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Revenue and R&D Forecasting
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Increasing Investment in R&D

• New process development > $ 300M
– Time to revenue > 4 years

• New wafer fab > $ 2B
– Time to revenue > 2-3 years

• New product development > $ 10M
– Time to revenue > 1.5 years

• High risks with long cash flow
– Volatile market
– Difficult execution
– Rapid innovation cycles

x 100



Pricetrend Baseline CMOS
Foundry Data
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Next Generation CMOS Challenges

Immersion 193 lithography with extensive RET
Low leakage and high performance sub 40nm 
CMOS transistors

Strain engineering
High-k gate dielectric and metal gate

Cu interconnect with ultra low-k dielectrics

Power Management
Analog and RF integration on the driver product
Process development on 300mm



Complexities
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RET Progression

130 nm
- size adjusts
- iso/dense 

selective size 
adjusts (SSA)

- hammerheads 
and serifs 

- model based 
OPC for active 
and poly

- attenuated PS 
for holes and 
poly

- vector e-beam 
reticle write for 
active and poly

90 nm
- size adjusts
- model-based 

iso/dense SSA
- hammerheads 

and serifs
- model based 

OPC for active, 
poly and metal

- attenuated PS 
for holes 

- alternating PS 
for poly

- advanced OPC 
strategies

- vector e-beam 
reticle write for 
all critical 
levels

65 nm
- size adjusts
- model-based 

iso/dense SSA
- hammerheads 

and serifs
- model based 

OPC for active, 
poly, contacts 
and metal

- attenuated PS 
for holes 

- alternating PS 
for poly

- vector e-beam 
reticle write for 
all critical 
levels

- Scattering bars 
for multiple 
levels

Increasingly complex
Increasingly expensive

0.18um
- size adjusts
- iso/dense 

selective size 
adjusts on 
multiple layers

- hammerheads 
and serifs

- model based 
OPC for SRAM 
poly

0.25um
- size adjusts
- iso/dense 

selective size 
adjusts for 
poly

- line end 
extension



Complexity of Contact SRAFs
Single Isolated Contact:

Requires sub-resolution 
assist features to print

Nearby Contact:
Requires sharing of sub-
resolution assist features

Multiple Contacts
Conflicts require complicated 
conflict resolution code

Production Layouts
Millions of SRAF compromises 
followed by model based sizing 
of every contact



Tighter Design Rules

Poor LER process

Contact patterning is no. 1 lithography challenge for 65nm

Tight gate-to-contact spacing results in little margin for 
contact edge roughness or deformation, or for alignment

Significant work needed for OPC, to optimize photo and etch 
processes  



Strained Silicon
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Holes in [110] Uniaxially Compressed Si
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Gate Insulator
Bad News
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Metal Gate

Work Function (eV)

Hf

Zr
In

Ta

Cd Ag Al Nb V
Zn

Sn Cr W
Mo

Ru Ti
Os Re

Rh

Ir

Pt

3.0

3.5

4.0

4.5

5.0

5.5

6.0

La

Mid-Gap

Optimum for 
NMOS

Optimum for 
PMOS

Valence 
Band

Conduction 
Band

5.20

4.63

4.05



New Silicide: NiSi

Process
Improvement

Ni moves into the silicon; affected by strain



New Materials and Markets
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Interconnect Integration
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Low k Dielectric Cracking
Crack propagation from die 
saw edge into the die 
Interface engineering
Optimization of dummy fill 
structures
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• Capacitance continues to 
decrease linearly

• Resistance is increasing on a 
steep exponential for minimum 
pitch lines due to boundary 
scattering

• For fixed pitch line lengths (1000x) 
R increase swamps C decrease 
node-to-node
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1) Subthreshold Leakage – traditional component
• Shorter channel lengths
• Higher channel doping
• Threshold Voltage not scaling as fast as Vdd

2) Gate Oxide Leakage or Tunneling Current
• As oxide thins, leakage increases exponentially

3) Gate Induced Diode Leakage (GIDL)
• Band to band tunneling
• Shallow junctions
• Higher doping of Source & Drain
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From Switch to Dimmer



Ioff vs. Node
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Product Power Management
Power Management Strategies:

Dynamic Voltage & 
Frequency Scaling

Multiple Voltage Domains 

Multiple Vt Libraries

Sleep modes

Drowsy modes

Substrate biasing

Tapered metal routers

Non-orthogonal Place & 
Route
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Manufacturing

• The science of manufacturing is finding all the 
relevant (systematic and random) defects and 
eliminate them, in parallel
– Yield is no longer limited by manufacturing: 

design greatly affects yield -> DFM
• The business of manufacturing is to maximize the 

scalability of capacity, taking advantage of the 
upturns and reducing the impact of the downturns
– Processes and designs have to be portable 

between fabs



Signal to Noise in Defect Metrology
Today’s highly sensitive defect 
metrology finds “everything”
Challenge:

How do we know which of these 
defects are Yield killers?

Even Bigger Challenge:
How do we know which of these 
defects are reliability issues? 

Dominated by very 
small defects (noise or 
signal?!?)



Improving ROIC

Advanced
Logic

2 Years Peak To Peak

Foundries

Mixed-Signal
Analog

3 Years Peak To PeakMigrate Factories

Foundries

High-Performance
Analog

5 Years or More Peak To Peak
Migrate Equipment



Sub 100nm CMOS is Different
Many new materials and processes to keep the physics going

Cu, Low-k, NiSi, SiGe, HfSiON, FUSI, etc
Immersion litho, millisecond annealing, constant angle implant, 
strain engineering, etc.

Leakage has reached the ceiling
Easiest way to increase current drive
Several new components: gate dielectric & junction tunneling

Interconnect not scaling
Makes up half the delay in a critical path
Capacitance is materials and integration limited
Resistivity increasing for narrow lines

Increased variances; design for manufacturing
Doping fluctuations, supply-threshold voltage reduction, 
interconnect R&C
Physical design affects process yield

Product requirements go beyond digital
High voltage I/O, mixed signal, analog, RF integration, non-volatile 
memory



Summary
• The major challenges to sustain CMOS 

scaling are
– Economics/Complexity of new materials 

and processes
– Cost/Complexity of physical design

• Product Innovation will be enhanced by
– Analog, RF, High Voltage integration
– Package contributions
– Architecture differentiation



Technolog Scaling



Advanced 200mm Analog

HPA07
High Performance

OP AMP
.25 Pitch

29000 Chips/Wafer

99% Yield

http://dm5apps.de.sc.ti.com/cgi-pde/yldanalysis/new_onewafer.cgi?lot=3203043&wafer=06&area=MULTIPROBE&probe_cnt=0&diesize=16&bin_type=BIN&fab=TFAB
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