Bounding the Safe Separation Distance (SSD)

A Modeling Study in Support of Structure Separation Experiments

Kuldeep Prasad, Alexander Maranghides, Eric Link, Shonali Nazare Matthew Hoehler, Matthew Bundy, Rodney Bryant National Institute of Standards and Technology

> **Steve Hawks, Frank Bigelow** California Department of Forestry and Fire Protection

William (Ruddy) Mell, Anthony Bova, Derek McNamara, Tom Milac United States Forest Service

> **Daniel Gorham, Faraz Hedayati** Insurance Institute for Businesses and Home Safety

> > **Bob Raymer** California Building Industry Association

> > **Frank Frievalt** Mammoth Lakes Fire Protection District

NIST WUI Fire Day

NIST Technical Note, in WERB Review, June 2022

July 13, 2022

Modeling to Estimate Safe Separation Distance

- Structure-to-structure fire spread occurs in WUI communities.
- Estimating the spacing between the source and target structure is critical for protecting communities.
- Primary objective of Structure Separation Experiment project : assess structure-tostructure fire spread for structures located in WUI
 - Full-scale fire experiments
 - Source structures generated radiative / convective heat exposures on target structures.
- Goal : Develop a <u>simple</u> modeling approach for estimating the minimum safe separation distance (upper bound for SSD)
 - Assist with design of Structure Separation Experiments
 - Enable development of test methods for Codes and Standards
 - Scenarios where it is difficult to conduct experiments (sloping terrains etc.)

National Institute of Standards and Technology U.S. Department of C

Burning of wood / steel shed with wood cribs

- After ignition, fire initially spread slowly through the cribs.
 - Wood slabs stacked horizontally and vertically inside a small enclosure (oxygen limited)
 - Modeling flame spread and estimating heat flux is computationally challenging.
- Wood cribs can ignite a wooden shed
 - Two different peaks in the total heat release rate curve.
 - Loss of structural integrity. Glass windows can get compromised.
 - New pathways for smoke to pour out (doors, windows, roof).
 - New pathways for oxygen to enter the shed
- Modeling the changing geometry of a burning shed / cribs is critical to estimate the heat flux.
- Shed obstructs the flow-field. Diverts air around the source structure.
- Summary : Real source introduce new physical processes. Modeling Challenges

Effect of a target on the Flow Field

- Target structures aligned with the computational mesh bluff body dead zone.
- Re-circulating zone : conducive for firebrands to settle down and ignition.
- Target walls oriented at an angle introduces computational complexity.
- Roof of the target structure is usually not aligned with the underlying mesh.
 - Stair step pattern produces dead zones artificially increase ignition propensity.
- Both source / target structure can only slow the ambient flow.
- Neither add energy to the ambient flow. Incorporating them reduces SSD
- Due to the computational complexity associated with modeling real sources / target
- A simple, efficient method to estimate SSD is proposed

Estimating SSD – Simple Alternate Approach

- Approximate the shed (source) as a simple square burner in ambient wind
- Removes the un-certainty associated with modeling a complex source
- Heat released in the source is prescribed at the burner surface. Parametric Studies
- Conservative worst-case scenario for bounding Safe Separation Distance (SSD)

Simulating Plume Lean : Burner in Ambient Wind

- Buoyant plume bends in the direction of the ambient wind. Flame stretch. Plume dilution.
- Is flame tilt predicted correctly. Heskestad correlations

⁸⁰ Effect of wind on plume lean

HRR (Mwatt)	Maximum plume speed u _{oL} (m/s) (20 s Average)	Predicted Ambient wind speeds u _w (m/s) for various plume deflections from vertical			
		20º <mark>(0.09)</mark>	40° (0.15)	60° (0.28)	80° (0.45)* <u>Extrapolated</u>
1	8.0	0.7	1.2	2.2	3.6
2	9.0	0.8	1.4	2.5	4.1
4	10.5	0.9	1.6	2.9	4.7
8	12	1.1	1.8	3.4	5.4
16	14	1.3	2.1	3.9	6.3

Bounding Safe Separation Distance - Methodology

Burner Size : 1 m², Fuel : Propane Radiative Fraction 0.22, Soot Yield 0.024

- 16 MW Burner (Medium Size Shed): Wind 4 m/s
- Heskestad correlations : flame tilt 60 degrees
- FDS simulations consistent with Heskestad correlations
- Wind Speed (1- 20 m/s). Heat Release Rate (1- 16 MW)

Bounding Minimum Structure Separation Distance (Critical Radiative Heat Flux of 20 kW/m²)

Summary and Future Work

- Modeling fire spread on a full-scale shed / target is challenging.
- Proposed a simple approach to bound the Safe Separation Distance (SSD).
- Validation of plume lean : Comparison with Heskestad Correlations.
- Predicted Safe Separation Distance
 - Heat Release Rate (1-16 Mwatt)
 - Wind Speeds (1-20 m/s)
- Simple approach : extended to consider both convective and radiative flux.
- Simulations : performed for sloping terrains.
- Future work : Compare results from the simple methodology with experimental data.

National Institute of Standards and Technology U.S. Department of C