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Outline AMD R
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eIntroduction to EELS in the transmission
electron microscope

eElement mapping using electron
spectroscopic imaging

eQuantitative EELS of advanced gate
dielectrics

eQuantitative EELS of low-k intermetal
dielectrics

oELNES analysis of low-k intermetal
dielectrics and nickel silicides
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Electron beam - specimen AMD 1
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Electron energy-loss spectroscopy (EELS) detects
inelastic interactions of beam electrons with the
atomic electrons of the probed sample volume



Electron energy-loss spectrum
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e Plasmon excitation peaks — Dielectric material properties
e Core ionization edges — Compositional analysis
e Core ionization near-edge structure (ELNES) — local atomic

environment, chemical bonding



Electron energy-loss spectroscopy
in the TEM AMD:'

Imaging energy filters allow to record spectra and
energy selective images

A E "AE

' specimen|

- E+aE
slit WV | unscattered
electrons

slit

AE [eV]

0
. energy loss spectrum

/ energy-filtered images

.CCD

inelastically unscattered inelastically
scatterad  glectrohs scattered
electrons electrons

espatial resolution limited by the size of the
focused electron probe

eenergy resolution limited by the energy width
of the electron source

espatial resolution limited by filter optics

ecnergy resolution limited by the width of the
energy selecting slit



Current performance standards AMD 1

e e —
Field emission gun (FEG), highly stable microscope
electronics

— sub-nanometer electron probes

Aberration correction of the probe forming electron
optics

— high SNR or sub-Angstrom electron probes
Corrected spectrometers

— energy resolution limited by the energy width
of the electron source

(Standard Schottky FEG: 0.5-1 eV,
Monochromated FEG: 0.1-0.3 eV)
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Element mapping using the three-window
method AMD“"
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Element mapping using the three-window
method AMD“"
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Element mapping using the three-window
method AMD“"
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Element mapping using the three-window
method AMD“"
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Element mapping using the three-window
method AMD“"
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Element mapping using the three-window
method AMD“"

eThree-window method is routinely used for physical
failure analysis at specific sites (e.g., identifying
etch residuals or contaminating particles)

eResults depend on the quality of the edge
background extrapolation - user has little control
over this process

eDetection of low concentrations unreliable

— It is often preferable to examine an actual
spectrum from a region of interest

— use Image-EELS



Principle of Image-EELS AMDAN
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Record a series of energy-filtered TEM images and
extract spectra from any desired region of interest



Image-EELS of an SOI contact after
TiN barrier deposition AMD“"

eCross-section prepared by FIB cutting

100 images in 5 eV-steps (80-575 eV), energy slit width 5 eV, 4
s/image.

eSpecimen drift during acquisition corrected off-line by cross-correlation
image alignment

| After allgnment



Image-EELS of an SOI contact after
TiN barrier deposition AMD:'
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eAbnormal features (e.g., residual layers) can be investigated in
detail

eCharacteristic near-edge structures of the Si-L, ; edge can be
distinguished
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"Source

TEM of a MOSFET

¢Si-O-N gate dielectric - less
than 10 atomic layers!

eThe N distribution affects the
properties of the Si-O-N layer

— N distribution in the 5-
15 at% range can be
measured by EELS at sub-
nanometer resolution



EELS line scans across the gate dielectric AMD“,'

e —
¢Si-O-N deposited by plasma-enhanced CVD

e Specimen thickness 20-80 nm
e Electron probe size ~ 0.35 nm

eLine scans: 40 points in 0.15 nm steps across the
gate dielectric

eMax. 1-2 s per point due to specimen drift
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Conventional quantitative spectrum

processing
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Model the edge
background (o« E. NOT
GOOD FOR OVERLAPPING
EDGES!

Area under the edges is
proportional to the
concentrations per area,
BUT ONLY FOR SINGLE
SCATTERING!

Differential scattering
cross-sections needed for
quantification. PROBLEM:
THEORETICAL CROSS-
SECTIONS INACCURATE!



Improved spectrum processing by
reference spectra fitting AMD“"

Decomposition of the measured spectrum into its single,
double,... scattering components:

Fit = P,Sp + P,Sp®Sp + PySp®S®S, + -
+ + ®Sp + ®SpQSp + -
+ NS, + N,S,®Sp + NS, ®Sp®Sp +
+ 0,5, + 0,5,8Sp + 0,5,@S,®Sp + -

— Atomic ratios: | N /N. oc N,/ ; No/N. o O,/

Determine the proportionality factors from calibration
measurements

— Edge background modelling, removal of multiple
scattering effects, separation of overlapping edges,
and quantification in a single workstep!
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Result: spatially resolved atomic ratios

of N, O and Si AMD:'
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Two different Si-O-
N gate dielectrics
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Comparison to AES depth profiling

Test layer stack: SiO,/Si-O-N/Si
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EELS linescans of the same layer
stack

— slightly better depth
resolution (about 0.5 nm)



Quantitative EELS of

high-k metal oxide dielectrics AMD:'
TiN/poly Si-capped 100 - l
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¢ O concentration dip in the high-k oxide

— O depletion or artifact due to strong elastic scattering in the Hf-
rich layer ?

e EELS quantification is problematic in the presence of strongly
scattering components

— Correction factors may have to be applied!
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Carbon depletion in low-k IMDs AMDZH
e —

e Substitution of oxygen in SiO, by methyl groups (-CH3)
reduces the permittivity significantly (k = 4.0 — 2.6-3.3)

— Carbon doped intermetal dielectric materials (IMD) reduce
interconnect delay, power dissipation, and crosstalk noise

e Plasma processing for resist stripping, trench etching and
post-etch cleaning removes molecular groups that contain C
and H from the near-surface layer (10-20 nm)

— Increased water absorption and dimensional changes

— Quantitative EELS analysis of structured IMD films
with nanometer resolution for process optimization



EELS line scans across carbon
depletion zones AMD:'
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Energy loss near-edge structure
(ELNES) analysis of low-k IMD AMD T

ELNES of the C-K edge at three
different FEG monochromator
settings A
— three different energy resolutions 1 2
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Carbon depletion zone shows modified bonding

— Investigate process induced low-k dielectric modification and
damage mechanisms



Metal silicide phase identification AMD:'
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e The formation properties of self-aligning metal silicides on
narrow lines depend on process temperatures, dopant
concentrations, and line width

e The introduction of nickel mono-silicide (NiSi) requires a
thorough investigation of these effects and their relation to
process parameters

— Identify silicide phases with nanometer resolution for
process optimization



Metal silicide phase identification by
electron microdiffraction AMDC
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Results often
ambiguous due to
strong crystal
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dependence of the
diffraction patterns




Metal silicide phase identification by
ELNES of the Si-L, ; edge AMDCY
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— Each phase shows a distinct fine structure that can be used for
phase identification ('ELNES fingerprinting’)



Summary AMD

Advanced TEM-EELS techniques provide valuable

high spatial resolution information for process
development:

e Accurate compositional analysis using Image-EELS

e Quantitative N, O, Si, C, ... concentration profiling
by means of reference spectra fitting of EELS
linescans

e Chemical bonding analysis of low-k dielectric
materials using ELNES analysis

e Phase identification of metal silicides by ELNES
fingerprinting
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