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Key Technology Gaps in Implementing 1St
GEN Advanced High Strength Steel —

Ductility and Localized Fracture

» Ductility under uniform
loading:

m Macroscopic
phenomenological approach

m Meso-scale microstructure
based approach

» Fracture under localized
loading:

m Occurs in bending
(especially under tension)

m Edge stretching

m Conventional FLD does
not apply

m Difficult to predict
analytically

Elongation (%)
N 8 A O

T <«ga HighStrength |up
Steels

o o
1 ] I

o
!

Low Strength Ultra High Strength
| Steels (<210MPa) Steels (>550MPa)

 |conventional HSS|

—_
o O
|

600 800 1000 1200

400
Lower Yield Strength (MPa)




MIT’s fracture modeling framework
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Fracture calibration tests
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Hybrid experimental-numerical calibration

Various types of fracture specimens

Careful correlation between experiments
and FEA ensures accurate local strain and
stress state evolution

ASP Meeting, July 22, 2011



Results: Fracture initiation location
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Failure location shifting is accurately predicted
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Predicting AHSS Ductility under Uniform

Deformation — PNNL

» Microstructure based finite element analyses
developed to predict tensile ductility and FLD of
15t Gen AHSS:

m DP980:

o Effects of martensite mechanical properties on behavior of
DP980

o Effects of martensite morphology on forming behavior of
DP980

m Effects of martensite volume fraction on DP steel
properties:
e Stress vs. strain behaviors
o Failure driving force

= TRIP80O: o

o Transformation kinetics under different loading cordit{grigrthwest
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Meso-Scale Finite Element Modeling of

AHSS Based on Actual Microstructure
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Effects of Loading Conditions on the Failure
Mode
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Effects of Martensite Mechanical Properties

on Tensile Behavior of DP980
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Strain{o11y Operated by Battelle Since 1965
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Effects of Martensite Volume Fraction and

Voids on Failure of DP Steels
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TRIP800 — Modeling of Phase Transformation and

Ultimate Ductility Under Different Loading

Conditions
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Modeling of Phase Transformation and Ultimate
Ductility for TRIP800 Under Different Loading

Conditions
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Effects of Retained Austenite Stability on Ductility

and Formability of TRIP800

» Critical value of Ilc was varied to investigate the influence of austenite stability.

» Higher austenite stability is beneficial in increasing the ductility of TRIP steels
since it delays the martensitic transformation.

» In turn, improved ductility results in better formability.

» Improvement of formability can be more prominent than shown in the figure
below, depending on the phase properties, microstructures, etc.
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Effects of Loading Rate on Tensile Ductility

of TRIP800 Steel

» Dynamic stress versus strain curves needed for crash
simulations of energy critical parts

m Strength
m Ductility
®m Energy absorption

» No national or international standards on dynamic tensile
test

m Setup
m Sample design
m Data acquisition

» Reported inconsistency in open literature, in particular for
ductility of AHSS ~

Pacific Northwest
NATIONAL LABORATORY
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Strain Rate Sensitivity of Ductility for IF

Steels

N =)
3.5

I
.

Fig. 4. Specimens after tensile tests at nominal strain rates of 750/s (left) and of 0.001/s (right).
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L
z

Kuroda et al. Int. J. Solid Struct., 2006.
Mirza et al., J. Mat. Sci., 1996.
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» Ductile to brittle transition: Ductility is significantly reduced

at high strain rate: -
m Changes in the mobile dislocation density Pacific North vest

® Thermal softening
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Strain Rate Sensitivity of DP600

» Inconsistent sample designs
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Strain Rate Sensitivity of Ductility on

TRIP700

» Mostly focused on strength and hardening behaviors
® a gauge length of 5mm and a radius of 1mm.
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Experimental Procedures in This Study
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Results on Geometry and Strain Rate Effects
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High Rate Deformation Mode Confirmed with
High Speed Camera Images
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Frame 1: T = O-microseconds 0% strain Frame 5: T = 105-microseconds 1% strain
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NATIONAL LABORATORY
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Frame 23: T = 480-microseconds 63% strain



Effects of Strain Rate on Ultimate Ductility
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Possible Reasons for Enhanced Ultimate

Ductility under High Rate Loading

» Inertial stabilization theory

® Non uniform deformation
suppressed by inertia at
high strain rate

e Shenoy and Freund, 1999 ) |
» Seth et al., 2005 R e
o Why TRIP not IF steel? ; e

» Adiabatic heating

m Distributed nature of
thermal softening

: ‘ o
m Grain elongation, rotation Sy

and alignment

®m Similar to high strain rate
superplasticity of MMC?

Y
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Adiabatic Heating at High Rate — Distributed
vs. Localized
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Matrix Grain Rotation and Grain Boundary
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High Rate Localized Amorphism in ASB —

TWIP
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Fig. 2. Schematic illustrations of (a) cavity formation due to high stress concentrations at the interfaces
and (b) relaxation of the stress concentrations by a liquid phase for metal matrix composites reinforced
with particles.

Mabuchi and Higashi, Acta Mat. 1999. Li et al., Acta Mat. 2011.
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Shear Fracture: Ford and USS
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PNNL Work on Local Formability

» Objectives

m Identify the appropriate mechanical and microstructural properties that
have significant influence on the local formability of DP980.

m Develop appropriate screening method for local formability to promote
wider application of AHSS

» Approach
m Acquire different DP materials from various suppliers

m Perform chemical composition analyses, microstructural analyses and
various tests (Tension, HET, B-Pillar in-die stamping...) to obtain the
mechanical properties for the obtained DP materials

m Develop image analyses tools to quantify the grain size, volume fraction
and aspect ratio...

®m Perform nano-indentation tests to determine the yield strengths of the
constituent phases

m Perform microstructure-based finite element analyses to gain to
fundamental understandings on the key material features to withstand .
localized deformation \zf/

m Derive a theoretical microstructure-to-properties correlations/BSEEd\pimwest |

30 the resu Its Proudly Operated by Battelle Since 1965



Chemical Compositions

» Surface coating was removed before test
» Used ICP-AES and ASTM E1019-11

0.05 0.05 0.03 0.04 0.04 0.03 0.04 0.03
c 0.11 0.12 0.15 0.08 0.10 0.09 0.09 0.09
cr 0.26 0.25 032 [ ear || oaz | 0.02 0.20 0.46
Cu 0.01 0.01 0.04 <0.01 <0.01 0.07 0.01 <0.01
Mn . 238 247 1.93 2.08 2.09 2.13 2.16 2.10
Mo 0.20 0.36 0.01 0.28 0.28 0.07 0.27 0.29
Ni 0.01 <0.01 0.04 0.01 0.01 0.01 0.01 0.01
P 0.008 0.014 0.010 0.008 0.007 0.007 0.008 0.008
s 0.003 0.004 <0.001 0.003 0.002 0.002 0.001 0.001
si 0.08 0.03 | oesa | o018 o018 0.57 0.31 0.33
Ti 0.04 <0.01 0.13 0.03 0.03 0.02 0.02 0.05
B 0.008 0.010 <0.002 0.008 0.008 0.003 0.008 0.008
ca <0.004 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
Nb 0.031 0.002 0.003 0.017 0.017 0.009 0.015 0.036
v <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Zn <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01
N 0.008 0.009 0.005 0.004 0.004 0.006 0.005 0006
37
<GOOD Formability BAD) Pacific Northwest
ranking NATIONAL LABORATORY
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Tensile Test (1)

» Tested ASTM ES8 sub-size samples with ¢ = 107*/sec

» Samples were cut by EDM from center and edge areas along rolling and
transverse directions

» 3 tests for each condition
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»  S-E curves depend on sample location S-E - DP980(Center/Rolling Dir.) _
>  DP980 steels show large discrepancy in -~ ™ il
their performances L R Er— Pacific Northwest
> See SAE 2012-01-0042 for S-E curves Enginesring Strain NATIONAL LABORATORY

f other DP
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Microstructure Analysis (1) - SEM

» In-plane/through-thickness SEM pictures were obtained from surface
and mid-thickness regions along rolling and transverse directions for
center and edge areas

» Materials have different microstructures such as different size/shape
of martensite grains and different distribution feature of martensite

» Different microstructural features were expected to induce different
local formability - Image analysis

In-plane structure In-plane structure In-plane structure

Through-thickness structures Through-thickness structures Through-thickness structures

Parifir Narthwest
Material A Material D Material H “ABORATORY
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Channel Forming Test (1)

» Only 5 materials (C,D,F,G,H) were selected due to the
allowable thickness limit of the forming die

» Square blanks (450mmX450mm) were formed using a straight
rail die
» Lubricant was applied on the blank surface before forming

» Forming test was done both along the rolling and transverse
directions

Successful forming Fractured Necking failure  west
FNAVE NN I_ABORATORY
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Channel Forming Test (2)

» Forming test results

DP980 Rolling Direction

1 GESS No, of  No.of Success No.of  No.of  Success

(mm) Trials  Success rate (%) Trials Success rate (%)

C (1.0 3 3 100 3 3 100

D (1.2) 4 3 75 3 3 100
F(1.4) 2 0 0 2 0 0

G (1.4) 4 2 50 3 1 33

H (1.0) 6 3 50 4 3 /5

» Ranking of formabilty ) C>D>H>G>F | ~7
Pacific Northwest

NATIONAL LABORATORY
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Chemical Compositions

» Surface coating was removed before test
» Used ICP-AES and ASTM E1019-11

0.05 0.05 0.03 0.04 0.04 0.03 0.04 0.03
c 0.11 0.12 0.15 0.08 0.10 0.09 0.09 0.09
cr 0.26 0.25 032 [ ear || oaz | 0.02 0.20 0.46
Cu 0.01 0.01 0.04 <0.01 <0.01 0.07 0.01 <0.01
Mn . 238 247 1.93 2.08 2.09 2.13 2.16 2.10
Mo 0.20 0.36 0.01 0.28 0.28 0.07 0.27 0.29
Ni 0.01 <0.01 0.04 0.01 0.01 0.01 0.01 0.01
P 0.008 0.014 0.010 0.008 0.007 0.007 0.008 0.008
s 0.003 0.004 <0.001 0.003 0.002 0.002 0.001 0.001
si 0.08 0.03 | oesa | o018 o018 0.57 0.31 0.33
Ti 0.04 <0.01 0.13 0.03 0.03 0.02 0.02 0.05
B 0.008 0.010 <0.002 0.008 0.008 0.003 0.008 0.008
ca <0.004 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
Nb 0.031 0.002 0.003 0.017 0.017 0.009 0.015 0.036
v <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Zn <0.01 <0.01 <0.01 <0.01 <0.01 0.02 <0.01 <0.01
N 0.008 0.009 0.005 0.004 0.004 0.006 0.005 0006
37
<GOOD Formability BAD) Pacific Northwest
ranking NATIONAL LABORATORY
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Microstructure Analysis (2) — Image Analysis

» Image processing tools are adopted to quantify several
different microstructural features (i.e., volume fraction,
DERY SNSRI average grain size/aspect ratio, average grain
1 SEM of material D eccentricity, grain orientation etc.)
- wmex P Obtained quantity of microstructural features were
X ¥®2  compared with material’s formability/ductility ranking

; - ? l - 0 -

(97l » Feasible correlations and trends between material
‘ microstructural features and its local formability could not
be reasoned yet from any results of image analysis

PN N N
Binary image after
image process

150 60000 60 5

Material “D”, R-N Plane Image i Material “D”, R-N Plane Image I I O for R-T plane image
I o I A for R-N plane image
50000 i— 50 [e} o . i QO for T-N plane image
L A 0
40000 |- 40 % Iﬁb A 2 [
i < o 5 3L
I g | %o g0
30000 |~ = 30 - N |
- = | g
r : Z 2k
i 5 | = T
20000 |- S 20k 4
| o}
10000 10 O for R-T plane image 1 i
o A for R-N plane image |
| Q for T-N plane image =
Pl R D ol 1 1 1 I ol I 1 ]
15 20 25 C D H_ G F C D H_ F
Grain Diameter (pum) Grain Aspect Ratio GOOD Materials BAD 600D Materials BAD
Formability Ranking ———= ~4—— Formability Ranking ———~
Histogram of Histogram of martensite , : . :
9 g Martensite volume fraction Martensite avg. grain aspect

37 martensite grain size grain aspect ratio in formability ranking YO ratio in formability ranking



Tensile Test (2)

1100 25 25
B Rolling direction
1080 - B Transverse direction

1060 -

1040 -

1020 -

Max > Average

1000 -

uTS (MPa)
UE (%)

980 -

960 -

940

920

900 -

Materials Materials Materials
GOOD Form'a(!)ility BAD GOOD Formi!:ility BAD GOOD Formz!:ility BAD
}(_ ranking }(_ ranking }(_ ranking
UTS vs formability ranking Uniform elongation Total elongation
vs formability ranking vs formability ranking

» Some tensile properties (i.e., UTS, uniform elongation, total
elongation) obtained from the center area samples were compared

with formability ranking ~

» Correlation is not observed between tensile properties and lagale Northwest

HH NATIONAL LABORATORY
formability
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Hole Expansion Test (1)

vVvyyVvyy

Used square samples (75mmX75mm) with 12mm diameter hole
Punch Dia.:40mm; Punch speed: 20mm/min; Die holding force: 100kN
2~3 tests were done for each material

Holes were made with EDM and punching
Mat \\CII Mat \\GII

EDM hole

r

|
Idg/2
Blank <>/

|
I
I
I
P40—>
|
I
I

Schematic of HET Punch hole

d-d
0 0 west
x100% Failed Samplzzmﬂx%ol:gﬁgsommm
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Hole Expansion Test (2)

// Max WEDM_hola EHER_EDM_hoie SEDM hole
® TE_Rolling Dir.
mPunch_hole 35 1 e 35 aPunch_hole
<«—Average OTE_Transverse Dir.
Min

HERITE(%)

Comparison of HER Comparison of HER of EDM }f“i Formabity e
for different machining methods sample with total elongation

HER in formability ranking
» Correlation is not observed between the two different hole
preparation methods: hole quality matters!

» HER does not necessarily correlate with total elongation (Thicker
sheets appear to have higher HER)

» Correlation is not observed between HER and formability for both \%'?/
machining methods Pacific Northwest
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Plastic Strain Ratio (r-value)

» Represents the resistance to thinning (r = ¢,,/¢;)

» Used ASTM ES8 sub-size specimen and followed the manual
procedure in ASTM E517

» 2 tests were done for each condition

» It ‘appears’ that higher r-value
is helpful to get better
formability

= 06 -
0.4 4
0.2 4

0 -
C D H G F A B E
Materials

oo Formability BAD Pacific Northwest
—>{ NATIONAL LABORATORY

ranking

41 R-value in formability ranking Proudly Operated by Battelle Since 1965



Summary and Challenges

» Various tests have been performed with eight
different DP980 steels to establish the
fundamental understandings on key mechanical
properties and the microstructure features
influencing the local formability of AHSS

» Measured in-plane mechanical properties of
these steels do not correlate with their local
formability

» Image analysis was adopted for the SEM pictures
of DP980 steels in order to quantify their various
microstructural features

» Itis not easy to find possible correlations
between the microstructural features and the
macroscopic deformation behaviors

» Nano-indentation test is underway to measure
the strength disparity of the constituents

» Examinations of micro-damage near the cutting

: _ : Preliminary nano-
edge, induced from machining, is underway indentation test

» Larger-area microscopes may also be considered with material B west

to examine the inhomogeneity Of martenSite NAIIONAL LABORATORY
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Can We Use the Micromechanics-Based FEM to

Predict Localized Fracture?

» Experimental simulation of shear fracture
m Stretch bending

» Two step plane strain simulation loading:
m Stretching
®m Indentation

» Factors considered:
m [nitial stretching strain
®m Indenter radii

v
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Effects of Indenter Radius and Indentation Location

"~ Medium

32%T&l
roo L

» rrang

(Avg: 75%)
+1.734e+00
+5.000e-01
+4.583e-01
+4.167e-01
+3.750e-01
+3.333e-01
+2.917e-01

+2.5006-01 i .
1%22‘:’;23% T: Tension
1125001 | : Indentation NATIONAL LABORATORY
+8.333e-02
+4.167e-02

+0.000e-+00 Proudly Operated by Battelle Since 1965




