

Application of Nanopore Sequencing to Sterility Testing for Cell Therapy Products

James STRUTT

Agenda

- Overview of sterility testing and key challenges in adopting sequencing technologies
- Application of Nanopore Sequencing for untargeted microbial detection
- Preliminary insights into the kitome and its baseline characterization

Why Sterility Testing?

Abou-el-Enein et al., 2021, Blood Cancer Discovery

Why Long Read Sequencing in Particular?

- Time to detection is real time
- Agnostic detection of contaminants
- Limit of detection is compliant with existing FDA requirements (Strutt et al.,)

Benefits of long reads as compared to short reads:

- Improved accuracy
- Simpler assembly
- Better detection of structural variants (e.g. conserved rRNA)

Sterility Release Testing

Why Target Ribosomal RNAs?

V = variable regions

- What is ribosomal RNA?
- Provide culture-free metagenome analysis
- Generate full length amplicons, which permits species level identification
- Variable regions contain species-specific DNA sequence
- Highly conserved regions of prokaryotic and eukaryotic genomes provide universality and make an untargeted approach possible

Contaminants in Your Low-Biomass Data

- The kitome refers to background DNA contamination from reagents and extraction kits
- Misclassification events occur when sequencing pipelines report species that aren't actually present in the sample.
- Kitome reads are real DNA fragments introduced during sample processing, not by the original sample.
- As a result, sterile or negative samples can appear contaminated, even when no microbes are present.
- The kitome signal can overwhelm or mask true contaminants, especially in low-biomass samples.

The Kitome: Hidden Contaminants in Your Low-Biomass Data Remove S. bongori (black)

- S. Bongori DNA was extracted with FastDNA SPIN Kit for Soil (kit FP).
- Samples were serially diluted
- As sample biomass decreases, contaminant DNA becomes dominant, and contaminant profiles reflect the lab and kit used rather than the true sample.

The Nanopore Sequencing Workflow

The Bioinformatics Workflow

Experimental Setup: Understanding Limit of Detection and Sources of Reliability and Variance

Spiking baselines: detection to 10 CFU / mL

- Generated pure culture and spiked T-cell cultures
- Assayed using either bacterial or fungal species
- 16 hour from sampling to sequenced result
- Used either 16S or 18S-28S amplicon sequencing
- Can detect aerobic and anaerobic species at 10 CFU

Understanding LOD and sources of reliability and variance

Proof of principle validation: Spiked *P. a* is detected in ≥1 technical replicate at 10 CFU / mL

- Sterile samples did not generate many Pseudomonas aeruginosa reads
- Positive controls were positive
- 9 technical replicates per biological replicate

N=3 [Biological replicates] n=3 [Technical replicates]

Intuition for Machine Learning Binary Classification Predictions

		Conf	usion Matrix			
			Ground Tr	uth Label		
	Total Ob	servations	has disease	no disease		Sample (amplicon-seq)
		(n)	Condition Positive (CP)	Condition Negative (CN)		S .aureus, 10 CFU
Predicted Label		Test	True Positive (TP)	False Positive (FP)		T-cell S .aureus, 10 CFU
	test positive	Outcome Positive (TOP)				T-cell <i>K. pneumoniae,</i> 10 CFU
	poontro					Cell-free medium
	test	Test	e False Negative (FN)	True Negative (TN)		Plain medium
	negative	Negative				T-cell only
		(TON)				

Paired Machine Learning Models For Unbiased Identification of Contaminated Samples

Sample (amplicon-seq)	Assessment								
S .aureus, 10 CFU	Contaminated	100 CFU / mL							N=32/32
T-cell S .aureus, 10 CFU	Contaminated								
T-cell K. pneumoniae, 10 CFU	Contaminated	10 CFU / mL							N=31/31
Cell-free medium	Sterile								
Plain medium	Sterile	Negative Controls							N=18/24
T-cell only	Sterile								
			0	20	40	60	80	10	0
Figure to right. All spikes and negative control model predictions were assessed for prediction				Total Samples (%)					

Model Prediction of Sterility Status

Figure to right: All spikes and negative control model predictions were assessed for prediction accuracy regarding whether the sample assayed is sterile. Black bars depict samples assigned as likely contaminated, blue bars depict samples identified as sterile.

■ Sterile ■ Contaminated

How do we handle common contaminants without dismissing them out of hand?

Best Practises to Minimise Kitome Contaminants

Trends in Microbiology

Optimisation the Workflow to Minimise False Positives (A Sterile Sample is Labelled as Contaminated)

		Spiking Species	Cell Pre- Filtering	Nucleic Acid Extraction	PCR conditions	Library Preparation	
•	Sample preparation optimisation	Fungus, bacteria, virus	Detergent, centrifugation	Kit choice, DNA, RNA	Amplicon, melting temperature, extension time	Multiplexing, Monoplexing	
•	Dicinformation	Sequencing Basecalling	Read Pre- Filtering	Metagenomic Classification	c Coverage n Analysis	Filtering	
	optimisations	Low, High, Super Accurate	DNABERT-2 read encoding	Viral, fungal bacterial database;	Alignment of classified reads against reference	Identify thresholds to filter false positives and retain true	

Kitomes are Dependent on the Type of Negative Control

returns the highest number of genera

Coverage analysis (using metagenomic hits) of negative controls reduces genera hits

Each sequencing run requires negative controls run in parallel to identify sources of contamination

Summary and Conclusions

Acknowledgements

Sin

Faye Ka-Wai Cheung

Wei-Xiang

Rohan B. H. Williams

Stacy L. Springs

Scott A. Rice

Meenubharathi Natarajan

Elizabeth Lee

Charley Swofford

Emmanuel Tsinda

Paul Barone

Jacqueline

Wolfrum

Marvin

Chew

Khaing

Thazin

Suiyuan Xia

- Supported by A*STAR under the IAF-PP grant "**ASPHALT**" (H24J4a0031). ٠
- Supported by NRF Singapore under the CREATE programme through SMART CAMP. •