predicting AHSS Ductility under Uniform Deformation – PNNL

- Microstructure based finite element analyses developed to predict tensile ductility and FLD of 1st Gen AHSS:
 - DP980:
 - Effects of martensite mechanical properties on behavior of DP980
 - Effects of martensite morphology on forming behavior of DP980
 - Effects of martensite volume fraction on DP steel properties:
 - Stress vs. strain behaviors
 - Failure driving force
 - TRIP800:
 - Transformation kinetics under different loading conditionsrthwest simulated
 Proudly Operated by Battelle Since 1965

Meso-Scale Finite Element Modeling of AHSS Based on Actual Microstructure

Effects of Loading Conditions on the Failure Mode

Case A – Free lateral edges

Sun et al, Int. J. Plasticity, 2009.

Effects of Martensite Mechanical Properties on Tensile Behavior of DP980

Effects of Martensite Volume Fraction and Ferrite Ductility on Ductility of DP Steels

Effects of Martensite Volume Fraction and Voids on Failure of DP Steels

Micrographs from EWI's A/SP Shear Fracture Project Update 9-10-2008

Proudly Operated by Battelle Since 1965

TRIP800 – Modeling of Phase Transformation and Ultimate Ductility Under Different Loading Conditions

Choi, et al., Acta Mater., 57, pp. 2592-2604, 2009.

Modeling of Phase Transformation and Ultimate Ductility for TRIP800 Under Different Loading Conditions

Effects of Retained Austenite Stability on Ductility and Formability of TRIP800

- \blacktriangleright Critical value of Π_c was varied to investigate the influence of austenite stability.
- Higher austenite stability is beneficial in increasing the ductility of TRIP steels since it delays the martensitic transformation.
- In turn, improved ductility results in better formability.
- Improvement of formability can be more prominent than shown in the figure below, depending on the phase properties, microstructures, etc.

Prediction of Loading Path Dependency of FLD for AHSS

Choi, et al, Comp. Mat Sci., 2011, submitted.

16

Proudly Operated by Battelle Since 1965

Effects of Loading Rate on Tensile Ductility of TRIP800 Steel

- Dynamic stress versus strain curves needed for crash simulations of energy critical parts
 - Strength
 - Ductility
 - Energy absorption
- No national or international standards on dynamic tensile test
 - Set up
 - Sample design
 - Data acquisition
- Reported inconsistency in open literature, in particular for ductility of AHSS

Pacific No NATIONAL LABORATORY

Strain Rate Sensitivity of Ductility for IF Steels

Fig. 4. Specimens after tensile tests at nominal strain rates of 750/s (left) and of 0.001/s (right).

Kuroda et al. *Int. J. Solid Struct.*, 2006. Mirza et al., J. Mat. Sci., 1996.

- Ductile to brittle transition: Ductility is significantly reduced at high strain rate:
 - Changes in the mobile dislocation density
 - Thermal softening

Pacific Northwest NATIONAL LABORATORY

Strain Rate Sensitivity of DP600

Yu et al. Mat. And Design, 2009.

Proudly Operated by Battelle Since 1965

NATIONAL LABORATORY

Strain Rate Sensitivity of Ductility on TRIP700

Mostly focused on strength and hardening behaviors

a gauge length of 5mm and a radius of 1mm.

Pacific Northwest NATIONAL LABORATORY

Van Slycken et al., Mat Sci Eng A 2007.

Experimental Procedures in This Study

- Quasi-static tensile test:
 - ASTM E-8 subsized sample
 - Miniature tensile sample
 - Displacement scaling
- Dynamic tensile test:
 - Kolsky tension bar test
 - Miniature tensile sample

• Guzman et al., Meas. Sci. Tech., 2011.

Results on Geometry and Strain Rate Effects

• Sun et al. Mat. Sci. Eng. A., in press 2011.

Proudly Operated by Battelle Since 1965

22

High Rate Deformation Mode Confirmed with High Speed Camera Images

Frame 1: T = 0-microseconds 0% strain
(a)

Frame 5: T = 105-microseconds 1% strain (b)

Frame 15: T = 315-microseconds 30% strain

Effects of Strain Rate on Ultimate Ductility

NATIONAL LABORATORY

Possible Reasons for Enhanced Ultimate Ductility under High Rate Loading

Inertial stabilization theory

- Non uniform deformation suppressed by inertia at high strain rate
 - Shenoy and Freund, 1999
 - Seth et al., 2005
 - Why TRIP not IF steel?
- Adiabatic heating
 - Distributed nature of thermal softening
 - Grain elongation, rotation and alignment
 - Similar to high strain rate superplasticity of MMC?

Proudly Operated by Battelle Since 1965

Adiabatic Heating at High Rate – Distributed vs. Localized

Matrix Grain Rotation and Grain Boundary De-cohesion

Quasi-static

• Sun et al. Mat. Sci. Eng. A., in press 2011.

Proudly Operated by Battelle Since 1965

High Rate Localized Amorphism in ASB – TWIP

(a)

Fig. 2. Schematic illustrations of (a) cavity formation due to high stress concentrations at the interfaces and (b) relaxation of the stress concentrations by a liquid phase for metal matrix composites reinforced with particles.

Mabuchi and Higashi, Acta Mat. 1999.

Li et al., Acta Mat. 2011.

Shear Fracture: Ford and USS

Shear fracture limit curves

Shih, et al., MSEC2009-84070. Zeng, et al., SAE 2009-01-1172. Shih, et al., SAE 2010-01-0977.

PNNL Work on Local Formability

Objectives

- Identify the appropriate mechanical and microstructural properties that have significant influence on the local formability of DP980.
- Develop appropriate screening method for local formability to promote wider application of AHSS

Approach

- Acquire different DP materials from various suppliers
- Perform chemical composition analyses, microstructural analyses and various tests (Tension, HET, B-Pillar in-die stamping...) to obtain the mechanical properties for the obtained DP materials
- Develop image analyses tools to quantify the grain size, volume fraction and aspect ratio...
- Perform nano-indentation tests to determine the yield strengths of the constituent phases
- Perform microstructure-based finite element analyses to gain to fundamental understandings on the key material features to withstand localized deformation
- Derive a theoretical microstructure-to-properties correlations Dasis Converses the results
 Provide V Derated by Battelle Since 1965

Chemical Compositions

Surface coating was removed before test

Used ICP-AES and ASTM E1019-11

DP980 (t)	C (1.0)	D (1.2)	H (1.0)	G (1.4)	F (1.4)	A (2.0)	B (1.7)	E (2.0)
AI	0.05	0.05	0.03	0.04	0.04	0.03	0.04	0.03
С	0.11	0.12	0.15	0.08	0.10	0.09	0.09	0.09
Cr	0.26	0.25	0.32	0.47	0.47	0.02	0.20	0.46
Cu	0.01	0.01	0.04	<0.01	<0.01	0.07	0.01	<0.01
Mn	2.38	2.47	1.93	2.08	2.09	2.13	2.16	2.10
Мо	0.20	0.36	0.01	0.28	0.28	0.07	0.27	0.29
Ni	0.01	<0.01	0.04	0.01	0.01	0.01	0.01	0.01
Р	0.008	0.014	0.010	0.008	0.007	0.007	0.008	0.008
S	0.003	0.004	<0.001	0.003	0.002	0.002	0.001	0.001
Si	0.08	0.03	0.64	0.18	0.18	0.57	0.31	0.33
Ti	0.04	<0.01	0.13	0.03	0.03	0.02	0.02	0.05
В	0.008	0.010	<0.002	0.008	0.008	0.003	0.008	0.008
Ca	<0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nb	0.031	0.002	0.003	0.017	0.017	0.009	0.015	0.036
V	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zn	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01
N	0.008	0.009	0.005	0.004	0.004	0.006	0.005	0.006
	GOOD		Formabilit ranking	y	BAD			Northwest

Tensile Test (1)

- Tested ASTM E8 sub-size samples with $\dot{\varepsilon} = 10^{-4}$ /sec
- Samples were cut by EDM from center and edge areas along rolling and transverse directions

Proudly Operated by Battelle Since 1965

32

Microstructure Analysis (1) - SEM

- In-plane/through-thickness SEM pictures were obtained from surface and mid-thickness regions along rolling and transverse directions for center and edge areas
- Materials have different microstructures such as different size/shape of martensite grains and different distribution feature of martensite
- ► Different microstructural features were expected to induce different local formability → Image analysis

*See SAE 2012-01-0042 for more microstructures of other DP980 Proudly Operated by Battelle Since 1965

Channel Forming Test (1)

- Only 5 materials (C,D,F,G,H) were selected due to the allowable thickness limit of the forming die
- Square blanks (450mmX450mm) were formed using a straight rail die
- Lubricant was applied on the blank surface before forming
- Forming test was done both along the rolling and transverse directions

Successful forming

Fractured

Channel Forming Test (2)

Forming test results

DP980	Ro	olling Dired	ction	Trans. Direction			
Thickness (mm)	No. of Trials	No. of Success	Success rate (%)	No. of Trials	No. of Success	Success rate (%)	
C (1.0)	3	3	100	3	3	100	
D (1.2)	4	3	75	3	3	100	
F (1.4)	2	0	0	2	0	0	
G (1.4)	4	2	50	3	1	33	
H (1.0)	6	3	50	4	3	75	

Ranking of formability : C > D > H > G > F

Pacific Northwest

Chemical Compositions

Surface coating was removed before test

Used ICP-AES and ASTM E1019-11

DP980 (t)	C (1.0)	D (1.2)	H (1.0)	G (1.4)	F (1.4)	A (2.0)	B (1.7)	E (2.0)
AI	0.05	0.05	0.03	0.04	0.04	0.03	0.04	0.03
С	0.11	0.12	0.15	0.08	0.10	0.09	0.09	0.09
Cr	0.26	0.25	0.32	0.47	0.47	0.02	0.20	0.46
Cu	0.01	0.01	0.04	<0.01	<0.01	0.07	0.01	<0.01
Mn	2.38	2.47	1.93	2.08	2.09	2.13	2.16	2.10
Мо	0.20	0.36	0.01	0.28	0.28	0.07	0.27	0.29
Ni	0.01	<0.01	0.04	0.01	0.01	0.01	0.01	0.01
Р	0.008	0.014	0.010	0.008	0.007	0.007	0.008	0.008
S	0.003	0.004	<0.001	0.003	0.002	0.002	0.001	0.001
Si	0.08	0.03	0.64	0.18	0.18	0.57	0.31	0.33
Ti	0.04	<0.01	0.13	0.03	0.03	0.02	0.02	0.05
В	0.008	0.010	<0.002	0.008	0.008	0.003	0.008	0.008
Ca	<0.004	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
Nb	0.031	0.002	0.003	0.017	0.017	0.009	0.015	0.036
V	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Zn	<0.01	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	<0.01
N	0.008	0.009	0.005	0.004	0.004	0.006	0.005	0.006
	GOOD		Formabilit ranking	y	BAD			Northwest

Microstructure Analysis (2) – Image Analysis

- Image processing tools are adopted to quantify several different microstructural features (i.e., volume fraction, average grain size/aspect ratio, average grain eccentricity, grain orientation etc.)
- Obtained quantity of microstructural features were compared with material's formability/ductility ranking
- Feasible correlations and trends between material microstructural features and its local formability could not be reasoned yet from any results of image analysis

Tensile Test (2)

- Some tensile properties (i.e., UTS, uniform elongation, total elongation) obtained from the center area samples were compared with formability ranking
- Correlation is not observed between tensile properties and local Northwest formability

Hole Expansion Test (1)

- Used square samples (75mmX75mm) with 12mm diameter hole
- Punch Dia.:40mm; Punch speed: 20mm/min; Die holding force: 100kN
- 2~3 tests were done for each material
- Holes were made with EDM and punching

Hole Expansion Test (2)

- Correlation is not observed between the two different hole preparation methods: hole quality matters!
- HER does not necessarily correlate with total elongation (Thicker sheets appear to have higher HER)
- Correlation is not observed between HER and formability for both machining methods
 Pacific Northwest
 NATIONAL LABORATORY

Plastic Strain Ratio (r-value)

- Represents the resistance to thinning $(r = \varepsilon_w / \varepsilon_t)$
- Used ASTM E8 sub-size specimen and followed the manual procedure in ASTM E517
- 2 tests were done for each condition

Summary and Challenges

- Various tests have been performed with eight different DP980 steels to establish the fundamental understandings on key mechanical properties and the microstructure features influencing the local formability of AHSS
- Measured in-plane mechanical properties of these steels do not correlate with their local formability
- Image analysis was adopted for the SEM pictures of DP980 steels in order to quantify their various microstructural features
- It is not easy to find possible correlations between the microstructural features and the macroscopic deformation behaviors
- Nano-indentation test is underway to measure the strength disparity of the constituents
- Examinations of micro-damage near the cutting edge, induced from machining, is underway
- Larger-area microscopes may also be considered to examine the inhomogeneity of martensite distribution

Preliminary nanoindentation test with material B NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

42

Can We Use the Micromechanics-Based FEM to Predict Localized Fracture?

- Experimental simulation of shear fracture
 - Stretch bending
- Two step plane strain simulation loading:
 - Stretching
 - Indentation
- Factors considered:
 - Initial stretching strain
 - Indenter radii

Effects of Indenter Radius and Indentation Location

