
Goal: Predict solute and defect evolution near a dislocation 

System: substitutional Si in Ni 
Approach: 
•  Ab initio calculation of migration barriers 
•  Self-consistent mean-field method  

Transport of point defects 
near dislocations (sinks) 
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Under irradiation: continuous transport of 
defect fluxes to sinks 
•  Coupling of defects and solutes fluxes? 
•  Segregation, precipitation, creep? 
  Stresses of dislocation and applied 
•  Inhomogeneous driving forces 
•  Inhomogeneous anisotropic mobilities 

Stress-induced anisotropic diffusion in alloys: 
Complex Si solute flow near a dislocation core in Ni 
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Irradiation-induced precipitation 

Barbu and Ardell, Scripta metal.,9,(1975) 
Rehn et al., Phys. Rev. B, 30 (1984) 

Dislocations                            Grain boundaries 

•  Undersaturated Ni-Si alloys 
–  Precipitation of Ni3Si precipitates induced by vacancy 

flux to sinks 



Composition profiles at dislocation loop in CP304 post-irradiation 

•  Enrichment of Si, Ni and P 
at the dislocation 

•  Cr and Mn are depleted 
•  Similar segregation 

behavior to grain 
boundaries 
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Solute drag: vacancy and solute flux coupling 

JV / JSi negative  
if solutes and vacancies move 

in opposite directions 

JV / JSi positive 
if solutes and vacancies move 

in same direction 

Vacancy flux 

Si flux 
Si flux 

Vacancy flux 

Solute flux 

(a) 

Vacancy flux 

(b) 

vacancy-solute 
exchange dominant 

solute drag by 
vacancy complex 



The Onsager flux equations 

Linear relation between fluxes and the driving forces (Allnatt1993) 
Ji = Lij

j
∑ Xj

JNi = LNiNi∇µNi + LNiSi∇µSi + LNiV∇µV
JSi = LSiSi∇µSi + LSiNi∇µNi + LSiV∇µV

Lij : The phenomenological coefficients; 
X : the driving force (for e.g. gradient 
of chemical potential) 

(i,j= 1,2,…) 

In a binary system Ni-Si 

Quantities of interest from phenomenological coefficients 

Diffusion  
coefficients 

DSi =
kT
nSi

LSiSiDSi =
kT
n
(LSiSi
cSi

−
LNiSi
cNi

)(1+ ∂ lnγSi
∂ lncSi

) In the dilute 
 limit (cSi<<1) 

vacancy-mediated diffusion 

Ji
i
∑ = 0

γsi -- activity coefficient 
csi -- concentration of Si 

JV = LVSi∇µSi + LVNi∇µNi + LVV∇µV

LSiV = −LSiSi − L NiSi G =
LNiSi
LSiSi

LSiV - negative if solutes and vacancies move in opposite directions 
      - positive if solute-drag is predominant 

Allnatt: Atomic transport in solids (1993) 

Solute drag 



Jump type 

ω0 self-diffusion jump 

ω1 vacancy-exchange 

ω2 impurity jump 

ω3 dissociation jump 

ω4 association jump 

Vacancy mediated diffusion in FCC Ni 

(111) plane 

ω1 ω3 

ω3 << ω1 : Si-Va tightly bound = Si in the same direction as vacancies  
 ω3 ≈ ω1 : Si-Va no strong interaction = Si flows opposite to vacancies 
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•  Phonon frequencies ‘ν’ within 
harmonic approximation 

•  Thermal electronic contribution 
from electronic density of states 

•  Enthalpy of migration from 
nudged-elastic band method 

Jump frequencies: harmonic transition state theory 

First-Principles calculation of  



LSiV(δ) = LSiV(0)+
dLSiV
dδ δ=0

⋅δ

LSiV(ω0,ω1,ω2...) From self-consistent mean-field(1,2) 

ω j (δ) =ν
*(δ) ⋅exp

−ΔEj (δ)
kT

$

%
&

'

(
) From ab initio calculations 

Lij (δ) : phenomenological coefficients as a function of strain 
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Volumetric strain Tetragonal strain Shear strain 

1. Nastar et al. Phil. Mag. (2005), 2. Nastar et al. Phil. Mag. A (2000) 

Phenomenological coefficients modified by strains 



Jump type Tension 
(δ=0.01) 

δ=0 Compression 
(δ=-0.01) 

ω0 self-diffusion jump 

B
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s 
[e

V
] 1.04 ≈ 1.10–0.07 1.10 1.17 = 1.10+0.07 

ω1 vacancy-exchange 0.99 ≈ 1.05–0.07 1.05 1.12 = 1.05+0.07 

ω2 impurity jump 0.87 = 0.94–0.07 0.94 1.01 = 0.94+0.07 

ω3 dissociation jump 1.20 = 1.27–0.07  1.27 1.34 = 1.27+0.07 

ω4 association jump 1.10 ≈ 1.16–0.07  1.16 1.23 = 1.16+0.07 

Vacancy-mediated diffusion with hydrostatic strain 
δ 

δ 

δ 

•  5-frequency model for FCC 
•  No change in the symmetry 

under volumetric strain  

•  The planar cage for any <110> jump  
•  Strain on the cage area and its 

relation to the barriers 

Ni 
Si 

<110> jumps 

A 

cage at the 
transition state 

ΔEi (δ) ≈ ΔEi (0)− (7eV)δ

Strain on the cage diagonal : δ    

All barriers change by the same quantity with strain:    
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Diffusion coefficient of Si in Ni: hydrostatic strain 

•  Calculations similar to the 5-frequency model 
•  14 frequencies when including 3rd neighbor interaction 
•  1st neigh. 0.1eV attraction, 3rd neigh. 0.05eV repulsion 
•  Most hop barriers follow kinetically-resolved activation 

barrier approx.: forward-reverse average ≈ constant 
•  Same change in activation energies with stress for all jumps 

Calculated diffusivities match the experimental data 

δ 

δ 

δ 



Mobility coefficients of Si in Ni: solute drag 
•  From the 14 frequency model 

Small change in vacancy wind with volumetric strain 
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Mobility coefficients of Si in Ni: vacancy wind 
•  From the 5 frequency model: crossover temperature of 1200K 

Small change in vacancy wind with volumetric strain 
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Migration barriers and jump frequencies: tetragonal strain 

δ[101] ≈ −
δ
2

δ[110] = δ

δ[101] ≈ −
δ
2

(111) Plane : Tetragonal strain 

12 first nearest neighbor(NN) bonds break symmetry <110>: 
 Red (8) and Blue (4) 

 δ>0 – Blue bonds are longer than Red 
 δ<0 – Blue bonds are shorter than Red 

Needs 15 (44) frequencies to calculate Lij matrix 

δb = δ  
δr = -δ/2 



The degeneracy is lost due to strain:   
12 ΔE0 split into : 8 ΔE0

-- and 4 ΔE0
-- 

Ni self-diffusion jumps (ω0 –type) under tetragonal strain 

Strain: +0.01 Strain: 0 Strain: -0.01 
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ΔE0
-- 1.24 ≈1.10+0.14  

ΔE0 
 
1.10 

ΔE0
-- 0.96 ≈ 1.10-0.14 

ΔE0
-- 1.02 ≈1.10-0.07 ΔE0

-- 1.16 ≈ 1.10+0.07 

δb = δ and δr = -δ/2;  
with δ= ± 0.01 

ω0 ω0
- -

 , ω0 
- - 

•  Blue Jumps (ΔE0) increase (decrease) for δ>0 (<0) 
•  Red Jumps (ΔE0) decrease (increase) for δ >0 (<0) 

For a strain δ = 0.01 diagonal of the cage 
  Contracts (by -0.01) – for Blue jump 

 Expands   (by 0.005) – for Red jump 

ΔE0 (δ) ≈ ΔE0 (0)− (14eV)δdiagonal



The degeneracy is lost due to strain:   
12 ΔE0 split into : 8 ΔE2

rr and 4 ΔE0
bb 

Si-vacancy exchange (ω2 –type) under tetragonal strain 

δb = δ and δr = -δ/2;  
with δ= ± 0.01 

•  Blue Jumps (ΔE2) increase (decrease) for δ>0 (<0) 
•  Red Jumps (ΔE2) decrease (increase) for δ >0 (<0) 

For a strain δ = 0.01 diagonal of the cage 
  Contracts (by -0.01) – for Blue jump 

 Expands   (by 0.005) – for Red jump 

ΔE2 (δ) ≈ ΔE2 (0)− (14eV)δdiagonal
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Strain: +0.01 Strain: 0 Strain: -0.01 
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Si-Va swing (ω1 –type) under tetragonal strain 

Strain: +0.01 Strain: 0 Strain: -0.01 
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Si-Va re-orientation can happen faster along particular directions 

•  Blue Jumps (ΔE2) increase (decrease) for δ>0 (<0) 
•  Red Jumps (ΔE2) decrease (increase) for δ >0 (<0) 

δb = δ and δr = -δ/2;  
with δ= ± 0.01 

ΔE1(δ) ≈ ΔE1(0)− (14eV)δdiagonal



Si-Va dissociation jump (ω3 –type) under tetragonal strain 

δb = δ and δr = -δ/2 

ω3 ω3
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Strain: +0.01 Strain: 0 Strain: -0.01 
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ΔE3(δ) ≈ ΔE3(0)− (14eV)δdiagonal

•  Blue Jumps (ΔE3) increase (decrease) for δ>0 (<0) 
•  Red Jumps (ΔE3) decrease (increase) for δ >0 (<0) 



Si-Va association jump (ω4 –type) under tetragonal strain 

Strain: +0.01 Strain: 0 Strain: -0.01 
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δb = δ and δr = -δ/2 

ΔE4 (δ) ≈ ΔE4 (0)− (14eV)δdiagonal

•  Blue Jumps (ΔE4) increase (decrease) for δ>0 (<0) 
•  Red Jumps (ΔE4) decrease (increase) for δ >0 (<0) 



Blue jump Red jump 

Changes in the cage-diagonal explains the changes in the 
migration barriers  

A constant         is found on all jump types  
dΔE
dδL

L 
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≈ −14eV

ΔEj (δL) ≈ ΔEj (0) – 14eV δL 

Summary: All jump barriers under tetragonal strain 

The blue jumps: ΔEi (δ) ≈ ΔEi (0) + 14eV δ 
The red jumps: ΔEi (δ) ≈ ΔEi (0) – 7eV δ  

Symmetry enforces −2:1 ratio for derivative 
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• Microscopic Master equation 

Kinetic Coupling: Self-Consistent Mean-Field Model 

Vaks (1993); 
Nastar et al. (2000; 2005; 2007) 
Garnier and Nastar (2011) 

dP̂(n, t)
dt

= Ŵ
n
∑ ( n→ n)P̂( n, t)− Ŵ

n
∑ (n→ n)P̂(n, t)

Ĥ =
1
2!

Vij
αβ

α,β ,i≠ j
∑ ni

αnj
β +

1
3!

Vijk
αβγ

α,β ,γ ,i≠ j≠k
∑ ni

αnj
βnk

γ +...

• Under imposed chemical potential gradient: 
  introduce effective interactions so as to satisfy steady state 
 
P̂(n,t)= P̂0 (n)P̂1(n,t);

P̂0 (n)= exp[β(Ω0 + µα
α

∑ ni
α

i
∑ − Ĥ )]at equilibrium 

with 

ĥ(t) = 1
2!

υij
αβ (t)

α,β ,i≠ j
∑ ni

αnj
β +

1
3!

υijk
αβγ (t)

α,β ,γ ,i≠ j≠k
∑ ni

αnj
βnk

γ + ⋅ ⋅ ⋅

d ni
α

dt
= − Ji→s

α

s≠i
∑ and

d ni
αnj

β

dt
= 0  Linear system relating effective 

interactions and gradient of µ’s 



• The effective interactions contain the kinetic coupling terms 

Kinetic Coupling: Self-Consistent Mean-Field Model (2) 

becomes 

Ji→ j
α = −Lij

(0)α δµ j
α −δµi

α( )+ Lijs
(1)ασ

σ ,s
∑ υ js

ασ −υis
ασ( )+ ...

Ji→ j
α = − Lij ,ss '

αβ µs '
β −µs

β( )
β ,s,s '
∑

• Approach can be extended to arbitrary crystallographic structures 

• Requires knowledge of atomic jump frequencies 

 Allows for including stress effects on kinetics: 

    e.g., creep, transport near dislocations 

 full Onsager Matrix 



Anisotropy in solute drag due to tetragonal strain 

Perpendicular to 
the elongation axis 

Parallel to 
the elongation axis 

•  LSiSi > 0 in the entire 
temperature range  
•  LSiV is positive if solute-drag is 
predominant 

Tetragonal strain with δ= ± 0.01  

δ = - 0.005  δ =  0.005  
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Anisotropy in solute drag due to tetragonal strain 
•  LSiSi > 0 in the entire 
temperature range  
•  LSiV is positive if solute-drag is 
predominant 

δ 

δ 
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Dislocation strain field 
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Dislocation strain field 
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Anisotropy in LSiV due to dislocation strain field 
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L0: unstrained L 
L’v: volumetric strain derivative 
L’tet: tetragonal strain derivative 



Anisotropy in LSiV due to dislocation strain field 

difference between max. and min. 
eigenvalue of Lij 

orientation of max. and min. 
eigenvectors of Lij 



Anisotropy in LSiV relative to average LSiV at crossover 

Tcrossover 

unstrained L nearly 0: ratio nearly distance independent 



Anisotropy in LSiV relative to average LSiV below crossover 

extremely large anisotropies near core 
unusual contours should affect solute distribution 

Tcrossover−100K 



Anisotropy in LSiV relative to average LSiV above crossover 

extremely large anisotropies near core 
unusual contours should affect solute distribution 

Tcrossover+100K 



Initial flow streams at Tcrossover 

vacancy 

strong directionality from primary anisotropy at crossover 

silicon 



vacancy 

solute drag into core in anisotropic pattern 

silicon 

Initial flow streams at Tcrossover−50K 



vacancy 

depletion of solute from dislocation core above crossover (solute exchange) 

silicon 

Initial flow streams at Tcrossover+50K 



Goal: Predict solute and defect evolution near a dislocation 

System: substitutional Si in Ni 
Approach: 
•  Ab initio calculation of migration barriers 
•  Self-consistent mean-field method  

Transport of point defects 
near dislocations (sinks) 
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Robert Averback, Dallas R. Trinkle 
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Under irradiation: continuous transport of 
defect fluxes to sinks 
•  Coupling of defects and solutes fluxes? 
•  Segregation, precipitation, creep? 
  Stresses of dislocation and applied 
•  Inhomogeneous driving forces 
•  Inhomogeneous anisotropic mobilities 

BES DE-FG02-05ER46217 & NERSC 

Stress-induced anisotropic diffusion in alloys: 
Complex Si solute flow near a dislocation core in Ni 


