
Simple and Inexpensive FPGA-based Fast Multichannel
Acquisition Board

Technical Description, Installation and Operation Manual

Sergey Polyakov & Joffrey Peters

January 27, 2015

Abstract
This document describes how to build and operate an FPGA board to detect pulses and generate real-time
coincidence statistics and/or generate time-resolved data of electrical pulses, such as these generated by
Single-Photon Avalanche Detectors (SPADs). This board connects to a 32- or 64-bit PC via USB 2.0 and
can be used with popular data acquisition programs, or custom software using the included dynamically
linked library or open source code.

1 Introduction
The growing interest in research and applications of photon-counting technology is evident. More and more
research laboratories use single photon technologies for various applications, such as quantum communication
and computing, single-molecule monitoring, precision measurements, etc. Meeting the demand for engineers
and researchers with experience in single photon detection and statistical methods requires including simple
photon-counting experiments in undergraduate laboratory courses. To implement even a simple photon-
counting test bench, one needs to heavily invest in not only SPAD detectors, but also expensive photon
counting hardware and software. The fact that most commercial solutions known to the author provide
proprietary (as opposed to open source) software makes it difficult to adapt these solutions to custom needs,
especially when real-time data processing is needed. The main principles of development of this board are:

• Easy assembly, installation and operation

• Low cost

• Open source software and FPGA firmware

• Simple connectivity with LabVIEW

These principles provide a fast learning curve with an immediately useful device for simple photon counting
(or any pulse counting) applications. At the same time, it allows more advanced users to accommodate
unique applications, without spending too much time developing the board-to-PC interface. This software
was developed for 32- and 64-bit Windows PCs and for use with National Instruments’ LabVIEW1.

1 Certain commercial equipment, instruments, or materials are identified in this report in order to specify the experimental
procedure adequately. Such identification is not intended to imply recommendation or endorsement by the National Institute
of Standards and Technology, nor is it intended to imply that the materials or equipment identified are necessarily the best
available for the purpose.

1

2 Description
The board is a Xylo-EM FPGA board is made by knjn.com. It detects "signal" TTL pulses on 4 channels
and either timestamps their arrival based on an internal or externally provided clock, or records count and
coincidence statistics. The timestamps or coincidence statistics are driven by either the board’s own internal
clock with 20.83 ns increments (i.e. the internal clock runs at 48 MHz) or can be driven by an external
clock with increments down to 10.4 ns (i.e. a clock up to 96 MHz), which is sufficient to lock the pulse
timestamping clock to the repetition rate of typical ps and fs Ti:Saph lasers. Additionally, the boards can
output TTL pulses or toggle the TTL level of two output channels through software. As the board takes
data, the user may query the board via USB 2.0 to retrieve the timestamped events, or event statistics.
The peak transfer rate observed is > 8 MB/s (corresponding to & 2 million counts per second on all four
channels combined), but is only limited by the speed of the particular USB connection. The information
is then processed and/or recorded to the hard drive by the driver and is available in real time to the end
user, either through the dynamic-link library (DLL) which handles the USB connection, or via a LabVIEW
interface. The number of time stamping channels can be increased by the user through modification of the
FPGA firmware. The software was developed and tested using the Xylo-EM FPGA board which uses an
Altera Cyclone II FPGA and a Cypress FX2 USB 2.0 chip. It also could be used on knjn’s Saxo FPGA
boards (with limited functionality). The Xylo-EM board is commercially available, costs less than $200, and
is the principal expense of the project.

The following tables list system requirements and board characteristics as well as a parts list to set up a
Xylo-EM for use with this software.

Table 1: System requirements and board characteristics

Parameter Value
Operating systems supported 32-bit: Windows 2000, XP, 7

64-bit: Windows 7

Computer interface USB 2.0

Time counter reset (start) channel 1

Timestamping (stop) channels 4 (expandable as necessary with
firmware modifications)

TTL output channels 2 (expandable as necessary with
firmware modifications)

Timestamp increment (internal
clock)

20.83 ns(48 MHz clock)

Minimal timestamp increment
(external clock)

< 10.4 ns (> 96 MHz clock)

TTL pulse width 1 internal clock cycle, 20.83 ns

Board deadtime (after click event) 1 clock cycle after trigger

Minimum input signal duration 1 clock cycle

Event threshold level (start, stop,
clock)

TTL (' 1.6 V, positive edge,
non-adjustable)

Maximum USB transfer rate > 13 MB/s or ' 3 × 106 counts/s total
depending on computer-USB interface

Estimated total cost ≈ $240

Estimated assembly and
installation time

4 hours

2

http://www.knjn.com/

Table 2: Parts list with example links

Part Cost
Xylo-EM FPGA board 1 × $150

Generic electronics box) 3"x2"x6"
(min)

1× ≈ $20

USB 2.0 cable 1× typically included with Xylo-EM
purchase

Female BNC jacks 8× ≈ $3 = $24 (or more, if adding
channels)

Coaxial cable (RG-174) ≈ $0.75 (≈ 3 ft)

Splitters and 50 Ω terminators 8 ea. ≈ $42

Mounting screws (4-40) and
standoffs

As needed (∼ 2 − 3 ea.
standoffs/mounting screws & nuts)

Total ≈ $240

Detailed description
Events are recorded when voltages at the input channels are above threshold (> 1.6 V) at the rising edge of
the clock (internal or external). This implies that the signal input should be high for at least a full clock cycle
in order to reliably register. Further, due to the method of registering the input signals and locking them
to an asynchronous clock, there is a one-clock-cycle dead time after a detection event. As many commercial
APDs output signals of > 30 ns, this is not an issue for an external clock rate greater than 67 MHz, or
experimental repetition rates below 16.6 MHz using the internal clock. However, an additional input pulse
on the next clock cycle will not be distinguishable from a continued high input from a longer input pulse,
such that input signals should be sparse compared to the clock rate in order for the pulses to be individually
registered reliably. With firmware modifications, it is possible to run the internal clock at a higher rate.
Double or more of this internal clock rate has been achieved by the authors.

An additional consequence of the clock registration is a delay in click registration and time-tagging. The
clicks take 3 clock cycles to register with the time-tagger, which does not matter for most experiments, but
for any requiring extreme speed, this implementation may be unsuitable.

Coincidences are registered if two channels are high during the rising edge of the same clock cycle. To
extend this time, the user may take timestamped data and do post-analysis, or may augment the included
FPGA firmware to extend the coincidence overlap. The former method is probably an easier place to begin
if the user is not familiar already with Hardware Description Languages (in particular, Verilog).

Timestamps are based on number of clock cycles since the last input at the Start pin, or Clear command
issued to the FPGA. These are registered when the input channel is high at the rising edge of a clock, but
the firmware could be augmented to change the registration of a click to when both the clock and input
are high, though this was not done as it increases the timing jitter unnecessarily when the input signal is
broader than one clock cycle, as is commonly the case for commercial APDs.

3 Assembly and installation

3.1 Assembly
This manual is for the Xylo-EM FPGA board. For a different board, changes in firmware and assembly may
be necessary. Following are the assembly steps to set up a Xylo-EM board for use with this software. It is
important that all soldering and construction is done while the board is not powered (i.e. not connected to
a PC or power source via the board’s USB connector).

3

1. Mount the BNC connectors on the box as shown in Fig. 1a. Solder to the board with shielded cables,
connecting the BNC jacks carefully to the board’s ground pins, avoiding shorts.

(a) Front panel BNC connector
mounting.

(b) Board mounting, top view. (c) Board mounting, side view.

Figure 1: Board assembly.

2. Mount the FPGA test board to the box with standoffs and screws through the mounting holes as
shown in Figs. 1b, 1c. Make sure that the USB connector is accessible from the outside of the box.

3. Solder BNC connectors to FPGA pins with short (3-4") segments of shielded (coaxial) cable. Make
sure that all pieces are of the same length to reduce systematic timing issues. Refer to Table 3 and
Fig. 2 for pin assignments.

Table 3: Pinout configuration. Note: pins 93, 104, 112, 113, 114, 132, 133 (shown in Fig. 2) could be also
wired in a similar way for future extensions and/or for debugging.

Pin Purpose
70 Detector 1 (stop)
73 Detector 2 (stop)
79 Detector 3 (stop)
92 Detector 4 (stop)
97 Clear counter (start)
88 External clock input
100 TTL 1 Output
101 TTL 2 Output

3.2 Connecting the board
1. If using an external clock, connect the clock to the Clk pin (pin 88). For clock-zeroing and synchro-

nization, input a pulsed TTL signal to the Start pin (pin 97). Connect detectors or other inputs to
the appropriate input channels listed in Table 3.

Figure 2: Xylo-EM Pinout. This information and a full board layout diagram can be found in the Xylo-EM
documentation from knjn which comes with the board.

4

2. TTL channels 1 and 2 are connected to pins 100 and 101 respectively. The user may output independent
toggleable TTL levels on the two channels, or independent a TTL pulses of 20.83 ns.

3. It is important to match the impedance to 50 Ω at least at one end of the connecting cable to avoid
multiple reflections. Terminate all unused inputs on board with 50 Ω terminators, as shown in Fig. 3.
For example, in Fig. 3, the source from Detectors 1 & 2 is TTL, and is thus 50 Ω terminated at the
FPGA breakout for channels 1 & 2.

Figure 3: Proper 50 Ω BNC termination.

Note: some commercial detectors produce a digital output of < 3.5 V. If such detectors are used,
termination at either end may bring the signal below the threshold voltage. One possible solution is to
use a short (< 1 ft) cable between the detector and the FPGA, and avoid terminators. One could also use
simple comparators, setting the comparison voltage to about 1 V and the output at TTL level. (If one really
enjoyed using FPGA boards like these, one could use a stand-alone FPGA test board that simply translates
input to output with a short cable connecting it to the detector, then connect the two FPGA boards via a
terminated BNC cable.)

3.3 Software installation
1. Unpack software distribution. Unzip the board’s startup kit package into a folder, e.g. C:\FPGA.

Unpack the Stats FPGA software to the same folder.

2. Driver installation. When you plug the Xylo-EM board into your computer, it may not recognize the
USB controller and board and you will get a message like that in Fig. 4.

Figure 4: Windows 7 computers may not recognize the USB controller on the Xylo-EM.

To rectify this issue, you must open the Device Manager (simply type Device Manager into Windows’
Start menu to access this). This may require Administrator privileges. The Xylo-EM will show up as
an unknown device as in Fig. 5.
Right-click this device and click Update Driver Software... to initiate a driver update wizard. In
the wizard, select Browse my computer for driver software (Fig. 6), then the Browse... button
(Fig. 7).
Navigate to the signed CyUSB driver folder at e.g. C:\FPGA\ Driver - USB\
3. CyUSB signed, Cypress GUID, USB ID 8613 only. Select the x64 folder for a 64-bit platform
or the x86 folder for a 32-bit platform (see Fig. 8).

5

Figure 5: The Xylo-EM will be an unrecognized device in the Device Manager.

Figure 6: Click Browse my computer for driver software.

Windows should now recognize the device as a Cypress EZ-USB FX2LP No EEPROM(3.4.5.000) and
should show up under Universal Serial Bus controllers in the Device Manager.

3. Configuring the board. Open FPGAconf.exe, which is distributed along with the board’s start-up kit
(it would be in C:\FPGA\ in our recommended folder structure). Select Xylo-EM as the target board
from the Boards menu. Then, in the Options menu, set FX2 clock speed to 48 MHz as in Fig. 9, set
the USB Driver to CyUSB, the USB device to 0, and the CyUSB GUID to Cypress.

Click the ... button to open a file selection dialog, then provide the path to the FPGA TimeTag
firmware. The firmwares are the .rbf files in the appropriate subfolders in the e.g. C:\FPGA\Stats\Firmware
folder. Each subfolder indicates what the firmware is for. There are four folders, one each for internal
and externally clocked pulse time tagging (TimeTag as well as for counting and statistics of pulses

6

Figure 7: Click Browse....

Figure 8: Browse to the driver folder and select the folder appropriate for your platform.

(Counts). Next, click the Configure button to configure the FPGA with the selected firmware. A
beep indicates the successful completion of this step and indicates that the FPGA board is ready to
be used in the selected (TimeTag or Counts internally or externally clocked) mode.

4. Testing the installation. The simplest way to test the installation is to use the LabVEW example project

7

Figure 9: Step 2 of software installation process. Setting up the configuration program.

Stats.lvproj in the Stats\StatsLV\ folder provided with this software package. Use an internally
clocked firmware and be sure to use TimeTag firmware with TimeTag.vi or the Counts firmware with
the Counts.vi. Provide TTL inputs to the Channels 1-4 to see that pulses are counted. Connect an
oscilloscope to TTL outputs 1 & 2, and check that pulsing and toggling the TTL channels produces
the expected output. The receipt and initial processing of data are handled by a stand-aloneDLL.
This test is successful if the electronic events statistics is correctly displayed by the VI. Sample figures
of Counts.vi and TimeTag.vi properly registering counts on channels 1 and 2 are shown in Fig. 10.
More information on using these example programs is given in the next section.

Note: If you do not have a current redistributable for Microsoft’s Visual C++ installed, you may get
an error message at some point, indicating that MSVCP110DLL is not installed. To fix this problem,
search the internet for "Visual C++ Redistributable for Visual Studio 2012". Download the file from
www.microsoft.com only. At the time of writing, Update 4 was the current version and the file could be
downloaded at the following web address: http://www.microsoft.com/en-au/download/confirmation.aspx?id=30679.

If you do not get the MSVCP110DLL error message, but your LabVIEW test fails, unplug the USB cable,
wait for 10-20 seconds and plug it back in. Repeat steps 2 and 3. If this does not help, the PC may
need to be restarted. Repeat steps 2 and 3. If test fails again, check all the connections and that
the device is recognized properly in the Device Manager (We recommended using commercial function
generators instead of real signal sources for debugging.

8

<http://www.microsoft.com/en-au/download/confirmation.aspx?id=30679>

(a) Counts.vi registering a 50% duty cycle 400 kHz TTL signal.

(b) TimeTag.vi registering a 50% duty cycle 60 kHz TTL signal.

Figure 10: Examples of the included LabVIEW programs operating.

4 Operation
There are several default modes of operation. The operation mode can be changed by loading the board
with an appropriate pre-compiled firmware (.rbf file). Using the FPGA Configurator application, select
the .rbf file corresponding to the mode of operation of choice and click "Configure FPGA" button. This
procedure must be done after every off-on power cycle to the board. The following table gives default modes
of operation for TimeTag operation. Advanced users are encouraged to make custom firmware modifications
and share them with the project core, however, custom firmware is not supported by this project.

Note that because of the ability to use an external clock, this board can easily synchronize to an exper-
iment, thus reducing timing jitter. In some cases, the sync signal produced by the electronics is not TTL,
and must therefore be converted to TTL before it may be used as a clock for this FPGA kit.

With the appropriate firmware uploaded to the Xylo-EM board, you may use the LabVIEW software
included, or create your own software in LabVIEW or using the included DLL and your favored programming

9

Table 4: Available operation modes. Load the .rbf file in the given folder to load the firmware.

Operation mode Folder
Counts, Internal clock \Stats\Firmware\CountIntClk\
Counts, External clock \Stats\Firmware\CountExtClk\
TimeTag, Internal clock \Stats\Firmware\TimeTagIntClk\
TimeTag, External clock, doubled \Stats\Firmware\TimeTagExtClk\

language. We suggest starting with the LabVIEW examples provided with this project. These use of these
programs and the LabVIEW interface is outlined below.

The two example programs Counts.vi and TimeTag.vi may be found in the Stats.lvproj project
in the \Stats\StatsLV\ folder. Each program initiates a USB connection with the Xylo-EM board when
started, then proceeds to query the FPGA in the counting/statistics or time-tagging mode, displaying certain
elements of the retrieved data to the user at a user-specified interval. The count rates on each input channel
(1-4) are displayed both numerically and on needle displays. Total counts and correlation statistics are
shown in both programs on the right (see the examples in Fig. 10). In the Counts program, this data is
generated by the FPGA in real time, while for TimeTag, the time-tagged data is returned to the DLL where
it is parsed and the statistics are displayed to the user in LabVIEW. Data-recording is available to the user
by toggling Record Data buttons and entering the full path and file name of a file in which the user wishes
to store data. The data format of the click and correlation statistics as well as of the saved files is detailed
in later sections.

The Stop button stops the program from querying the FPGA, stops the FPGA from taking data, and
gracefully retrieves the last click information from the FPGA before stopping entirely. Pulse and Toggle
commands for TTL channels 1 and 2 are available as buttons in each program. The Runs input is an
averaging feature which tells the DLL how many times to query the FPGA before reporting the sum of
the results to the LabVIEW interface. This was implemented because the LabVIEW interface is typically
slower than the USB query rate, and reducing the data rate to the visual interface helps keep LabVIEW
smooth and reduces jitter in output results due to jitter in USB query timings (USB queries are handled
asynchronously by the operating system).

5 LabVIEW interface
In this section we describe the building blocks of the included LabVIEW programs so that the user may create
her own programs using the functionality of the FPGA counter or time stamper. The basic structure of the
LabVIEW code consists of wrapper classes which form an interface to the underlying DLL functionality. The
LabVIEW project Stats.lvproj includes simple examples of operating the board in both of its main modes:
counting/statistics in Counts.vi and time-tagging with TimeTag.vi. These examples cover all important
stages of communication, and can be used for various design extensions. Both examples additionally allow
the user to pulse or toggle the two TTL output channels independently. We describe the VIs that underlie
this functionality.

The LabVIEW interface consists of a set of LabVIEW wrapper libraries. The StatsLib.lvlib library is
the users’ main interface to the underlying DLL functionality. It detects whether the user is on a 64- or 32-bit
platform and selects the appropriate LabVIEW libraries which in turn wrap the functionality contained in
StatsDLL (or Stats32DLL on a 32-bit platform). The DLL files were written in C++ and compiled with
Microsoft’s Visual Studio C++ Compiler. These contain the functionality for interfacing with the FPGA
board via USB. The user need not access this code or the DLL files directly - the LabVIEW interface was
designed to be the primary interface for most users.

For those interested in expanding or augmenting the functionality of the software, the DLL file and C++
source code are also included in the software bundle. The C++ code contains relatively useful comments to
help an advanced user modify the code as she pleases. The user is encouraged to explore the simple example
VIs to see how they work before delving deeper into the code.

10

USB Open.vi:
This function initializes the USB communication protocol between the computer and the board. Call this
.vi before issuing commands to the FPGA. USB Open.vi returns an integer which encodes the status. A
0 indicates correct operation, while a -1 indicates that the USB connection was already initiated. This is
handled by an error handler which outputs an error message describing the error.

- Inputs: none

- Outputs:

function return: an integer giving the status of the output. 0 indicates no errors, while negative
values indicate certain errors.

error out: error status including error message if an error occurred.

USB Close.vi:
This function closes the USB communication protocol, but leaves the mode of the board (acquisition, idle) un-
changed. It is recommended to switch the board to idle by calling the FPGA Counts.vi or FPGA TimeTag.vi
with the appropriate command before calling USB Close.vi. This is demonstrated in the sample programs
in Stats.lvproj. An integer encoding the status is returned. A 0 indicates correct operation, while a -2
indicates that the USB connection was never initiated. This is handled by an error handler which outputs
an error message describing the error.

- Inputs: none

- Outputs:

function return: an integer giving the status of the output. 0 indicates no errors, while negative
values indicate certain errors.

error out: error status including error message if an error occurred.

FPGA Counts.vi:
This VI communicates with the board, acquires click event statistics from each channel as well as the number
of clock cycles elapsed and coincidence statistics. This data may be saved to the hard disk for the purposes
of further statistical analysis. Additionally simple correlation statistics are output for the user to employ.
The file format is described in Sec. 6 below.

- Inputs:

runs: integer number of USB queries the DLL should perform before returning the results to this
LabVIEW VI. It is recommended to keep this number high enough to ensure that the LabVIEW
interface isn’t jittery, but low enough that internal buffers in the FPGA don’t overflow with data
(this would take a lot of data - over 248 clocks, or 232 counts on inidividual channels, or 216
four-fold coincidences).

saveData: boolean telling the DLL whether or not to save the data to file.

fileName: string giving the full file name and path of the file in which data should be stored. If
a file with the same name exists, data will be appended to that file.

fpgaCommand: An unsigned byte containing a character representing a command to the FPGA.
The commands accepted are detailed in Table 5.

error in: error signal from previously executed VIs.

- Outputs:

11

stats a 16-element array containing click and coincidence counts accrued since the last USB
communication with the FPGA. The array contains the number of clock cycles over which the
data were collected, clicks on each channel, and the various coincidences between channels. The
particular format of these data are detailed in the Sec. 6.

data the raw data containing the above click statistics in a more dense format (32 bytes), which
is described in Sec. 6 below.

function return: an integer giving the status of the output. 0 indicates no errors, while negative
values indicate certain errors.

error out: error status including error message if an error occurred.

FPGA TimeTag.vi:
This VI communicates with the board, acquires time-tagged click events from each channel and allows
writing a data file of all events to the hard drive for the purposes of further statistical analysis. Additionally
simple correlation statistics are output for the user similarly to the output of Counts.vi. The file format is
described in Sec. 6 below.

- Inputs:

runs: integer number of USB queries the DLL should perform before returning the results to this
LabVIEW VI. It is recommended to keep this number high enough to ensure that the LabVIEW
interface isn’t jittery, but low enough that internal buffers in the FPGA don’t overflow with data
(this takes a lot of data).

saveData: boolean telling the DLL whether or not to save the data to file.

fileName: string giving the full file name and path of the file in which data should be stored. If
a file with the same name exists, data will be appended to that file.

fpgaCommand: An unsigned byte containing a character representing a command to the FPGA.
The commands accepted are detailed in Table 5.

error in: error signal from previously executed VIs.

- Outputs:

stats a 16-element array containing click and coincidence counts during the time since the last
USB communication with the FPGA. The array contains starts, clicks on each channel, and the
various coincidences. The particular format of these data are detailed in the Sec. 6 section.

function return: an integer giving the status of the output. 0 indicates no errors, while negative
values indicate certain errors.

error out: error status including error message if an error occurred.

FPGA Toggle.vi:
This VI communicates with the board and toggles one or both of the TTL output channels. The fpgaCommand
inputs to toggle may also be included with the fpgaCommands issued with Counts.vi or TimeTag.vi. The
unsigned byte coding for a TTL toggle is 32 (0x20) as shown in Table 5..

- Inputs:

fpgaCommand: An unsigned byte containing a character representing a command to the FPGA.
This is expected to be only the channel to toggle. The commands and the TTL channels to which
they correspond may be found in Table 5. The command for the toggle itself is internally added
by the DLL. Add the two commands (64 + 128 = 192) to toggle both channels at once.

error in: error signal from previously executed VIs.

12

- Outputs:

function return: an integer giving the status of the output. 0 indicates no errors, while negative
values indicate certain errors.

error out: error status including error message if an error occurred.

FPGA Pulse.vi:
This VI communicates with the board and pulses one or both of the TTL output channels. The fpgaCommand
inputs to pulse may also be included with the fpgaCommands issued with Counts.vi or TimeTag.vi. The
unsigned byte coding for a TTL pulse is 16 (0x10) as shown in Table 5. If the TTL level on the pulsed
channel is high when the pulse command is issued, the pulse will only cause the TTL level to toggle low.

- Inputs:

fpgaCommand: An unsigned byte containing a character representing a command to the FPGA.
This is expected to be only the channel to pulse. The commands and the TTL channels to which
they correspond may be found in Table 5. The command for the pulse itself is internally added
by the DLL. Add the two channels (64 + 128 = 192) to pulse both at once.

error in: error signal from previously executed VIs.

- Outputs:

function return: an integer giving the status of the output. 0 indicates no errors, while negative
values indicate certain errors.

error out: error status including error message if an error occurred.

Table 5: Available FPGA commands and the functions which accept the commands.

FPGA
Command

Description Accepting functions

0 No change FPGA TimeTag.vi, FPGA Counts.vi,
FPGA Toggle.vi, FPGA Pulse.vi

1 Clear
timestamp
clock

FPGA TimeTag.vi

2 Disable
detection

FPGA TimeTag.vi, FPGA Counts.vi

4 Enable
detection

FPGA TimeTag.vi, FPGA Counts.vi

8 Get Data FPGA Counts.vi
10 Pulse FPGA TimeTag.vi, FPGA Counts.vi
20 Toggle FPGA TimeTag.vi, FPGA Counts.vi
40 TTL Ch. 1 FPGA TimeTag.vi, FPGA Counts.vi,

FPGA Toggle.vi, FPGA Pulse.vi
80 TTL Ch. 2 FPGA TimeTag.vi, FPGA Counts.vi,

FPGA Toggle.vi, FPGA Pulse.vi

The above VIs have unsigned byte fpgaCommand inputs. These may be combined to issue several of the
above commands at the same time. For example, any of the pulsing or toggling commands may be issued
with the fpgaCommands used for Counts.vi or TimeTag.vi. To do this, add the integer arguments and pass
that value. For example, to take data with Counts.vi and toggle TTL channel 2 at the same time, the
fpgaCommand would be: 4 + 8 + 32 + 128 = 172.

13

6 Data Format
Clicks registered by the FPGA are communicated to the user in several ways. The data available to the user
using FPGA Counts.vi or the example program Counts.vi which demonstrates the Counts functionality
consists of an array containing click and coincidence clicks. The array stats array returned to the user is a
16 element array with the entries described in Table 6. The raw data data returned to the user of Counts has
the same basic format as that in Table 6, but is stored in a 64-byte unsigned character string. The first array
element (element 0) in Table 6 is represented by the first 6 bytes of the data output of FPGA Counts.vi. The
subsequent 14 array elements representing singles, two-fold, and three-fold coincidence counts consecutively
take up 4-bytes of data each, leaving the last 2 of the 64 bytes to represent the four-fold coincidences. This
limits the number of counts of the different types the maximum unsigned integer value for the data sizes
indicated in the third column of Table 6. The reason for more significant digits available for clocks and starts,
and fewer for 4-fold coincidences is based on an assumption about the forms of typical data, in which there
are fewer events than clocks, and fewer coincidences than singles, with particularly few 4-fold coincidences.
This raw data is converted into the 16-element array output stats in the DLL and is passed to the user for
convenience.

The sample program Counts.vi gives the user two options for saving data. Pressing the Record statistics
button saves the stats output from each transaction with the DLL (representing runs USB queries and
results from the FPGA) as a new line in the file at the specified path. Thus, each line in this file will have
the data format shown in Table 6. Pressing the Record raw data button however records the data from
each USB transaction separately as 8 lines of 8 bytes each separated by spaces for each USB transaction
which each returns 64 bytes of data (in the format detailed above).

Table 6: Data Format of stats output. The 0th array element contains either the number of clocks in the
returned set of statistics from FPGA Counts.vi or the number of Start triggers in this data set from FPGA
TimeTag.vi. The third column gives the number of bytes dedicated to storing these events in the Counts
project.

Array
Element

Channels Bytes of data

0 Clocks or Starts 6
1 Ch. 1 singles 4
2 Ch. 2 singles 4
3 Ch. 3 singles 4
4 Ch. 4 singles 4
5 Ch. 1 & Ch. 2 coincidences 4
6 Ch. 1 & Ch. 3 coincidences 4
7 Ch. 1 & Ch. 4 coincidences 4
8 Ch. 2 & Ch. 3 coincidences 4
9 Ch. 2 & Ch. 4 coincidences 4
10 Ch. 3 & Ch. 4 coincidences 4
11 Ch. 1 & Ch. 2 & Ch. 3 coincidences 4
12 Ch. 1 & Ch. 2 & Ch. 4 coincidences 4
13 Ch. 1 & Ch. 3 & Ch. 4 coincidences 4
14 Ch. 2 & Ch. 3 & Ch. 4 coincidences 4
15 Ch. 1 & Ch. 2 & Ch. 3 & Ch. 4

coincidences
2

The data made available to the user from FPGA TimeTag.vi or from within the sample program TimeTag.vi
is exposed in two forms. The raw data can be stored in a file by clicking the Record data button in the
TimeTag.vi program. Each line represents a recorded, time-tagged event and is broken into two pieces. The
first is a 5-digit integer indicator showing which channels were high in this event (which channels had clicks),

14

and whether or not a Start event was registered. A breakdown of the meaning of the pseudo-binary codes
is given in Table 7. For coincidences this integer will simply show 1s for each of the registered channels, for
example, a coincidence on channels 1 & 3 without a Start event will give the output 00101. The Start bit is
high when the user inputs a TTL pulse on the Start channel (pin 97), or when the internal clock resets, which
happens every ≈ 2.796 s when using a 48 MHz. The second piece of each line is an integer representing the
number of clock cycles since the last Start event.

Table 7: Pseudo-binary click registration format

Hexadecimal: Meaning
10000 Start
01000 Ch. 4
00100 Ch. 3
00010 Ch. 2
00001 Ch. 1

Additionally, these timetagged data are parsed by the DLL and singles and coincidence statistics are
reported to the user through the stats output. The format of these statistics are identical to those output
by FPGA Counts.vi, with the exception of the first element of the array, which gives the number of Start
events since the last USB transfer of data, rather than the number of clock cycles elapsed.

6.1 Advanced time-tagging data access
Advanced users may wish to store the time-tagged data in some other format, or do some processing on the
data within the DLL library by changing the included C++ source code. In this case, consult Table 8 for
the format of the 4-byte time-tagged events as they are returned by the FPGA. The user may also enable
direct writing of this binary format to file by un-commenting out the relevant lines of the C++ code, and
commenting out the output format currently in use, then re-compiling the DLL for use.

The data returned by the FPGA is in little-endian format, as is used on x86 platforms. Thus, Byte 0 is
the lowest byte and consists of bits 7 to 0, and Byte 3 is the most significant byte and consists of bits 31 to
24 (see Table 8). After the data file is written, the user may perform post-processing on the data.

Table 8: Raw Timetagged Data Format

Bit: 26-0 27 28 29 30 31
Meaning: Timestamp Ch. 1 Ch. 2 Ch. 3 Ch. 4 Counter cleared

Some users may wish to develop custom real-time data processing routines. To do so, the user will need
to augment the included C++ code. The Visual Studio Express 2012 project used to compile the DLL is
included. We advise using Visual Studio Express 2012 or newer, as it includes a 64-bit compiler, and the
CyUSB libraries used for the USB communication with the Cypress FX2 chip on the Xylo-EM board were
compiled with a Microsoft Compiler and use Windows-specific libaries (specifically Setupapi.lib). Addi-
tionally, users will need to download the Cypress CyUSB development kit Cypress Suite USB 3.4.7 in
order to gain access to the CyUSB.lib, and CyUSB.h files. The simplest way to access real-time data is for
the user to write a function which substitutes for the default coincidencecalculation function. This function
is called within the FPGA_TimeTag() function in the DLL, and thus could be called after recompilation with-
out changing any of the externally accessible function signatures, allowing complete compatibility with the
existing LabVIEW interface. To do this, the user should write a custom function, to replace the function
void correlate (unsigned char* data, int length, __int64 *stats). The function may have any
other name, say foo(), but must have the same signature to avoid additional modifications to the code. The
user may then simply change the #define REALTIME_FUNCTION correlate statement to point to their cus-
tom function name, in the example, #define REALTIME_FUNCTION foo. Of course, more extensive changes
to the code can be made.

15

7 Further improvements (roadmap)
A variety of other features and modifications could be made to this project. Some faster internal clock
versions of the code have been made, and this may be pushed much further, as the expected maximum
frequency of the board is 396 MHz which corresponds to a potential 2.52 ns timestamping interval. A
relatively straightforward change would be to increase the number of input channels to take advantage of
the number of output pins from the Xylo-EM. There is an SDRAM chip on the Xylo-EM which could be
used as an additional buffer to increase the amount of data the FPGA could store between transfers, and
potentially to increase the net USB transfer rate.

Additionally, we are open to working to help implement other firmwares to help support interesting
scientific projects.

16

	Introduction
	Description
	Assembly and installation
	Assembly
	Connecting the board
	Software installation

	Operation
	LabVIEW interface
	Data Format
	Advanced time-tagging data access

	Further improvements (roadmap)

