Enabling Technologies for ≤20nm Generations

Dr. Hans Stork

Group Vice President,
Chief Technology Officer, Silicon Systems Group

May 12, 2009

think it. apply it.

M

Key Drivers for Industry Growth

SSD

Low Power User Convenience

Mobility, Low Power

Mobile Internet Devices
Smart Phones

DDR3 DRAM

Low Power Windows7[™]

Innovation Aligned with Inflections

A			
Transistor	Patterning	Copper Interconnect	Wafer Level Packaging
- Mobility, Low Power - DDR3 DRAM	- SSD - DDR3 DRAM	- Mobility, Low Power- SSD- DDR3 SRAM	- DDR3 DRAM - Mobility, Low Power - SSD

Innovation Aligned with Inflections

Transistor

- High-k Metal Gate
- High-k Etch
- FinFET Etch, Doping
- STI Etch, Fill
- CD, DR SEM
- Brightfield Inspection

Patterning

- APF, DARC
- APF/HM Etch
- SADP Etch
- Spacer CVD, Etch
- CD, DR SEM
- Brightfield Inspection
- Mask Inspection

Copper Interconnect

- Dielectric CVD Etch
- Cu PVD
- Cu ECD (Semitool)
- Cu CMP
- BLOk
- Black Diamond
- Brightfield Inspection

Wafer Level Packaging

- TSV Etch
- Dielectric Liner CVD
- Cu PVD
- Cu ECD (Semitool)
- Cu CMP
- DR SEM
- Brightfield Inspection

Critical Metrology Remains Front-End Focused

Transistor

Characterization of new materials and defects

- Interface control
- Compositional stability

Non-planar inspection of 3D Transistors

Patterning

Double patterning

Litho pattern transfer

Evolution of k - Scaling

Interfaces Critical for High-k / Metal Gate

Logic High-k / Metal Gate Stack

NAND Charge Trap Flash

Issues and Challenges for Hi-k/MG Stack

- Base Oxide
 - Development of sub-10A higher-k Box for EOT scaling
 - SiON: Proper N-dose and profile to maximize k and minimize EOT
- Hi-k
 - Morphology stability for GF & GL applications
 - Process control to minimize Oxygen vacancy (Vo)
 - Post deposition passivation for Oxygen vacancy suppression
- Capping Layer
 - Deposition sequence and etch selectivity
 - Insufficient Vt adjustment on PMOS with AlOx (requires DV_t > 300mV)
 - Mobility degradation due to over diffusion of La and Al species
 - Stringent uniformity requirement for Vt control WIW & WTW
- MG
 - Deposition process control to prevent damage to cap layer & hi-k
 - Gap fill and overhang issue for both N and P devices

Fundamental Conflicts: E_g vs k vs V_{bd}

- Small bonding radius (ex SiO2): Larger Eg, smaller k, larger Vbd
- Large Bonding radius (ex LaO2): Smaller Eg, larger k, smaller Vbd

Stability of the Hi-k/MG Stack

Bonding pair	Bonding Energy (KJ/mole)
W-W	666
Ti-N	476
La-O	798
Al-O	501
Hf-N	535
Hf-O	801
O-N	631
Si-N	437
Si-O	799
Si-Si	310

Evolution and Formation of Vo and lo

As dep Anneal EQ. MG Hi-k Si

- Oxygen atoms have the tendency to diffuse into Si sub and MG
- Formation Oxygen vacancy (V_o+) or Oxygen interstitial (I_o-) in hi-K layer
- Formation of SiOx IL (below hi-K) and MOx IL layer (above hi-K)
- Electron redistribution across IL's results in uncontrollable dipoles

Trends and Solutions for 2x nm

Base Oxide

- Use of SiON for aggressive EOT scaling in HP application
- Utilize densified base Ox to prevent trace element penetration into channel

■ Hi-k

- Use of optimal ALD seq and temp for complete & secure in-film bonding
- Post deposition anneal to suppress Vo formation (ie; NH3 PDA)
- Post deposition nitridation for morphology stability and Vo reduction

Capping Layer

- Possible alternatives for PMOS: MnOx, VOx, TaOx, ZrOx
- Use of densified base Ox to prevent La or Al penetration to channel
- Use of uniform deposition technique / process for Vt control

MG

- Low damage deposition to prevent Metal or N diffusion into hi-k
- ALD metal dep for GL or 3D applications

Device Structure Innovation

Enabling Technologies for FinFET Fabrication

• Etch

- > Fin Etch (i.e. STI Etch)
- > STI Oxide Recess Etch
- ➤ Gate Etch
- ➤ Side-Wall-Spacer Etch

• Front-End Processing

- Base Oxide and Nitridation
- High-k Deposition and Nitridation
- Doping
- > RTP and Laser Anneal
- > EPI (Si, SiC, and SiGe)

Metal Deposition

- Dielectric Capping Film
- > Work Function Film
- ➤ Barrier Film
- ➤ Bulk Metal Fill

CMP

- > STI CMP
- > Polysilicon Planarization
- > Polysilicon Opening Polish
- > Metal Gate Polish

• Dielectric Deposition

- ➤ Dielectric Film as Doping Source
- > Low-k Side-Wall-Spacer Film
- Low Temp Oxide Liner/Spacer
- ➤ PMD Film
- > Patterning Film

Inspection and Metrology

- > Fin sidewall angle control
- > Detection and review of defects on fin sidewall
- > Gate cd control across fin height

Enabling Technologies for FinFET Fabrication

• Etch

- > Fin Etch (i.e. STI Etch)
- > STI Oxide Recess Etch
- ➤ Gate Etch
- ➤ Side-Wall-Spacer Etch

• Front-End Processing

- Base Oxide and Nitridation
- ➤ High-k Deposition and Nitridation
- Doping
- > RTP and Laser Anneal
- > EPI (Si, SiC, and SiGe)

Metal Deposition

- > Dielectric Capping Film
- > Work Function Film
- ➤ Barrier Film
- ➤ Bulk Metal Fill

CMP

- > STI CMP
- > Polysilicon Planarization
- > Polysilicon Opening Polish
- Metal Gate Polish

• Dielectric Deposition

- ➤ Dielectric Film as Doping Source
- Low-k Side-Wall-Spacer Film
- ➤ Low Temp Oxide Liner/Spacer
- > PMD Film
- > Patterning Film

Inspection and Metrology

- > Fin sidewall angle control
- > Detection and review of defects on fin sidewall
- > Gate cd control across fin height

FinFET - M&I Challenges and Applications

Measurement of **gate CD** across the Fin height *CD SEM Metrology*

Measurement Fin sidewall angle to control the 3D transistor width

CD SEM Metrology

Detection of **defects on Fin sidewalls** after gate etch **Brightfield Wafer Inspection**

Tilted review of the detected defects on the fin sidewall SEM Defect Review

Next Generation Lithography

- With 193nm exposure wavelength and current NA, double patterning is the only way to reach the required half-pitch for 32nm.
- Flash aggressive half pitch needs
- Immersion lithography resolution limitations
- Double patterning is the present scheme to reach the required half pitch

The Many Forms of Double Patterning

Double exposure illumination splitting

Line + cut, and / or printed assist features + removal

Pitch fragmentation

Double Patterning Metrology Challenges

Line Edge Roughness (LER)

LER: 3.1nm
32 nm
→

LER: 1.5nm

Core/Gap Etch Trim Control

Growing Double Patterning Use

Migration to DRAM

Shallow Trench Isolation

Bit Line, Word Line

Gridded Design Rules Logic to 16nm Node

Poly GDR

Metal 1&2 GDR

2-D Logic on the Way
3-Mask EDA Tools Verified

Printing Challenges at 2xnm

- Double patterning
 - k1 is relaxed, but requirement on defect signal to noise continues to increase
 - Tight CDU requirements Overlay of 2 masks contributes to wafer CD error
- Source mask optimization
 - Mask patterns become more complex
 - Printability connection between mask and wafer even looser

Mask pattern

Aerial image

Prediction of Printing Defects Low k₁ Mask

Standard Inspection Image "What the mask looks like"

Nonprinting defect

Defect

Printing defect

Defect

Aerial Image "What the wafer looks like"

Non-printing Defect

Printing Defect

Aerial Imaging Technology Same pupil shape, NA, and σ as the scanner

APPLIED MATERIALS.

Aerial Image

Back-end Processing Challenges

Cu Interconnect

Effective scaling – controlling R (metal) and C (dielectric)

- Cu gapfill and resistivity control
- Lower K dielectric materials with good Hardness, modulus, Stress

Maintaining interface integrity

Profile and damage control

Wafer Level Packaging

High productivity, low cost processes Via profile control

Applied Materials Low k IMD Roadmap

New precursor chemistry being evaluated for k ~ 2.2

Low K Development Activities for 22nm

Black Diamond III

- Targeting higher modulus with sufficient carbon content to improve integration performance
- Same methyl content due to various process can yield to different modulus

BLOk II

- Enhanced Nitride Interface
 - Improves adhesion and TDDB
 - Provides stressmanagement to improveUV compatibility

Next Generation Cu Interconnect: Direct Plating

Post ECP fill with Semitool ECP

- Step coverage >90%, prevent overhang
- Continuous, smooth film

- Conformal seed coverage
- Full fill

Logic Challenge: Low k Integration

- Low k interface integrity
 - Adhesion
 - EM performance

 Profile control via ash and preclean damage minimization

Technologies for TSV

TSV Etch Scallop, Etch Depth, Selectivity, Throughput

Step Coverage, Thermal Budget

Key solution elements have been successfully demonstrated as extensions of CMOS processing

TSV Via Fill

25µm X 80µm

Image Sensor

10μm X 100μm

DRAM

5μm X 50μm

Logic

TSV - M&I Challenges and Applications

Wafer inspection for surface defects on TSV sidewalls

Darkfield Wafer Inspection

HAR SEM-based defect review for sidewall and bottom defects

SEM Defect Review and Analysis

Design rules shrink, defects hide in the noise

Inspection Options

- Don't find all DOI's
- ✓ Manageable data

- √ Find all DOI's
- * Vast amount of nuisance

A Painful Tradeoff – Sensitivity or Practicality

Increasing sensitivity detects new DOI but creates unmanageable amounts of data

Data to Information Flow – Basic Architecture 🗐

D2I Flow

Data

Sensitive Wafer Inspection

Information

Summary

- Atomic level understanding of interfaces is essential for continued progress in high-k and low-k dielectric applications
- Patterning control and metrology exponentially more complex with ultra low-k1 and double patterning
- Separating data from noise needs a priori knowledge of design for effective filtering and information generation

M

Material Complexity: Low K Film Modulus vs. K

At Constant Methyl Content (Film Composition)

Same Methyl content but various modulus due to process