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A synchrotron study of residual stresses in a Al6022 deep drawn cup
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Abstract

Fueled by pressures to reduce scrap and tooling costs, the modeling and prediction of springback has become a major focus of interest in sheet
metal forming. Finite element codes and packages are being developed or improved but face the demand for higher predictive accuracy which, in
turn, requires accurate property data and a more complete understanding of the stresses that are responsible for the elastic part of the springback.
In order to provide experimental data for these calculations, synchrotron X-ray diffraction measurements were carried out in order to determine
the through-thickness distribution of axial and tangential residual stresses in an Al6022 deep drawn cup. The technique is able to provide true
spatial resolutions of 0.05 mm for a strain measurement on a cup with 0.92 mm wall thickness. It is found that both axial and tangential stresses
exhibit non-linear gradients through thickness and both exhibit a pronounced dependency on the axial position. The springback measured on
a split ring cut from the cup agrees within 3% accuracy with the value predicted from the average of measured through-thickness stresses.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

The stamping of sheet metal induces complex deforma-
tions, which in different regions of the sheet metal can have
vastly different accumulated plastic strains. Upon unloading
by removing the die, springback occurs which changes the
dimensions of the part. Springback is caused by non-uniform
residual stresses through the thickness of the sheet metal
that create a bending moment which causes a distortion of
the part upon unloading. Springback strains are almost com-
pletely elastic; non-linear recovery strains are usually small
but, in extreme cases, they can amount up to 10% of the to-
tal recovery[1]. The accurate prediction of the springback
is of major interest for small part tolerances and to avoid a
costly redesign of the stamping tool. In the past a number
of studies have looked into ways of reducing springback,
particularly the role of pre-straining, blankholder force and
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yield strength. Still, even in this case springback cannot be
disregarded completely but it can be reduced which allows
a more accurate prediction with smaller absolute tolerances
(not necessarily relative tolerances). Experimental data of
springback stresses are scarce in the available literature; in-
stead, most publications deal with the modeling aspect of
the problem, thus highlighting the need for data that can
benchmark the model predictions.

The stresses, which are generally bi-axial, are created
when sheet metal is subjected to bending operations dur-
ing which locations with different thickness coordinates
undergo different strain paths, thus producing stress differ-
entials across sheet metal thickness and leading to bend-
ing moment upon tool removal. An accurate modeling of
springback thus requires accurate prediction of pointwise
stresses throughout.

In an attempt to simplify the problem, various studies have
dealt with symmetric, generic shapes among which circular
cups have received the most attention[3–7] as a promis-
ing way to characterize a material’s springback properties
in a quick and consistent way. For a standardizable test, it
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is desirable that it be fairly easy, repeatable and in the case
of this particular need, have a large springback component
that can be easily measured. A test that has received con-
siderable attention consists of a ring sample taken from the
sidewall of a flat bottom, deep drawn cup. The main advan-
tage of such a simple geometry is that the springback can be
measured very easily by cutting off rings and subsequently
splitting them. Using this operation, the through-thickness
stress change can be calculated very easily, thus providing a
means to follow stress variations induced by changing cer-
tain stamping parameters such as ironing[2,6].

For this to be useful also for non-generic parts with more
complicated strain paths the successful simulation of the
springback must be based on an accurate prediction of the
depth distribution of stresses. However, because of the small
thicknesses involved a pointwise stress measurement to val-
idate the models has been very difficult and there are few
studies that provide even approximate experimental results.

Saito and Shimahashi[3] employed Sachs’ boring method
on a mild steel deep drawn cup and obtained both axial and
tangential stresses that indicate a highly non-linear gradient
of stresses both in the axial and radial direction. Their re-
sults are based on data from a single strain gage with no dis-
tinction between strain gage location and the original rolling
direction (RD) of the blank. Because this method of stress
depth profiling is essentially based on layer removal the re-
sults depend on the sequence of the removal, i.e. if layers
are removed from the inner or the outer surface. The recon-
struction of the undisturbed stress state was not possible be-
cause one prerequisite of the boring-out theory, namely that
the stresses are constant along the length, was clearly not
applicable. Danckert[2] used a variation of layer removal
together with X-ray diffraction for monitoring the stress
changes. Yuying et al.[5] used a similar method of layer re-
moval together with X-ray diffraction on stainless steel cups
having varying degrees of strain-induced martensite. Their
findings revealed vastly different through-thickness tangen-
tial stresses depending on the content of induced martensite.

In contrast to the layer-removal methods, diffraction tech-
niques offer the only possibility for mapping stress variations
through the thickness, circumferentially, and axially. For ex-
ample, early advances in neutron diffraction instrumentation
in combination with a high neutron flux made it possible to
achieve spatial resolutions in the sub-millimeter range, thus
enabling the first non-destructive measurements on≈1 mm
thick cups by Lange and Bruckner[4]. They confirmed that
the through-thickness stress gradients in a 1 mm thick brass
cup are non-linear but concluded that higher spatial resolu-
tions were required to elucidate the stress distribution with
sufficient detail.

In order to avoid the aforementioned difficulties in de-
structive stress determination there is no alternative to
diffraction methods, either as neutron or as synchrotron
diffraction. In practice, even tighter restrictions are im-
posed by sheet metal thicknesses of≤1 mm where neutron
diffraction reaches the limit of its capability. Synchrotron

diffraction is basically the only method capable both of
penetrating 1 mm of aluminum and providing spatial reso-
lutions<0.1 mm. In this paper we describe the results of
such measurements on an intact and a split ring cut from
an Al6022 cup. The investigation included measurements
of axial and tangential stresses on different axial locations
and around the circumference.

It is conceivable that the stress state in the initial blank
as induced by rolling would have some effect on the spring-
back of the rings. However, any pre-existing stresses in the
blank have a zero bending moment (or the blanks would
not be flat), thus they cannot add to the springback. More
important are the initial plastic strains due to rolling. These
plastic strains tend to be present as a gradient symmetrical to
the mid-plane of the sheet and, especially for thicker blanks,
the strains can be substantial near the sheet surfaces. As a
result, the initial yield stress of the blank may not be uni-
form through the thickness, thus possibly affecting the stress
differential after forming. In an experiment described in[8]
through-thickness stress measurements were performed on
cup rings made of as-received and stress-relieved AISI-1010
blanks. It was found that the through-thickness residual
stresses in both cups were virtually identical. When com-
paring the blank thickness of 3 mm used in[8] to the sheet
thickness used here (0.92 mm) we can assume that the effect
of the initial plastic strain from rolling both on the residual
stresses due to forming and on the springback is small.

2. Experimental

A ring with 110 mm in diameter, 15.0 mm in height and
0.92 mm wall thickness was cut by EDM from the center
section of a deep-drawn cup (Fig. 1a and b). Except for
the height (±0.1 mm), the dimensions are approximate due
to the cup being slightly conical and because of thickness
variations of about 0.1 mm due to flow anisotropy. The pro-
cedure was then repeated on a second cup made under the
same forming conditions and the ring was split open. No
pre-strain was applied. As shown by the results inTable 1,
the level of control over the conditions of the deep drawing
is such that the springback values of four different rings are
within 3% of their average, thus justifying the comparison
of stresses in different rings.

Table 1
Ring openings and radii of rings made under identical conditions as the
ones investigated here

Specimen
no.

Opening
2y (mm)

Radius of the
split ring R
(mm)

Calculated radiusR of the
split ring (calculated from
measured stresses) (mm)

6022-9 80.2 68.5 70.8
6022-10 82.5 68.9
6022-11 79.25 68.32
6022-12 84.33 69.25

The value in the last column was calculated from the through-thickness
stress profiles.
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Fig. 1. Sectioned cup (a) and split ring (b).

On the intact ring, through thickness measurements were
performed on two axial locations, one in the middle of the
ring, the other 5 mm towards the cup bottom. On the split
ring, measurements were performed in the middle, 4.5 mm
towards the top, and 5 mm towards the bottom. The measure-
ment locations around the circumference (intact: 0, 180◦ =
RD, split: 90◦ = TD, 180◦ = RD) were set with respect to
the rolling direction of the original blank material. A sketch
is shown inFig. 2. Because of the tight restrictions of the
beamtime at the synchrotron it was not possible to measure
more locations.

In sheet metal forming one has to deal with plane stress
states for which the normal stress (“radial” inFig. 2) can
be safely set to zero everywhere. This allows the use of a
scheme in which the unknowns tangential stress and axial
stress are obtained from three measured strains in the axial,
tangential and radial directions[9,10]. For this method an
estimate for the unstressed d-spacing is sufficient[10].

Residual stress measurements were performed at the 1IDB
beamline at the Advanced Photon Source at the Argonne Na-
tional Lab. Because the basic principles of diffraction resid-
ual stress analysis are well known[10], only the specifics of
this measurement will be described.Fig. 3shows a schematic
of the experimental setup.

Despite the relatively low photon energy of 20 keV the
high intensity of the primary beam allowed the use of the

radial

source detector

axial

Fig. 2. Specimen orientations for the three principal strains.

Al(4 2 2) sample reflection, thus increasing the Bragg angle
to approx. 2θ ≈ 44◦. This choice decreases the notorious
“diamond” distortion of the sampling volume and maintains
the nominal spatial resolution. In order to minimize the in-
trinsic blurring of the shape of the sampling volume due
to cold-work induced peak broadening a Si(1 1 1) analyzer
crystal was used to restrict the acceptance angle of the de-
tector. This measure removed the instrumental line broad-
ening. A typical peak profile is shown inFig. 4. The count-
ing time was chosen such that the typical uncertainty of the
peak position was≤ 5 × 10−5.

Despite the small sampling volume (≈0.003 mm3), and
the fact that aluminum alloys virtually always contain large
grains, for the same orientation but different locations the
intensity fluctuations of the reflected peak were within 62%
of the average. Preferred orientation was investigated but it
was found to be of little impact on the measurement and
on the data analysis because the reflected intensity was es-
sentially the same in the three measurement directions. This
and the preferred orientation data indicate that the reflect-
ing grains belong to the isotropically oriented fraction of the
grains. Sheet metal textures due to rolling do not change sig-
nificantly the elastic constants in the directions of the prin-
cipal axis[14]. With the fact that aluminum is mechanically
rather isotropic, this also allows the use of diffraction elastic
constants calculated according to a self consistent scheme
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Fig. 3. Experimental arrangement of the synchrotron experiment. The incident beam penetrating the sample is diffracted along the entire path through
the sample. The reflected beam is broadened due to microstrains in the sample. The low angular acceptance of the analyzer prevents the counting of
photons that were reflected from regions outside the nominal sampling volume.

[11,12]. The stresses are obtained from the basic equation
of diffractive stress analysis

εϕψ = dϕψ − d0

d0
= 1

2s2(hkl)× [(σ11 cos2 ϕ

+ σ22 sin2 ϕ + σ12 sin2ϕ)sin2ψ

+ (σ13 cosϕ + σ23 sinϕ)sin2ψ + σ33 cos2ψ]

+ s1(hkl)(σ11 + σ22 + σ33) (1)

By setting all shear stress components andσ33 equal to 0,
one finds that

ε0,90 − ε0,0 = d0,90 − d0,0

d0
= 1

2s2(hkl)σ11 (2)

and

ε90,90 − ε0,0 = d90,90 − d0,0

d0
= 1

2s2(hkl)σ22 (3)

Using σ11 = σaxial and σ22 = σtangential, d0,90 = daxial,
d0,0 = dradial, and d90,90 = dtangential, we obtain for the
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Fig. 4. Typical peak profile of the Al (4 2 2) reflection.

stresses

σtangential=
dtangential− dradial

d0
× 1

1/2s2(hkl)
(4)

σaxial = daxial − dradial

d0
× 1

1/2s2(hkl)
(5)

For the diffraction elastic constant 1/2s2(hkl) we calculated
1.9096× 10−5 MPa−1 [11]. The value ofd0 was estimated
from the average of all measured d-spacings. It can be seen
in Eqs. (4) and (5)that the uncertainty of this estimate for
d0 (approximately 10−5) has no impact on the stress uncer-
tainties (typically±5 MPa).

3. Results and discussion

We collected data from 10 different positions through
the wall. The experimental uncertainties are plotted in the
graphs but they are in most cases of the size of the data
points. The innermost and outermost locations were chosen
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180˚,RD

0˚,RD

90˚,TD axial

tangential

radial

Fig. 5. Measurement locations on the ring. The axial direction is constant
while the radial and tangential directions are rotated depending on the
circumferential position: (a) 0◦ = RD; (b) 180◦ = RD.

such that the sampling volume was half immersed into the
specimen. Due to the small beam size and the low accep-
tance angle of the analyzer/detector system, abberations that
could affect the stresses at these two points are minimized.
The use of laboratory X-rays for measurements directly at
the surfaces was not considered because the stresses within
the penetration depth (≤10�m) are affected by frictional
surface damage[13]. While removal of the damaged sur-
face layer with subsequent surface stress measurement is
possible it would not add anything to the data because the
new depths after removal are about the same as the depths
(center of gravity) of the first (near the outer surface) and
last (near the inner surface) sampling volume in our mea-
surements. Also, unlike laboratory XRD, synchrotron radi-
ation allows the direct measurement of in-plane strains (ax-
ial and tangential). For medium strength textures in rolled
and deep drawn materials, the differences of elastic con-
stants in the three measurement directions (principal axis
system of the sheet) can be neglected[14], thus avoid-
ing the difficulties involved in dealing with out-of-plane
diffraction elastic constants as it is necessary for laboratory
XRD [11].

3.1. Intact ring

We have investigated the depth distribution of axial and
tangential stresses at two axial and two positions around the
circumference for which the geometry is shown inFig. 5.
The tangential stresses were measured at the “0◦” position
and at the “180◦” position, both of which correspond to the
original rolling direction of the blank. The plots are shown in
Fig. 6. The agreement between stresses at “0◦” and “180◦” is
very good as was expected from the initial sheet symmetry.
Circumferential coordinate measurement machine (CMM)
scans of the wall thickness show that the thickness alternates
similar to a sine wave with a 180◦ period and a maximum
thickness difference between maximum and minimum of
about 3%; however, this appears to be too small a variation
to cause a difference in the stresses at both positions[15].
Similar CMM measurements on other cups have shown that

the positions of the thickness minima and maxima are not
correlated with the rolling direction or transverse direction
(TD) [15]. The initial symmetry of the blank is given by
rolling direction and transverse direction, thus suggesting a
90◦ period; the complete absence of this symmetry is a clear
indication for an asymmetric material flow during the cup
forming caused by an inhomogeneous blankholder force or
variation from centering the blank (a misalignment of the
die can be excluded). Compared to this combined effect the
initial plastic anisotropy (due to preferred orientation) of the
blank has a negligible impact on the cup wall thickness.

The change of the tangential stresses with the axial posi-
tion has been pointed out in the literature[3,5,6], in this case
we find a difference of appoximately 50 MPa over an axial
distance of 5 mm, increasing from the mid-line towards the
cup bottom. Because of the axial gradient there will be also
a slight twist of the ring, i.e. both sides of the split ring will
not align. As pointed out by Saito and Shimahashi[3], the
origin of these stresses is the combination of a bending of
the sheet metal at the radius of the die and the subsequent
unbending at the radius of the punch. The intact ring is not
in the tangentially unloaded state and the stress distribution
is analogous to that of a plastically bent beam in a loaded
configuration. Stress balance is neither demanded nor given
for any of the individual curves of the tangential stresses.
However, the equilibrium condition

∫
σt dA = 0 demands

that the integral of the tangential stresses over the wall cross
section of the ring vanishes. By extrapolating the stresses in
Fig. 6 over the full wall cross section, i.e. by assuming that
the tangential stresses at 5 mm up from the ring middle can
be obtained by linear extrapolation it becomes clear that the
equilibrium is not fulfilled which means that the variation of
tangential stresses is non-linear in the axial direction. The
through-thickness axial stresses, on the other hand, show lit-
tle change in the axial direction (Fig. 7).

The comparison of the axial stresses in the ring middle
and 5 mm down shows a gradient of about 5 MPa/mm de-
crease towards the bottom. Otherwise, the stresses in the
ring middle both at the “0◦” and at the “180◦” mark are
almost identical as was the case for the tangential stresses,
thus confirming the accuracy of the data. The axial stresses
show a similar behavior as the tangential stresses but they
are well balanced with the resulting axial bending moment
≈0. This is a consequence of cutting the ring from the cup
bottom (Fig. 1), thus setting the axial bending moment to
zeroeverywhere in the ring.

3.2. Split ring

Splitting the ring partially releases the tangential stresses
and it also resets the total tangential bending moment to zero.

The splitting is analogous to an unloading in the ex-
ample of a plastically bent beam shown schematically in
Fig. 8. Fig. 9 shows the axial and tangential stress dis-
tributions measured on the split ring. None of the indi-
vidual through-thickness stress curves necessarily have a
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Fig. 6. Tangential stresses in the intact ring for the initial rolling direction. For an explanation of the labels see Fig. 4.
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Fig. 7. Comparison of axial stresses: (a) loaded configuration; (b) stress
change upon unloading; (c) residual stresses.

zero tangential bending moment (Fig. 9a); however, at a
fixed angle (circumferential position) it must be true for the
through-thickness tangential stress averaged over the width
of the ring.

Unfortunately the synchrotron measurements could not
be fully completed which is why the data at the “180◦”
mark were not taken at the same axial position as the oth-
ers. Nonetheless, the tangential stresses all show the same
behavior and the depth curve taken at “180◦” is different
from the ones at “90◦” only by a small constant shift which
means that there are only minor stress differences between
locations at the RD and at the TD. The axial stresses are
close to being identical. Significant changes with respect
to the intact ring are found only for the tangential stresses
which now exhibit the typical “S” -curve shape as shown
in Fig. 8c. The direct comparison of stresses in the intact
and split ring in Fig. 10 supports the interpretation given
above.
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(a) loaded configuration          (b) stress change upon unloading          (c) residual stresses 

Fig. 8. Stress distributions in elastic-plastic beam bending. Outer and inner surfaces have a negative and positive thickness coordinates: (a) tangential
stresses; (b) axial stresses, respectively.

3.3. Springback

By averaging the measured tangential stresses from all
locations we can estimate the total tangential stress change
from the intact ring to the split ring which is shown in Fig. 11.

Using the intercept from the linear regression result in
Fig. 11 we can calculate the curvature of the split ring. The
equations needed are obtained as follows. First we calculate
the new radius of the split ring from actual data of ring
openings. An analysis of flatbed scanner images of split
rings (accuracy ±0.05 mm) confirmed that the outline of the
split ring is circular within ±1%, and the new radius R is
obtained from the ring opening 2y, the arc length c, and the
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Fig. 9. Tangential and axial stresses in the split ring: (a) tangential stresses;
(b) axial stresses.

old radius R0 by means of two equations

c = 2R arcsin
( y
R

)
c = 2π(R− R0)

(6)

which have to be solved for R numerically. The meaning of
the variables in Eq. (6) is shown in Fig. 12.

The linear stress change shown in Fig. 11 is associated
with the change in curvature by

σt = Eεt (7)
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Fig. 10. Comparison of stresses in the split and intact ring.
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in which σt is the stress on the outer surface (this is the
intercept in Fig. 11 with 130 MPa at y = −0.46 mm). For
the bulk value of Young’s modulus E a value of 70 GPa was
used. The strain εt can be written in terms of the thickness
d and the two radii R and R0 as

εt = d

2

(
1

R0
− 1

R

)
(8)

from which R can be easily calculated. The results of the
calculation and openings of several rings made under the
same conditions are listed in Table 1.

The agreement between the calculated radius and the ex-
perimental results is good with a relative difference of just
3%. Keeping in mind that diffraction can inherently mea-
sure only elastic strains we find that within the accuracy of
the measurement (the standard error of the intercept is 8%)
there is no indication of plastic recovery which would appear
as a difference between the calculated radius (purely elastic,
calculated from through-thickness stress) and the measured
radius of the split ring. The latter contains both the elastic
effect and the plastic recovery.

R

2y

R0

c

Fig. 12. Intact and split ring with radii R0 and R.

3.4. Peak shape analysis

In addition to the shifts in position diffraction peaks also
contain information about grain size and dislocation den-
sities. These contribute to the full-width at half-maximum
(FWHM) of a peak. The actual FWHM is a convolution of
instrumental broadening and physical line broadening. One
of the advantages of synchrotron radiation when used with
an analyzer crystal is that for cold worked metals the con-
tribution of the instrumental broadening is small compared
to the physical line width. Because of that, changes in the
FWHM can be tracked with high precision, as is shown in
Fig. 13.

As shown by Wilkens [16], the line width increases with
the dislocation density and inversely with domain size, and
each effect has a different contribution depending on the
diffraction angle. Our measurements are based on a single
peak at a particular diffraction angle so that the domain size
and dislocation contributions cannot be separated without
additional information. However, a measure of grain size
is available in the intensity fluctuations of the diffraction
peaks in the axial and tangential configurations in which the
absorption is constant for all locations. The two main con-
tributing factors to the intensity fluctuations are the photon
counting statistics and fluctuations of the diffraction grain
volume from one position of the sampling volume to the
next (under identical absorption conditions). The sampling
volume is determined by the beam dimensions and it is con-
stant. At different locations, the total volume of the grains
within the sampling volume that contribute to the diffracted
intensity varies depending on how many grains have the
right orientation to meet the diffraction condition. Because
of the high base intensity we can disregard the influence of
the counting statistics (which would become apparent when
measuring repeatedly at the same location under the same
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conditions) in which the relative standard deviation is <4%.
For example, at one location the integrated intensity may be
1200(35) while at the neighboring location the integrated in-
tensity is 800(28). The values in brackets indicate the stan-
dard deviation given by the counting statistics. Clearly, the
difference between both intensities is far outside these lim-
its. Thus, these large fluctuations are produced by variations
of the diffracting grain volume.

In the following, a simple method to estimate grain dimen-
sions is utilized. For a constant specimen orientation but dif-
ferent through-thickness locations, the standard deviations
of the intensities are a measure of how much the diffract-
ing volume varies from location to location. By disregarding
preferred orientation and by assuming that the number of
grains per sampling volume is Poisson-distributed, we ob-
tain for n, the average number of reflecting grains, that

n =
(
E(I)

σ

)2

(9)

in which E(I) is the expectation value of the intensity and
σ is the standard deviation of the intensity. E(I) and σ are
obtained from the intensities of through-thickness measure-
ments at a given circumferential position. It can be assumed
that no through-thickness texture gradients are left after the
forming process. Using Eq. (9) we find for the axial orien-
tation that σ/E(I) = 0.33 (relative standard deviation), and
the number of relecting grains is n = 9; in the tangential
orientation we obtain n = 3 with σ/E(I) = 0.62.

The different n in the two orientations indicate elongated
grains. It is important to note that these numbers are indepen-
dent of the multiplicity of the reflection (hkl). Furthermore,
by assuming a uniform grain size and using the detector cov-
erage (1.2 × 10−5 of the sphere determined by the sample
to detector distance) together with the sampling volume of
3 × 106 �m3 we calculate the size of the diffracting volume

to be 36 �m3 (for an isotropic orientation distribution). We
obtain an average grain volume of 12 �m3 in the tangen-
tial orientation and an average grain volume of 4 �m3 in the
axial orientation. Even with large grain aspect ratios com-
monly found in rolled materials (approximately 520) these
grain volumes point to grain sizes that will not contribute to
a size broadening of the diffraction peak. As a consequence,
the observed broadening effects are only due to dislocation
related microstrains. Thus, the data in Fig. 13 are a measure
of the accumulated plastic strain, distributed in symmetric
curves with a minimum at the location of the neutral surface
at 0.46 mm depth. The existence of the minumum is a con-
sequence of the existence of a neutral plane in the sequence
of bending and unbending.

4. Conclusions

The through-thickness residual stress distributions in a
ring cut from a deep drawn Al-6022 cup in the loaded and
unloaded state were measured non-destructively using syn-
chrotron radiation. The measurements were performed with
high spatial resolution and small step width in order not to
lose details of the steep stress gradients in a wall <1 mm
thick.

The tangential stresses both in the loaded (intact ring)
and in the unloaded (split ring) state were measured at sev-
eral locations and were found to be largely identical except
for a constant shift. This shift depends mostly on the axial
position and only to a small extent on the circumferential
position, i.e. the position with respect to the original rolling
direction. The axial stresses also showed some dependence
on the axial position with a smaller constant shift than the
tangential stresses. Unloading (splitting the ring) had only a
small effect on the axial stresses.
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A simple model was developed by which the opening of
the split ring could be predicted from the stresses measured
in the intact ring. The measured radius of the split ring was
found to be within 3% of the calculated one.
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