

Contact: Dr. Rafail Ostrovsky, rafail@stealthsoftwareinc.com

Function Secret Sharing for PSI-CA: With Applications to Private Contact Tracing

Speaker: Steve Lu, CEO, Stealth Software Technologies, Inc. Contact: steve@stealthsoftwareinc.com

Samuel Dittmer Yuval Ishai Rafail Ostrovsky

 Valuation
 Valuation

 Volume
 Valuation

 Valuation
 Valuation

 Valuation</

NIST Workshop on Challenges for Digital Proximity Detection in Pandemics: Privacy, Accuracy, and Impact January 26-28, 2021

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). This work was supported by DARPA and NIWC Pacific under contract N66001-15-C-4065 and by DARPA, AFRL/RIKD,USAF, and AFMC under FA8750-18-C-0054. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes not withstanding any copyright notation thereon. The views, opinions and/or findings expressed are those of the author and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government.

Our Approach

- We describe new methods of increasing accuracy and privacy in decentralized contact tracing
- Key insight
 - Accuracy: Context-aware risk score attached to tokens
 - Robustness: Hash location+time with token in TEE for hardening against malicious context attacks
 - Privacy: New cryptographic protocol that hides infected tokens and only reveals weighted risk score

mSense App – Decentralized Contact Tracing with Extensions

Key Innovations	High Level System Requirements					
 Tracking risk of infection; not tracking people Does NOT expose all contacts Does expose probable exposure 	1.High Accuracy					
 2.Hardware proximity sensing and geolocation Edge anonymization for data at rest and in transit Server-side cryptographic calculations on anonymized users and locations 	2.High Scalability					
 3.Fully encrypted database AND computation Fast updates with parallel scaling Data, queries, and responses are ALL encrypted; including from servers 	3.Strong Privacy					
	4. Robustness					

		Centralized [TraceTogether,]	Decentralized [D3-PT, Apple/Google, PACT,]	Epione [TSS+20]	CleverParrot [CKL+20]	This Work [mSense/ PSI-WCA]
Servers	Trusted Server	Yes	No	No	No	No
	Number of Servers	1	1	2	1	2
Privacy	Social Graph					
	Server					
	User-to-user					
Robustness Against	Relay					
	Replay					
	Upload Omission				Feature	
	Trace Omission					

		Centralized [TraceTogether,]	Decentralized [D3-PT, Apple/Google, PACT,]	Epione [TSS+20]	CleverParrot [CKL+20]	This Work [mSense/ PSI-WCA]
<i>Tracing</i> Cost	User to Server Comm	O(n)	N/A	O(n log N)	N/A	O(nk)
	Server to User Comm	O(1)	O(N)	O(n)	O(N')	O(1)
	User Crypto Work	N/A	Non-crypto O(N) match	O(n) asym	O(N') asym	O(n) sym
	Server Crypto Work	Non-crypto match	N/A	O(nN) asym	N/A	O(N) sym
	Rounds	1	0.5	2	0.5	1
Result	Result Returned	Yes/No	All "infected tokens"	Count of exposures	Tokens of exposures	Weighted risk score
Underlying Crypto	Primary Crypto Tools	Central trust	PRF-style "PSI"	DH-style PSI- CA plus 2PIR	DH-style PSI	PSI-(W)CA from FSS

Private Set Intersection

7

Private Set Intersection [M86, HFH99, FNP04, KS04, FIPR05,...]

Private Set Intersection – Weighted Cardinality (PSI-WCA)

Reveal only the size intersection, hides the intersection and non-intersected data

- A = Set of tokens I've received + mSense weights
- B = Set of tokens of infected individuals
- PSI-WCA provides weighted risk score!

Putting It Together

This work: Building PSI-(W)CA From Function Secret Sharing

What is Function Secret Sharing [GI14, BGI15, BGI16,...]?

 Crypto protocol to split a function F into F₁ and F₂ such that F₁(x)+F₂(x) = F(x) and individually F₁, F₂ reveal nothing about F

Theorem [GI14]: Sharing a point function P can be done using only symmetric-key crypto (e.g. AES)

$$P(x) = \begin{cases} b \text{ if } x=a \\ 0 \text{ otherwise} \end{cases}$$
Weight

Situational Accuracy

- Improved sensor timings via chipset level access and experience
 Use of additional modalities to establish trusted location, sensor assisted positioning for more accurate location
- Utilize APIs to perform barrier detection (WiFi, Audio, etc)
- Context detection and baselining

Sensory Accuracy

- Access to the chipset level
 sensing environments with raw
 sensor data to assist in
 correcting for differences across
 APIs & Devices
- Chipset level applications work
 on wearables & mobile phones
- Access to raw sensory data and ability to load custom fusion algorithms

Building PSI-(W)CA From Function Secret Sharing

- For each token a_i, phone splits P_i into P_{i,1} and P_{i,2}, sends each P_{i,b} to server b (two servers)
 - Split server model has a long theoretical history (e.g. [CGKS95]) and recently used to great effect in practical privacy technologies (e.g [Prio])
- Each server b computes sum over all N infected tokens y_i, all n phone splits P_i:

response_b =
$$\sum_{i=1}^{n} \sum_{j=1}^{N} P_{i,b}(y_j)$$

Sum of the responses = weighted risk score!

 Naïve computation is O(nN), we also use careful combinatorial hashing to reduce server work

Stealth Software Technologies, Inc.

Tech: Private Set

•

Thank You!

Paper arXiv: https://arxiv.org/abs/2012.13053

