Statistical models for the generation and interpretation of shoeprint evidence

Charless Fowlkes
Dept. of Computer Science
University of California, Irvine

Applications in Forensic Evidence

Statistical Reasoning about Footwear Forensics

Goal: develop practical statistical models for whether a given shoe is likely to have generated a particular latent print or impression.

Statistical Reasoning about Footwear Forensics

Did shoe S leave mark M?

- Is shoe S capable of generating evidence M ?
- Given the circumstances C, could some other shoe S^{\prime} have left mark M ?
- Were S and/or S^{\prime} present at the crime scene?

Uncertainties:

- Process by which a shoe leaves a mark is complex... not every mark left by a given shoe is identical.
- We typically don't have knowledge of all other possible shoes S^{\prime} that might have produced the mark.

Statistical Reasoning about Footwear Forensics

Did shoe S leave mark M?

- Is shoe S capable of generating evidence M ?
- Given the circumstances C, could some other shoe S^{\prime} have left mark M ?
- Were S and/or S^{\prime} present at the crime scene?

How can we evaluate these competing hypotheses in the presence of uncertainty?

$$
L R=\frac{P(M \mid S, C) P(S \mid C)}{P\left(M \mid S^{\prime}, C\right) P\left(S^{\prime} \mid C\right)}
$$

Statistical Reasoning about Footwear Forensics

Did shoe S leave mark M?

- Is shoe S capable of generating evidence M?
- Given the circumstances C, could some other shoe S^{\prime} have left mark M ?
- Were S and/or S' present at the crime scene?

How can we evaluate these competing hypotheses in the presence of uncertainty?

$$
L R=\frac{P(M \mid S, C) P(S \mid C)}{P\left(M \mid S^{\prime}, C\right) P\left(S^{\prime} \mid C\right)}
$$

Outline

- Modeling the generation of marks from shoes
- Modeling the distribution of shoes
- Application: evaluating and visualizing reliability of partial

Impression
/Marking (M)

Identifying Characteristics

- Class characteristics: brand, make, size
- Manufacturing characteristics: variation across multiple molds, air bubbles, assembly, ...
- Acquired characteristics: wear patterns, cuts and scratches

Statistical Reasoning about Characteristics

Did shoe S leave mark M ?

1. Measure features of observed evidence $\mathbf{F}_{1}(\mathbf{M})$
2. Measure features of a particular shoe $\mathbf{F}_{\mathbf{2}}(\mathbf{S})$
3. Evaluate if features $\mathbf{F}_{\mathbf{2}}(\mathbf{S})$ are consistent with features of the evidence $\mathbf{F}_{1}(\mathbf{M})$?

Measuring Statistics of Characteristics

Challenge: Formalize the measurement of identifying characteristics so that statistics can be computed on large quantities of real world data.

Features should correspond closely to forensic investigative practice.

$$
F_{1}(M) \quad F_{2}(S)
$$

Acquired characteristics

Motivations for 3D acquisition

- To compute $\mathbf{F}_{\mathbf{2}}(\mathbf{S})$ we need a digital representation of the shoe
- Characteristics of markings are fundamentally tied to 3D tread shape
- Contact surface of outsole with hard or soft surfaces
- Distribution of acquired characteristics (wear patterns, accidentals)
- Methodology and Practice:
- Assembling datasets for analyzing statistics of tread patterns, evaluating reliability of features
- Archival documentation of physical evidence

Crime scene mark

Shoe
Photo

Lab Test
Impression

2D->3D: Structured-light Scanner

- Stereo triangulation between calibrated camera pair
- Structured illumination aids automatic stereo-correspondence

- Resolution limited (missing fine-scale acquired characteristics)
- Doesn't capture shoe shape when it is in contact with surface

GelSight Sensor

Object is pressed against a conforming elastomeric gel and imaged from below.

Paint on gel surface provides a uniform controlled reflectance.

Allows for non-destructive, highresolution recovery of surface shape, even for transparent, soft and reflective objects

"Retrographic Sensing for the Measurement of Surface Texture and Shape", Micah K. Johnson and Edward H. Adelson. CVPR 2009
human skin

Operating Principle: Shape from Shading

- The intensity of light reflected from a surface depends on the orientation of the surface relative to the light.
- Use multiple colored light sources to multiplex several intensity measurements into a single color image.
- Optimize paint reflectance and camera geometry to maximize
 accuracy
- Shape-from-shading techniques applicable to a wider variety of situations (e.g. images of shoes, crime scene impressions)

Retrographic Shoe Scanner Prototype

- Sensor surface scaled up to cover whole shoe tread from commodity components.
- Recapitulates impression process.
- Modulate gel stiffness to simulate interaction with different surfaces
- In principle high-speed cameras should allow dynamic analysis.. just walk across!

3D-> 2D: A simple generative model for marks

From contact surface

 to marks and impressionsStatistics of marks on hard surfaces at crime scene depend on:

- modality (paint, dirt, dust, oil, blood)
- circumstances (not all contact points may be "inked")

Dynamic complexity:

From contact surface

 to marks and impressionsGenerative model doesn't need to be photorealistic to provide useful feature statistics (overall tread pattern, location and shape of acquired features, wear patterns, etc).

$$
P\left(F_{1}(M) \mid F_{2}(S), C\right)
$$

Outline

- Modeling the generation of marks from shoes
- Modeling the distribution of shoes
- Application: evaluating and visualizing reliability of partial

Prior distribution of shoes

Need to understand what alternative shoes S' might have left a mark at a crime scene.

Challenges:

- Unlike, e.g. fingerprints, we don't have large databases of candidates
- What statistics are relevant to the circumstances?

> Based on United States sales figures through April, 1998 , of $316,215,000$ pairs of men's shoes, the following gives a breakdown of the numbers sold and percentage sold, for each half size in U.S. men's sizes.

6	$4,324,000 / 1.4 \%$	11	$39,147,000 / 12.4 \%$
$61 / 2$	$2,646,000 / .8 \%$	$111 / 2$	$9,504,000 / 3 \%$
7	$6,766,000 / 2.1 \%$	12	$33,030,000 / 10.4 \%$
$71 / 2$	$6,704,000 / 2.1 \%$	$121 / 2$	$1,603,000 / .5 \%$
8	$17,969,000 / 5.7 \%$	13	$19,616,000 / 6.2 \%$
$81 / 2$	$20,371,000 / 6.4 \%$	$131 / 2$	$415,000 / .1 \%$
9	$33,231,000 / 10.5 \%$	14	$3,492,000 / 1.1 \%$
$91 / 2$	$33,601,000 / 10.6 \%$	15	$1,657,000 / .5 \%$
10	$43,332,000 / 13.7 \%$	16	$363,000 / .1 \%$
$101 / 2$	$38,205,000 / 12.1 \%$	$17+$	$115,000 /<.1 \%$

[Bodziak, Footwear Impression Evidence, 2000]

Mining the Internet for Tread Patterns

Shoe outsole image dataset (UCI-SHOD)

- Images collected from zappos and onlineshoes
- 30,374 shoes
- 74,016 images
- Shoes appearing on both sites
- 3,549 shoes
- 20,449 images

UCI SHOD - Inter-class variability

UCI-SHOD -- Intra-class Variations

Limitations

Provides a proxy for understanding the diversity of tread features related to class characteristics

- Tread images \neq Shoes
- Statistics do not reflect practical investigative circumstances
- Need some additional data
- Relatively few examples of most shoe designs

Outline

- Modeling the generation of marks from shoes
- Modeling the distribution of shoes
- Application: evaluating and visualizing reliability of partial matching for class determination
$P(S \mid C)$

Shoe (S)
$P(M \mid S, C)$

Impression
/Marking (M)

Impressions and prints are typically incomplete

Empirical analysis of reliability of partial prints in class identification

Q: How much tread pattern do you need to see to reliably determine shoe class?

A: Depends on amount of context
 and empirical diversity of tread patterns "in the wild".

Identification from local patches

1. Some patches are more distinctive than others
2. Features in different locations do not contribute independently to overall match probability

Features for matching partial prints

What features should we compute from a marking to measure class characteristics? $\mathbf{F}_{\mathbf{1}}(\mathbf{M})$

Implement automated image feature extractors (normalized correlation, edge matching, histograms of oriented gradients, deep neural nets)

Evaluate based on class retrieval accuracy:

- UCI-SHOD tread images

- Shoe test impressions collected by Weisner, et al.

Retrieval of matching patches

Larger patches are more distinctive

\% reference shoes with dist(patch,ref) < t

Visualizing local distinctiveness

distance within same class / distance to other classes

Conclusion

- Modeling the generation of marks from shoes
- Modeling the distribution of shoes
- Application: evaluating and visualizing reliability of partial matching for class determination

"If you cannot measure it, you cannot improve it" --Lord Kelvin

Acknowledgements

Bailey Kong (UC Irvine)

James Supančič (UC Irvine)

Deva Ramanan (CMU)

Sarena Wiesner (Israeli Police)
Yoram Yekutieli (Hebrew University)
Yaron Shor (Israeli Police)

