

A torsion balance experiment with magnetic feedback

Stephan Schlamminger

NIST Big G workshop 10/10/14

rad

Stephan.Schlamminger@nist.gov

Starting point

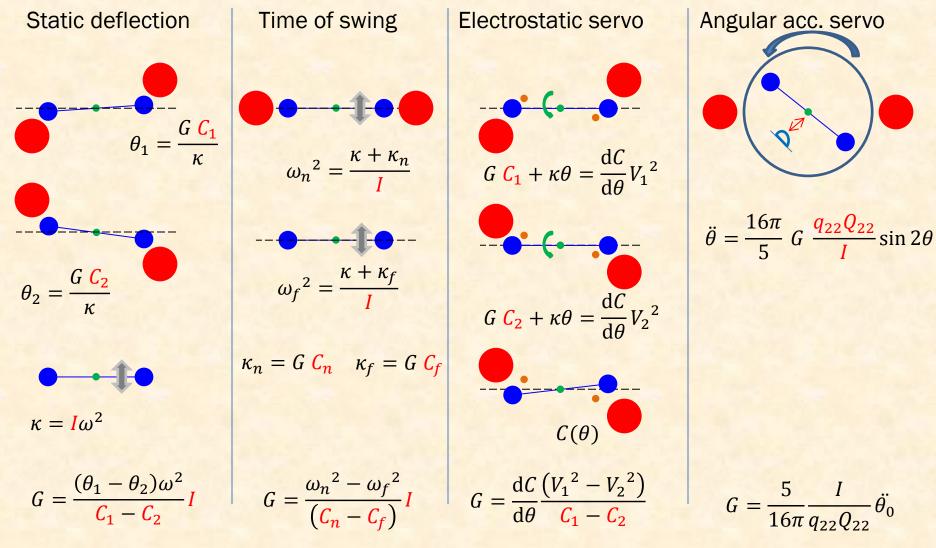
- Assume NIST takes the role to be a "Hub" for the G-Consortium.
- We would build two torsion balances that can be shipped around to external members of the consortium.
- Why torsion balances:
 - TBs contribute to the bulk of the discrepant data. Understand them better will help.
 - Is a practical device to measure weak forces.
 - Physics is simple => Possibility to get many collaborators.
 - Devices can be made compact and produced cheaply.
 - Remote support will be easier.
- Why two:
 - Adds additional robustness to the consortium.
 - Answers to questions like "Does one lab get consistent numbers with both instruments?" will provide additional information.

rad

The current situation

-700	-600	-500			TA)/G _{COI} _200		0 ⁶ 0	100	200	300	
	New	man <i>et al.</i> , <i>Ph</i>	il. Trans. R. S	Soc. A 372 , 201	40025 (2014).			ю			
Rosi et	al., Nature 51	0, 518 (2014).							atom interfero	ometer	
	(Quinn <i>et al., P</i>	hil. Trans. R.	Soc. A, 372 , 20	014032 (2014).				Ь		
	Parks & Fall	er, <i>Phys. Rev</i> .	<i>Lett.</i> 105 , 11	0801 (2010).	┝╼╌╢				2 pendula		
			Tu et al., Ph	ys. Rev. D 82 , (022001 (2010).	⊢⊖−	-				
_	Schlamminger et al., Phys. Rev. D 74, 082001 (2006).										
	Arn	nstrong & Fitz	gerald, <i>Phys</i> .	<i>Rev. Lett.</i> 91 , 2	201101 (2003).	ł	- -	-			
_		Kleinevoß	, PhD thesis	Universität Wu	ppertal (2002).			-	2 p	endula	
_	Quinn et al., Phys. Rev. Lett. 87, 111101 (2001).										
_	Gundlach & Merkowitz, <i>Phys. Rev. Lett.</i> 85 , 2869 (2000).										
_	Bagley & Luther, <i>Phys. Rev. Lett.</i> 78 , 3047 (1997).										
Karagioz & Izmailov, Izmeritel. Tekh. 10, 3 (1996).											
Luther & Towler, <i>Phys. Rev. Lett.</i> 48, 121 (1982).											
	6.670	6	.671	6.672 G / (10 ⁻	2 6.0 ¹¹ m ³ kg	673 ⁻¹ s ⁻²)	6.6 ⁻	74	6.675		

rad


Emphasis on TB experiments

$(G - G_{CODATA})/G_{CODATA} \times 10^{\circ}$											
-700	-600	-500	-400	-300	-200	-100	0	100	200	300	
[T T T	Ne	wman <i>et al.</i> , <i>Pl</i>	nil Trans R	Coc 4 372 201	40025 (2014)		· .			•••	
Rosi et		10 , 518 (2014)									
		Quinn et al., F					H	H -			
	Parks & Fa	iller, <i>Phys. Rev.</i>	. <i>Lett</i> . 105 , 11	0801 (2010).	Feel and						
			Tu et al., Ph	ys. Rev. D 82 ,	022001 (2010).	⊢↔	4				
_	Schlamminger <i>et al.</i> , <i>Phys. Rev. D</i> 74, 082001 (2006).										
	Aı	rmstrong & Fitz	zgerald, <i>Phys</i> .		⊢ <mark>P</mark>	+					
_		Kleinevol	3, PhD thesis			-					
			n et al., Phys.	·····							
		Gundlach & M				Ю					
	Bagley & Luther, <i>Phys. Rev. Lett.</i> 78 , 3047 (1997).										
	Karagioz & Izmailov, Izmeritel. Tekh. 10, 3 (1996). O Luther & Towler, Phys. Rev. Lett. 48, 121 (1982). O										
	6.67	0 6	.671	6.672	2 6	673	6.67	74 6	.675		
				$G/(10^{-1})$	$^{11} \text{ m}^{3} \text{ kg}$	$^{-1} s^{-2}$)					

rad

4 ways to use torsion balances

rad

4 TB methods

Hċ

C nte

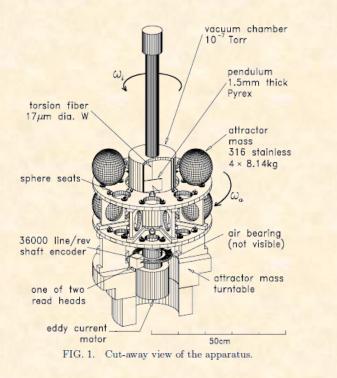
-700	-600	-500	(<i>G</i> – –400			DATA X 10 -100	0 ⁶ 0	100	200	300
	Nev	vman <i>et al.</i> , <i>Ph</i>	uil. Trans. R. Se	ос. А 372 , 201	40025 (2014).			Ю	time of swing	
Rosi et	al., Nature 51	1 0 , 518 (2014).								
	Quinn et al., Phil. Trans. R. Soc. A, 372, 2014032 (2014).								e defl.	0
	Parks & Fal	ller, <i>Phys. Rev</i> .	<i>Lett.</i> 105 , 110	801 (2010).						
			⊢⊖⊣			time of swing				
		Schlammir	nger <i>et al., Phy</i>			⊢∎⊣				
	An	mstrong & Fitz	zgerald, <i>Phys.</i> I	F	- -	-	electrostatic serv	0		
		Kleinevoß	3, PhD thesis U							
		Quin	n et al., Phys. I		static defl.					
Gundlach & Merkowitz, <i>Phys. Rev. Lett.</i> 85 , 2869 (2000).								Ю	angular accelerat	tion
	Bagley & Luther, <i>Phys. Rev. Lett.</i> 78 , 3047 (1997).								time of swing	
Karagioz & Izmailov, <i>Izmeritel. Tekh.</i> 10 , 3 (1996).									time of swing	
	Luther &	Towler, <i>Phys.</i>	Rev. Lett. 48 , 1	21 (1982). 🛏	0				time of swing	
L	6.670) 6	.671	6.672 G / (10 ⁻¹	2 6. ¹¹ m ³ kg	673 I ⁻¹ s ⁻²)	6.6	74	6.675	

rad

From the data

- Static deflection
 - seems difficult
- Time of swing
 - Recently 5 measurements.
 - Seems to measure low.
 - Applying the Kuroda correction moves the measured values even lower!

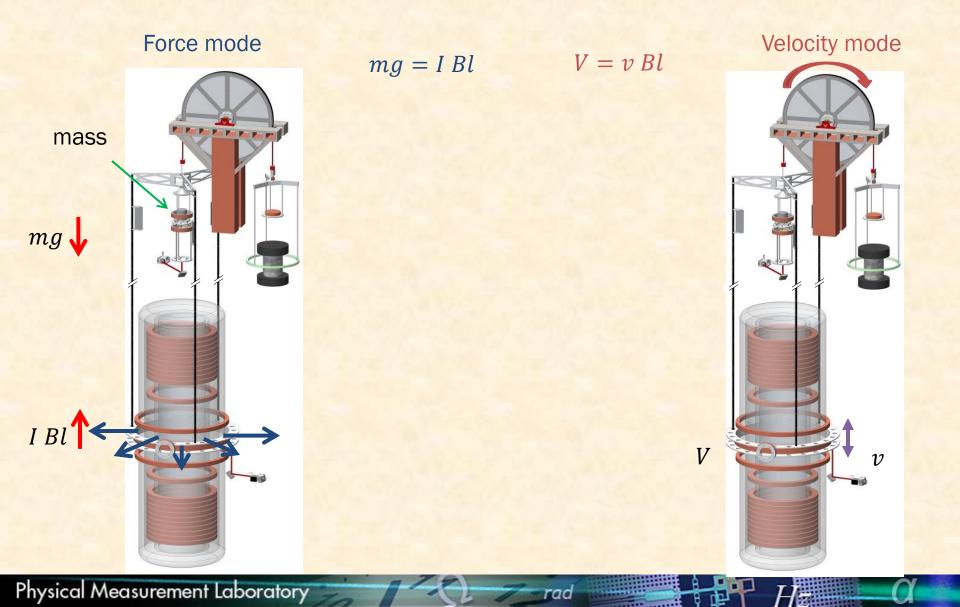
rad


- Electrostatic feedback
 - Susceptible to errors measuring the capacitance gradient.
 - Contact potentials and surface potentials can introduce biases.
- Angular acceleration
 - Elegant method.
 - Only one data point.
 - We do not know how reproducible this method is.

Based on these observations..

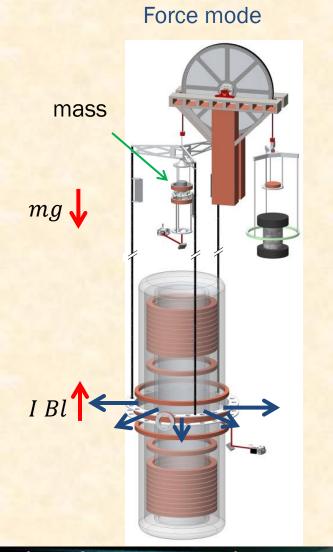
...I propose to build

Jens Gundlach's Apparatus

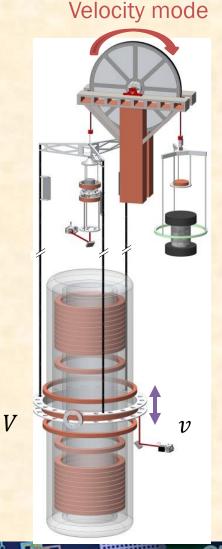

A torsion balance with servo.

rad

But not an electrostatic servo.

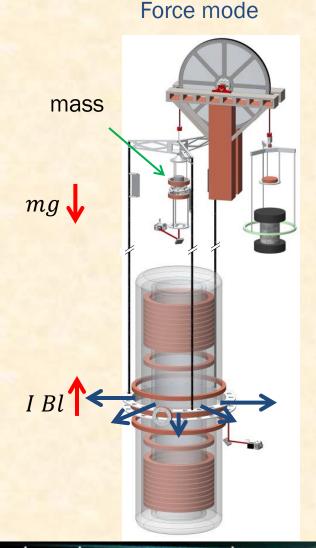


Watt balance primer


Watt balance primer

mg = I Bl V = v Bl

rad


mg 12 mgv = VI

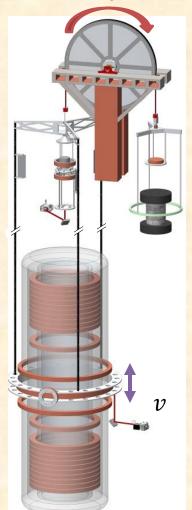
Watt balance primer

V

mg = I Bl V = v Bl

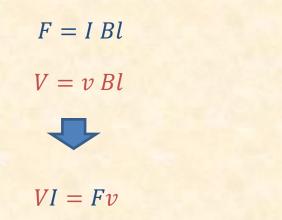
mg

mgv = VI


B.P. Kibble and I.A. Robinson, "Principles of a new generation of simplified and accurate watt balances", *Metrologia* **51** S132 (2014).

If the motion can be described by one variable, most error terms cancel.

A torsion balance is a prime example of a 1 dimensional system.


rad

Velocity mode

Torsion Watt Balance (TWB)

N = I Bl r $V = \omega Bl r$

 $VI = N\omega$

rad

• Bl must remain constant between modes.

• Bl and r must remain constant between modes.

Principle Schematic

Red: Field masses rotate around TB to produce Sinusoidal torque Blue: Torsion pendulum

Testmasses can be removed to calibrate the feedback cylinder

rad

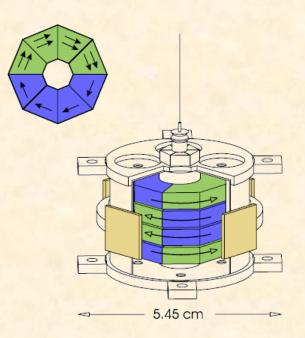
Feedback cylinder

Let's look inside the cylinder

 (\mathbf{X})

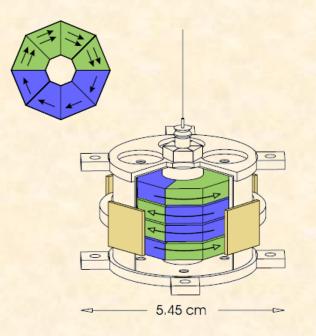
rad

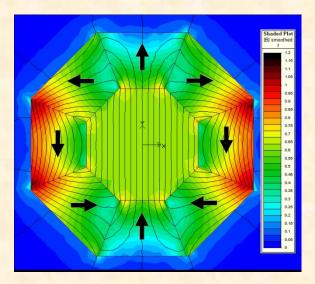
 $\overline{\mathbf{X}}$


x,y,z tip/tilt stage

A magnet on a TB?

B.R. Heckel et al.," Preferred-frame and CP-violation tests with polarized electrons" *PRD* **78** 092006 (2008).


rad



A magnet on a TB?

B.R. Heckel et al.," Preferred-frame and CP-violation tests with polarized electrons" *PRD* **78** 092006 (2008).

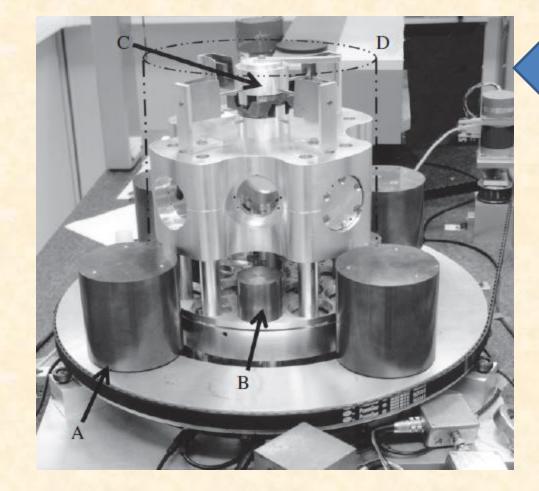
rad

Source: Wikipedia, Halbach array

A magnet on a TB?

B.R. Heckel et al.,"Preferred-frame and CP-violation tests with polarized electrons" *PRD* **78** 092006 (2008).

rad


A few numbers

 $3 \times 10^{-12} \text{ Nm} \le N \le 3 \times 10^{-8} \text{ Nm}$ Typical torques in big G experiments: $B = 0.2 \, \mathrm{T}$ Reasonable magnetic flux densities: l = 8 mWire length: Lever arm: r = 2.5 cm $Blr = 0.04 \text{ T} \text{ m}^2$ Flux integral constant: Torque mode: A current of $I = 0.5 \mu A$ produces $N = 2 \times 10^{-8} \text{ Nm}$ $R = 100 k\Omega$ The current runs through $N = I B l r = \frac{V_R}{R} B l r$ to produce $V_R = 50 \text{ mV}$ 2π Angular velocity mode: $\omega = \varphi_0 \frac{1}{T}$ $V = \omega B l r$ Where the angle $\varphi_0 = 4\pi$ Is the amplitude of the free oscillation and T = 60 sthe period. $N = \frac{V_R}{R} \frac{V}{\omega}$ With these numbers we get V = 52.6 mV

rad

How could such an apparatus look like?

Terry Quinn's experiment

rad

Not quite, torsion balance needs to be able to rotate by 360°.But this instrument will be similar in size.

Is this possible noise-wise?

In the fiber:

 $S_N^{0.5}(f) = \frac{4k_B T\kappa}{2\pi f Q}$

 $\kappa = 2 \times 10^{-4} \text{ Nm}$

Quinn et al.

here

hence Signal: Relative in 1 s $\kappa = 8 \times 10^{-4} \text{ Nm}$ $S_N^{0.5}(f) = 1.2 \times 10^{-13} \text{ Nm}/\sqrt{\text{Hz}}$ $N \sim 3 \times 10^{-8} \text{ Nm}$ $\sigma_N/N \sim 3 \times 10^{-6}$

rad

Is this possible noise-wise?

In the resistor: $S_V^{0.5}(f) = \sqrt{4k_B T R}$

here

 $R = 100 \text{ k}\Omega$ $S_V^{0.5}(f) = 4 \times 10^{-8} \text{ V}/\sqrt{\text{Hz}}$

rad

Signal:

 $V \sim 50 \text{ mV}$

Relative in 1 s

 $\sigma_V/V \sim 8 \times 10^{-7}$

Summary

- NIST would be ideal to be one hub in the G-Consortium.
- We would build two instruments:
 - Angular acceleration servo in the manner of Jens Gundlach's.
 - Torsion watt balance.
- Both devices will be thoroughly in house.
- We will perform big G measurements with both torsion balances.
- Then the devices will be shipped to external consortium members.

rad

- NIST will provide support to external collaborators if necessary.
- Projected timeline for the project: ~ 5 years.