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An Optimal Vector-Network-Analyzer
Calibration Algorithm
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Abstract—\We present an iterative algorithm for calibrating ments from the VNA calibration model into the overall uncer-
vector network analyzers based on orthogonal distance regression. tainty estimates.
The algorithm features a robust, yet efficient, search algorithm, an - g1y \ve will discuss the algorithm’s uncertainty estimates,
error analysis that includes both random and systematic errors, . . . .
a full covariance matrix relating calibration and measurement Which we chose to express as a covariance matrix relating un-
errors, 95% coverage factors, and an easy-to-use user interface certainties in the calibratioandthe measurements of the DUT.
that supports a wide variety of calibration standards. We also This covariance matrix includes the correlations between all of
discuss evidence that the algorithm outperforms theMultiCal e measurements and all of the calibration parameters, informa-
software package in the presence of measurement errors and ,. . . . .
accurately estimates the uncertainty of its results. tion that is essentla_l for performlng rigorous analyses of many
on-wafer problems in which both the probes and DUT must be
characterized from measurements.
We will discuss not only how we assemble this covariance
matrix from separate solutions of the calibration and DUT prob-
. INTRODUCTION lems and from electrical models capturing the systematic errors,
E PRESENT an iterative algorithm, which we firstout also how we determine the numbers of degrees of freedom
introduced in [1], for vector-network-analyzer (VNA)associated with each of these solutions, and develop appropriate
calibration based on orthogonal distance regression. In [1], weverage factors.
showed that, in the presence of random measurement errors,
this new algorithm outperforms the multiline thru-reflect-line II. PRIOR WORK

(TRL) VNA calibration algorithm of [2] implemented in the hei , h ¢ q he fi ﬁ
National Institute of Standards and Technology’'s (NIST), The iterative approaches of [3] and [4] were the first to offer

Boulder, CO, populaMultiCal software package.We also alternative solutions to closed-form VNA calibrations. The two

showed that the new algorithm accurately estimates the uncdPProaches were based, respectively, on nonlinear least-squares
tainty of its results. solutions to the conventional VNA and six-port calibration

Here, we will describe this new algorithm in detail, androblems. While these iterative approaches are slower and

present many aspects of its operation not touched on in [ﬁ_ss compact t_han their closed—fqrm counterparts, they are de-
We will describe the robust search strategy employed by tRigned for optimal performance in the presence of measure-

algorithm, and the wide variety of standards that the algorithfiént errors.

supports (see the Appendix). We will also describe the innova-Reference [5] extended the approaches of [3] and [4] to a

tive strategy employed by the new algorithm to solve one-tiéﬁ'term_ error model_ and developed error estimates. Refe_rence
calibration problems and to find the scattering parameters [§1 applied the nonlinear least-squares approach to nonlinear
the device-under-test (DUT). VNAs.

We will discuss how the algorithm estimates the uncertainty We later adapted the nonlinear least-squares solution of
of its results using residual deviations of the measurements frégh to the characterization of planar coupled transmission
the VNA calibration model. We will also discuss the mechdines in [7]-[10]. In this case, the least-squares solution was
nism supported by the algorithm for adding systematic errgp§tained using the orthogonal distance regression algorithm

that are not captured by the residual deviations of the measuféplemented irodbRPACK[11]. The algorithms of [7]-{10] took
advantage of the ability abDRPACK to determine confidence
intervals for the results directly from measurement data.
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Cahbggo‘gasf:n dard scattering-parameter matricgs | and[SQ_] of th_e probe heads
: : and, when appropriate, the effective dielectric constagptof
! Probe the on-wafer transmission-line standards, the unknown reflec-
; Head 2 ; tion coefficientl’, of the symmetric on-wafer reflect standards,
\ —___'______/» and the reflection and transmission coefficients of the reciprocal
5 Coaxial ; : adapter calibration standard (see the Appendix).

Reference Planes

On-wafer

" Reference Planes The vectorsz; contain sets of “explanatory” variables for

: : each observation. We use them to describe measurements or
[Sl] ‘ [SC]—><— [Sz] __> models defining the scattering parameters of calibration stan-
: = : dards, setting elements of to the real and imaginary parts of
, ; the elements of the scattering-parameter ma##{ of the cal-
[SM] § ibration standard. This strategy allows the algorithm to accom-
5 modate imperfectly characterized calibration standards.

The optimal solution fop is found by determining the vector

7 that minimizes

Fig. 1. Two-tier on-wafer calibration problem (from [1]).

I1l. TWO-TIER CALIBRATION PROBLEM s(n) = Z (€fwsi€i + 5;‘Fwai5¢) = G(n)TQG(n) )
Fig. 1 shows the basic second-tier on-wafer measurement i=1

problem that we address with the new calibration algorithrgypject to the constraints in (1). In (2), the matrices
The matrice$5;] and[S5] contain the scattering parameters ofnd w, are weights,y? = (82,6%,...,67), G(n)* =

the two microwave ground—signal-ground probe heads we Wk%l?_/ el 8T 6T, the superscript? indicates the
to characterize. (The matrics;] and[S>] would contain the transpose, and
scattering parameters of the adapters if we were characterizing

a fixture.) The matri}S¢] contains the scattering parameters of

the on-wafer calibration standard contacted by the probes. The 0= 3)
elements ofS},] are the scattering parameters of the cascade of - W1 )

the left probe head, calibration standard, and right probe head,

as measured by the network analyzer at the coaxial reference

planes indicated in this figure. Here, the prime indicates thatFinally, ODRPACK estimates;, the covariance matrix corre-
[S4,] is a measured, rather than a calculated, quantity. The &onding to the elements of the solution vegipfrom

jective of the calibration is to determine the scattering-parameter { Sy S

We1

matrices[S;] and[S,] of two probe heads from measurements g =
[S},] of the probes and known on-wafer calibration standards.

In the multiline TRL calibration, the on-wafer standards conwheres? = (s(#)/u) is the estimated residual variance. Here,
sist of a short “thru” line, a set of additional on-wafer transmig+, the number of degrees of freedom, is the number of obser-
sion lines of differing lengths, and a symmetric “reflect” [12]vations minus the number of parameters being estimated, and
In other calibration methods, the lines and/or reflect may be rée jkth element of the Jacobian matikis equal todG'; /dmy.
placed by a variety of previously characterized terminations gvaluated af).

} =62[JTQJ] @)

other two-port calibration standards. In our implementation of the on-wafer calibration algorithm,
we allow the user to specify uniform weights. We also allow
IV. CALIBRATION ALGORITHM the user to setv. andw;s equal to estimates of the inverse of

) ] ) ] user-supplied block-diagonal covariance matriggsand ¥,
~ The orthogonal-distance-regression algorithm implementggscribing the uncertainties i andz;. This improves the es-
in ODRPACK[11] finds an optimal solution fof of then equa-  imate of the unknowns in the vectgrover that obtained with
tions uniform weighting [11]. When the;;’s are fixed,ws set to O,
B andX, are diagonal, minimizing (2) in this way corresponds to
yi = fi(zi + 6, 0) = ei @ “chi-square” fitting [13].

where the subscriptcorresponds to thih one of then “obser-
vations.” Thef; are functions relating the measurememnts$o
the unknown vectofl and the explanatory variables. ¢; and In [1], we used a Monte Carlo simulation of a second-tier
6; are the errors we wish to minimize i andz;. on-wafer TRL calibration to compare the performance of our
To solve the calibration problem of Fig. 1, we set elementew orthogonal-distance-regression algorithm to the algorithm
of the measurement vectoys to the real and imaginary partsof [2] as implemented irMultiCal. While neither algorithm
of the elements of the measured scattering-parameter matrisieewed statistically significant bias in its solutions, we found
[S},] of the two probes and calibration standard. The vegtorthat our new algorithm outperformed the algorithm of [2] in the
contains the unknowns we wish to determine. We assigned gheesence of measurement errors. Fig. 2 illustrates this key result
ments off to the real and imaginary parts of the elements of thaf [1].

V. ALGORITHM PERFORMANCE—AN ON-WAFER TEST CASE
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0.025 solution [15]. This both increases the efficiency and robustness
of the search algorithm, and improves the reliability of the
algorithm’s uncertainty estimates.

There is a disadvantage to this approach: we are unable to
make use of repeated measurements of the isolation and switch
terms. However, the switch terms themselves depend only on
the instrumentation, not the calibration, calibration standards, or
standard definitions that we apply. They are also small and ex-
tremely stable. Thus, we lose little information by not including
repeated measurements of the switch terms.

C Furthermore, even though the algorithm makes no use of re-
05— 0.61 ' 0_'02 ' 0_63 ' 0_64 ' 0_65 0,06 peated isolation and switch-term measurements, it can still pro-
vide good estimates of the uncertainty due to poorly character-
ized isolation or switch terms from the measurement residuals.
Fig. 2. Relative performance of the two algorithms in a Monte Carlg—hls is because errors in the_ |soIat|qn or _SWItCh terms mani-
simulation. We compared the performance of the two algorithms with identici€St themselves as a lack of fit of the isolation and switch-term
but noisy data sets. corrected measurements to the remaining eight-term calibration
error model, and are thus automatically included in the algo-

To generate this figure, we first constructed a set of perfagthm’s uncertainty estimates. Thus, we felt that the advantages
measurements for a second-tier on-wafer TRL calibration. W¢using the 12-to-8-term reduction to solve one-tier calibrations
added random Gaussian errors with a standard deviation of Oitweighed its disadvantages.
and o to the real and imaginary parts of the reflection and
transmission coefficients of the simulated measurements, re- VIl. SEARCH STRATEGY

spectively. We then used the two algorithms to estimate the SiMwe have found that most calibration problems are readily

ulated values with the set of noisy measurements. Finally, we : X . ’
L : sOlved when accurate solution estimates are available as starting

compared the c_al|brat|on paramet(_ers detgrmme_d by the two Si'ints. However, any iterative search algorithm can have diffi-
gonlthms to their true values us_ed_ in the 5|mu|at|or1. culty finding solutions without good starting points, especially

Fig. 2 plot_s the standard deV|at|o_n 9f the errors in the Magnis the number of parameters in the solution vegtorcreases.
tude of the first error box’s transmission coefficieitz: that 1) cajibrations are particularly challenging, as they require
we obtained with the two algorithms. The figure shows thadyying for the effective dielectric constantz and the reflec-
while the two algorithms do equally good jobs of estimating So coefficientT’, of the reflect standard. One-tier calibrations
lutions at low levels of measurement error, the new algorithghg calibrations with DUTs also increase the number of un-
does a better job of estimating the true value of the transmissigiowns, and can complicate the process of finding a solution
coefficient of the error box in the presence of hlgher levels Q\fhen accurate Starting estimates are not available.
measurement error. With these difficulties in mind, we developed an efficient and

This figure also compares the average value of the standaséust solution strategy to handle poor starting estimates.
uncertainty estimated by the new algorithm in the experimentOur solution strategy is based on building up the complete
(the dashed curve in the figure) to the actual standard deviatswiution in small steps. For one-tier calibrations, we begin by
of its results. The good agreement demonstrates the abilityfioiding starting estimates for the ratio of the forward to the re-
the new algorithm to estimate its own uncertainty. verse transmission coefficient ¢f>] from the most reliable

Reference [1] statistically quantifies these and other relatetindard available, the thru line. If a thru line is not available
results. In particular, it shows that we can state with great statig-the calibration, we use a reciprocal adapter; if neither a thru,
tical certainty that the new algorithm outperforms the algorithifor a reciprocal adapter is available, we use a line standard for
of [2], and that we can have confidence in the new algorithmt§e estimate.

----- Estimate from new algorithm
—— New algorithm
o—e MultiCal

0.020
0.015

0.010

Standard deviation in |S,,|

0.005

Error level o,

uncertainty estimates. When the calibration must estimate the effective dielectric
constant=.g Of the transmission-line standards, the reflection
VI. ONE-TIER CALIBRATION PROBLEM coefficientI",. of a reflect standard, or the scattering parameters

) _of a reciprocal adapter, we first apply the orthogonal-distance-

We use the 12-to-8-term reduction [14], [15] to solve one-tigegression algorithm to find approximate solutions[fé] and
VNA calibration problems. That is, we use isolation and,] with these variables fixed at their estimates. We do this
switch-term measurements to first correct the raw VNA me@ecause the estimatesef;, I',., and the scattering parameters
surements for the isolation and switch-term errors, and then ygeany reciprocal adapters are usually much better known than
orthogonal distance regression to solve for the remaining twige elements ofiS;] and[Ss]. This greatly simplifies the job of
error boxesS1| and[S] that define the calibration problem.|ocating the global minimum.
The advantage of this approach is that only two new terms,We then use these approximate solutions[f&y] and [S5]
the real and imaginary parts of the ratio of the forward to theased on the fixed values af.¢, I',, and the scattering
reverse transmission coefficient [ff,], are required to find a parameters of any reciprocal adapters as starting points for
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TABLE | VIIl. M EASUREMENT UNCERTAINTIES
SOLUTION TIMES FOR ATYPICAL TRL CALIBRATION WITH DIFFERENT ) o . )
SOLUTION STRATEGIES One of the most important capabilities of our new algorithm is

its ability to determine uncertainties in the calibration and mea-
surements based on redundant data. We express these uncertain-

Used MultiCal First pass with ~ Overall solution

start estimates ?  fixed €. and I ? time 1 ; - .
ves o 26 seconds ties as covariance matrices. The diagonal elements of these co-
no yes 38 seconds variance matrices correspond to the square of the standard un-
no no 45 seconds certainties of the elements of the solution vegtpmwhile the

off-diagonal elements of these covariance matrices correspond
0 the covariances between the elements.of

an accurate solution of the calibration problem in which aﬁl We first calculate covariance matrices describing measure-
of the c.al|brat|on parameters are aIIowe.d to vary. T_h|s “S“al’%em uncertainties in the real-imaginary coordinate system in
results in a faster and more robust solution than trying to solv

L . Which we solve the problem. We do not calculate these covari-
for all of the calibration parameters in one step. Of course . . . .
) L ahce matrices in a polar (magnitude-angle) coordinate system
if the calibration does not need to solve fa, I',., or the e . 7o .
. ) due to the difficulties of expressing uncertainties in the magni-
scattering parameters of a reciprocal adapter, we solviesfor
tudes and angles of small vectors.

and [S,] directly. Y q ‘ " in-phase/auad
If the algorithm does not converge properly or the residual owever, we do support, as a user option, an in-phase/quadra-
representation of the uncertainties that maintains most of

standard deviation exceeds a user-supplied maximum value,t\W(:S9 q tth ditional itud |
automatically invoke a robust search algorithm. In this ever]ip,e advantages of the more traditional magnitude-angle repre-

we repeat the entire process with 15 different starting valug§ntation while avoiding the difficulty of expressing the uncer-
These starting values include three different transmission cointies of small vectors in a magnitude-angle representation. In
ficients of [S] with magnitude near one spread over one-halfis m-phase./quadratur'e repres.entatlorj, we rotate the elements
of the Smith chart, five different transmission coefficients doff the covariance matrix associated with the complex vectors
[S5] with magnitude near one spread over the four guadrantsf@fming our solution into a coordinate system aligned with the
the Smith chart, and small values of reflection coefficient. Wéirection of each of these vectors. Thus, the first component of
then pick the solution with the lowest overall residual standakficertainty in a vector in this in-phase/quadrature representa-
deviation. While this search is time consuming, it typicalljion corresponds to the component of the vector's uncertainty
only need be invoked at the first frequency point, whose solii the direction of the vector itself, while the second compo-
tion then serves as a starting point for the ensuing frequert§nt of uncertainty corresponds to the uncertainty of the vector
point, and so on. in a direction in quadrature with (perpendicular to) the vector.

Once the calibration problem has been solved, we fix the c#the uncertainties are much smaller than the magnitude of the
ibration parameters and apply orthogonal distance regressionggtor, the in-phase uncertainty corresponds to the uncertainty
solve for the scattering parameters of the DUT. Finally, as #mthe magnitude of the vector, while the quadrature uncertainty
option, we allow a joint calibration/DUT solution. This optioncorresponds to the uncertainty in the angle of the vector divided
allows additional information from transmissionless or recigy its magnitude.
rocal DUTSs to be factored into the overall solution.

Table | summarizes how well our solution strategy functiong,, Type-A Uncertainties Derived From Measurement
The table gives overall solution times for a 200-frequency-poiftesiduals
200-MHz-110-GHz first-tier TRL calibration using eight line
standards, as solved on an 860-MHz Intel Pentiurh gio-
cessor. We see that the shortest solution time of 26 s wa
tained usingMultiCal solutions as starting points, as one woul

We estimate type-A uncertainties in the solution from the de-

S E)/E:\_tions of the redundant measurements from the calibration
anodel (the measurement residuals) using (4). These statistically
expect. derived uncertainties are often, but not always, random in na-

The solution time increased to 38 s when we used the fi4ir€: Loosely speaking, the residuals quantify the magnitude of
strategy outlined above, fixing bothg and T, to their esti- the errors in the solution, the weights serve to determine their

mates during the first stage of the solution process. Attemptiﬁﬂa‘t've distribution in t'he mef';\surements, anq the choblan maps

to solve the entire calibration problem in one step resulted in tHi¢ Meéasurement residuals into the uncertainties in the calibra-

longest solution time, 45 s. This was due at least in part to tHan golutlon and captures the correlations of the errors in that

fact that the orthogonal-distance-regression algorithm did rgution. o _

initially converge with this strategy, and the program was forced Recall that we solve for the calibration solution, for the DUT

to invoke the lengthier search to solve for the first frequen@plution, and for the combined calibration and DUT solution

point. Even so, in all three cases, the algorithm converged to §fparately. We are thus able to determine separate covariance

same solution. Although heuristic, we have encountered few ditatricesXcar, Xpur, and Xcar+pur from (4) describing

uations in which this robust search strategy failed. the respective uncertainties in each of these solutions. (In Sec-
tion VIII-D, we use these covariance matrices to estimate the

2We use trade names only to completely explain the experimental conditiogffective number of degrees of freedom in the sqution.)
This does not constitute an endorsement by NIST or by the Physikalisch-Tech- h . tri timat taintv in th |
nische Bundesanstalt, Braunschweig, Germany. Other products may work ad N€S€ covariance matrices estimate uncertainty in the solu-

well or better. tion due not only to random measurement error, but also to a



WILLIAMS et al: OPTIMAL VNA CALIBRATION ALGORITHM 2395

number of other mechanisms that might ordinarily be consic_;| | | | | 1,
ered to be systematic in nature. In fact, these covariance | LSA] 1S L [SB] @ ;E’DU-‘] LSD] LS‘E] [S,] | [SF ] i
trices can account for any error that increases the measurem

residuals. That is, they will reflect any error that degrades the 1

of the data to the VNA calibration error model. Some example Slr:l [SDUT} [Szr]
serve to illustrate this. -

Probe-to-probe coupling in on-wafer calibrations depenc |  ..cured emrorbox 1 Measured DUT Measured eor-box 2
on a number of factors, including the distance between tt B scattering parameters B
probes, and will change from measurement to measureme p
The 12-term calibration model we use, which assumes sta [SM}

coupling, cannot correctly account for probe-to-probe cot
pling. Thus, coupling in the measurements will give rise tc Raw VNA measurement
measurement residuals that will be accounted foXing,, A
Ypur, andXcar+puT-

Errors in the definition of the lengths of the open and shoFtg. 3.  Sketch of the error model describing the systematic uncertainties.
standards used in a short-open—load—thru (SOLT) calibration

are typically considered systematic errors that must be importedOur implementation of the algorithm supports several elec-

into the c;allbratlon. Howev_er, if WE USE a numt_)gr of shorts a Hcal models defined by a single parameter that describe refer-
opens with different errors in their length definitions, these dif:

. . ) ~'ence impedance, reference plane, and series inductance errors
ferences will manifest themselves as a lack of fit of the Cal'brﬁiat the user can easily “i

tion data to the VNA calibrati del. and i th import” into the uncertainty analysis.
lon data fo the calibration model, and INcrease e Megy, , algorithm also supports more general sets of systematic er-

surement residuals. Here, again, the algonthm wil a“FO_”_‘aFBrs defined by user-supplied covariance matrices describing the
cally detect and account for these errors in standard definitio ror sources. Once the covariance matrices defining these error

Th_us, we see that, In fact, the type-A uncertainties we dgc')urces have been defined, the algorithm translates them into
termined automatically account for a number of error mecha- L . . .
uncertainties in the results using Jacobian matrices.

nisms that would normally be considered systematic in nature . . .
i . . We describe these systematic errors with an error-box
This means that only a relatively small number of additional L
. - . : model that equally distributes errors on the two measurement
systematic type-B uncertainties need be imported into the error
. ports. We not only assume that the errors represented by the
analysis.
error boxes are small so that second-order error terms can
be neglected, but that the error boxes are reciprocal, i.e., we
assume that the forward and reverse transmission coefficients
We cannot, however, estimate all measurement uncertainiggshe error boxes are equal. This is reasonable not only because
from measurement reSIduaIS.. For gxample, in TRL Callbratloqlﬁ)wer_norma"zed Scattering parameters describing typ|ca|
we calculate the characteristic impedance of the transmigstematic errors corresponding to real reference impedance
S|on-I|r)e standard; frora.a aqd a user—supplle'd capacitanCeransformations, reference plane transformations, and parasitic
per unit length of line. Errors in the user-supplied capacitanggnned elements are reciprocal [12], but also because any error
change the reference impedance of the calibration. Howevglh reates asymmetry in the forward and reverse transmission
a calibration with a different reference impedance is still & 4fficients would give rise to measurement residuals that

solution to the calibration problem so the error in referenqﬁould be detected and included in our type-A uncertainties.

impedance does not manifest itself as a lack of fit of the Fig. 3 sketches the error model we use to describe these im-
measurements to the calibration model. Since this reference .
. . rted systematic errors. The components of the model labeled
impedance error does not affect the measurement residu

DUT i .
this systematic error will not be accounted for in the type—t 1.]’ 1570, a?d[Sz]f(;ﬁ rr?sptond, rebspecg\lﬂy, todthe true dscat
uncertainties we considered above. ering parameters of the first error box, , and second error

B C D E
Consider also our previous SOLT example. If the offsets O;(‘ The components labelgst], [S”], [S, ],' (571171, and.
the definitions of the lengths of the opens or shorts were ] correspond to the error boxes describing the systematic er-

positive on one port and all negative on the other port, this woui"s: . .
result in a shift of the calibration reference plane. However, this he measured scattering paramefst$ of the first error box
new calibration still corresponds to a solution of the calibratioft Fig- 3 correspond to the cascade of the systematic Efrtr
problem with a shifted reference plane so, again, the systemafie true scattering parametgfs] of the error box, and the sys-
error in the reference-plane position of the calibration does rigfmatic errorgS”]. Likewise, the measured scattering param-
affect the measurement residuals. eters[.S4] of the second error box correspond to the cascade of
In cases like these, where systematic errors in standard défe systematic errdS¥], the true scattering parametéss] of
nitions do not increase the measurement residuals, we must fiRé error box, and the systematic errp§$]. Finally, the mea-
another way to incorporate these errors into our uncertainty estired scattering parametéfs’V"’] of the DUT correspond to
mates. To do this, we construct a covariance matgxst from the cascade of the systematic erfi§f'], the true scattering pa-
simple electrical models to describe the systematic errors. rameterdSPV™] of the DUT, and the systematic errdi$”].

F

B. Systematic Type-B Uncertainties



2396 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 12, DECEMBER 2003

To add a systematic error to our uncertainty analysis, we TABLE I

i i ; COVARIANCE MATRIX ¥ 4 OR X g RELATING THE REAL AND IMAGINARY
begin by writing down the scattering paramet&rS, 1, ASas, ELEMENTS OF [54] AND [S] OF [57] AND [S] FOR A SYSTEMATIC

and 1 + AS,; of the error box that models the source of Error N THE REFERENCEPLANE POSITION. BLANK SPACESREPRESENT
the error we wish to include. For example, to model an error  2-BY-2 MATRICES FILLED WITH ZEROS THE INDEXES P AND Q

in a reference-plane transformation,S;; = ASsy; = 0 CAN BE REPLACED BY EITHER A AND F' OR B AND E

and ASi;» = AS>; = jA#, where Ad is the error in the T | S SZ Sat S S8 S0
reference-plane position in radians. -
Next, we use a first-order error-propagation analysis to ex- g“p
press[S4] and[ST] or [SB], [S¢], [SP], and[SF] depending s A6 1A
on the reference plane at which the systematic errors are located,  $1,°
interms ofAS;1, ASas, andASs;. Itis evident that, if the error 522
Sy +A@ A©

occurs in the first tier of a two-tier calibration (the two outer ref-
erence planed andF of Fig. 3),[S4] and[S*] are
) ) erence planes of Fig. 3, the cascade m4iffy] corresponding
[54] = ASi 14 ASy (5) tothe measuremeii§y,] can be written as

L 1+ ASy AS5s
(T3] = [Ta] - [TPVF] - [T3). (11)
and
However, the addition of a systematic error at the inner ref-

(6) erence planes of Fig. 3 does not change the measurgfignt

Thus, the cascade mattiX;,] corresponding t§S},] can also

[SF] _ [ ASQQ 1 + ASQl T
14+ ASy AS1y

where we have deliberately reversed the indexeA 8f, and P€ written as

ASss in (6). r ! DUT’ /
The indexes in (6) are reversed to account for the fact that port 7] = T3] [TB ) C 2] DUT

1 of [S4] faces toward the analyzer, while port 1[6f] faces =[11]- [17]- [1°]- [TP77]

away from the analyzer. However, if we wish to use a single A [TP] - [TF] - [T2). (12)

model to represent the errors on both sides of the DUT, port 1 ]

of the model must always face toward the network analyzer arfc€ both (11) and (12) must hold for any DUT, we see imme-

port 2 of the model must always face away from the analyz&hately that{T?] = [T]~! and[T'P] = [T"®]~*. Eliminating

Thus, reversing the indexes in this way allows us to use a sin§feond-order terms in 51, ASz,, andA Sy, leads directly to

model and representation for the errors at the two ports in terk§g and (9). This is convenient because once we have determined

of AS11, ASyy, andAS,, and simplifies the notation. ASi1, ASz,, andAS,, we know not only{S”] and[S*], but

. X . . . . C
If the error occurs in a first-tier calibration or in the secon@!so[S“] and[S”]. _ _
tier of a two-tier calibration (the two inner reference plades ~ While (5)—(10) describe the error boxes modeling systematic

and £ of Fig. 3),[S?], [SC], [SP], and[SF] are given by errors at the outer and inner reference planes, they do not capture
the correlations between the elements of the error boxes or rep-
[SB] _ [ ASy; 14+ ASy | 7 resent the errors and their correlations in a form convenient for
1+ ASy; AS>s computing the propagation of the errors into the solution vector
o : —ASy;  1—ASy 1 (. To circumvent this problem, we use (5)—(10) to aid in the con-
[S°T=1{, A So1 —ASe (8) struction covariance matric&s, »; and¥. s ; to describe these
- _AS L— AS : errors and correlations. _ _
[SD] =1y A;‘Q AS 2 9) Table Il tabulates the elements of these covariance matrices
L= T ezt TERL corresponding to a systematic error in the reference-plane po-
and sition at the first-tier reference plandsand F' in Fig. 3 or the
) i second-tier reference planésand £ in Fig. 3. In the uncer-
[ SE] _ Ay 1+ ASy (10) tainty analysis, we treat the real and imaginary parts of each
|1+ ASa AS1 | complex quantity as two real numbers3qr; andXpg; are

real 12-by-12 covariance matrices. The first row and column of

where agam.the !nde>_<es in (10) are intentionally reversed. . Table Il indicate the associated variable in the covariance ma-
The negative signs in (8) and (9) ensure that the systematic er-

rors introduced into the scattering parameters of the DUT prOp'R.ecaII that, in this case\Sy; = ASsy = 0 andASy, —

erly reflect the systematic errors in the error boxes that gave risg s £.ch entry in Table Il corresponds to a 2-by-2 matrix, and
tothem. We can derive the form of (8) and (9) from the followin lank spaces represent 2-by-2 matrices filled with zeros. Since

argumept. ASy; = ASy; = 0, any row or column associated with these
Imagine that there are no errors at the outer two refereqreqlection coefficients are filled with zeros

planes in the model of Fig. 3. The cascade matr{@&y and The symbolA® in Table Il is defined by
[T'B], where[T] is the cascade matrix corresponding to the
scattering-parameter matrfi-X], will then be equal to identity
matrices. In the absence of systematic errors at the two inner ref-

AG = [8 A%z] (13)
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TABLE Il
JACOBIAN MATRIX J 4 MAPPING THEX 4 r; INTO SsvsT
A A A F F F
Jar S S» . Sa Sn Sp Sn
Siu 1 (Sl,ll)2 2811
S1.22 (S1,21)
S1.21 Sin S1.21 5
Sa11 (52,21)2
$222 1 (82,22) 282
Szi)zﬁ'r S22 S2,21
S
S22DUT
SZIDUT
SIZDUT
TABLE IV
JACOBIAN MATRIX J 5z MAPPING THEX g z; INTO Zsyst
Jee Si® S»P So® SiE SuF Su®
St (Sl,zl)2
S22 ¢ |,22)2 1 2812
Si21 S22 Si21
SZ,H —(LS‘I,II)2 1 2 SZ,“
S22 (S221)°
S221 Sa11 S2.21
S”DUT -1 _(S“DUT)Z -2 S“DUT - SZIDUT SlZDUT
S22DUT _ S21DUT SlzDUT _2 SzzDUT _1 "‘(SZZDUT)Z
S,,PUT —S,;,PuT —S,,PUT —§,,PUT —S,,PUT
S,,PUT _§,,PvT —S5,,PVT —S,,PUT —S§y,PUT

whereA§? corresponds to the square of the standard uncertaiatyd X 5 ;. into a covariance matriXgyg describing the un-
in Af. The two 2-by-2 matriceA® on the diagonal of the co- certainties in the solution vectgtvia
variance matrixz pg, with PQ) equal toAF or BE, as appro-
priate, correspond to the standard uncertainties in the imaginar _ - qT T
part of AS»;, while the off-diagonal matricesA© in Xpg Bsvst 21: (JAFEAFZJAF) * Xk: (JBEEBEkJBE) )
describe the correlations between the imaginary park 6%, (14)
at reference planeB and@. The positive sign is used for pos-Since the Jacobian matricds » andJgg map the errors de-
itively correlated reference-plane-position shifts (i.e., the twacribed in the 12-by-12 covariance matriceésy; and X gy
reference planes move toward and away from the analyzer imto the covariance matriX.syst, which has the same dimen-
gether), the negative sign is used for negatively correlated refsien as the solution vectdgt, J 4 andJ g have 12 columns
ence-plane-position shifts (i.e., the two reference planes mawed a number of rows equal to the dimension of the solution
left and right together), antt A®© is set to zero for uncorrelatedvector /3. Once formed, the covariance matdxyst includes
reference-plane-position shifts. the effects of the systematic errors on both the calibration coef-

We see from this analysis that the covariance matites; ficients and scattering parameters of the DUT.
and X g ;. describing the sources of systematic error must beTables Il and IV give the Jacobiank,r andJgg that we
constructed individually. For this reason, we have hard-codade. How we order the elements Bf,r;, X pgk, andXgysT
covariance matrices describing reference-plane position and iefa matter of convention. The elements in the first row of the
erence-impedance errors, as well as systematic errors dueatdes refer to the ordering we used ¥4 r andX. zg, the co-
series inductances at the measurement port, as often arisegannce matrices describing the circuit-level description of the
coaxial TRL calibrations. Reference [16] offers useful explaystematic errors. The elements of the first column of the tables
nations useful for constructing custom covariance matricesrefer to the ordering we used falsyst, the covariance ma-
describe other systematic errors not already hard coded into titve describing the effect of the systematic errors on the solution
algorithm. vector after they are mapped frady r andXgg.

After constructing® 4 r; andX. g gy, we use closed-form Ja- The function ofJ 4 andJ g is to map the errors contained
cobian matriced s andJ g derived from a first-order error in [S4], [SB], [S€], [SP], [SE], and[ST] into Ysyst. J 4F and
propagation analysis to translate the errors describedl4ip; Jpg can be constructed by a simple first-order analysis in the
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errors contained ifiS4], [SZ], [S€], [SP], [SF], and[ST] by 0.05
writing down the scattering parameterg8f|, [S5], and[Sp 1] T Yoos p
(see Fig. 3) interms d4], [SB], [S€], [SP], [SF], [ST], [S1], 0.04} — SsystscAL+DUT i
[S2], and[Spu]. For example, to construct the first row.bf; - & | 8 Seu.our N
in Table 11, we writeS] 1, in terms of the reflection coefficient ¢ 003 = Sour v
of the cascade df5“] and[S;] as z d
[0]
| g4, SASH g oo
St —5114‘1_5&425171151,11 <
zSﬁ—i—SLH (1—|—(Sé41 - 1)) 0.01

X (l—l-(SéAl—l)) (1+Sé4251,11)
%S1,11+Si41+(Sl,11)25;2+251’11 (Sfl — 1) . (15)

Frequency (GHz)

Thus, we see that a small errgf; contributes an equal error to
51,11 $0J 4p11 = 1. Asmall errorsz, on the other hand, con- Fig. 4. Components of quadrature uncertaintyin for a DUT as a function
tributes an err0|(51’11)25§42 to 5141 S0Jap12 = (5’1’11)2. of frequency. The quadrature uncertainty is in a direction perpendicular to the
Finally, a small error(S5 — 1) in 3 contributes an error direction ofS..
251,11(55‘1 — 1) to Si,ll SOJAF,13 = 251,11. .
Again, we treat the real and imaginary parts of each complB% Expanded Uncertainty
vector in the analysis as two real quantities so each entry in there determine expanded uncertainti€g o5, defining the
tables actually corresponds to a 2-by-2 matrix of the form  959% confidence intervals associated with each component of
the solution, from a set of “one-at-a-time coverage factors”
{a —b} (16) ko.o5. Multiplying the standarq uncertaintySYSTJFCALJrDUT'
b a by the coverage factok, o5 gives the expanded uncertainty
) . . Uy.o5 (see Fig. 4). We have a 95% confidence that the true
wherea is the real part of the complex quantity ahds itS yajye of a solution parameter is in the interval defined by the
imaginary part. The blank spaces in the tables represent Z'byéﬁorted valuetUy o5 [16].
matrices filled with zeros. We calculatekg o5 separately for each component of the
Note thatJpz has a number of elements not foundiar.  gojution vectorg from the effective number of degrees of
This |sEbe.caus€BE not only maps the errors captured[BjB ] freedomu.s associated with that element of the solution using
and[S™] into the parts obisysr related to the uncertaintiesihe \velch—Satterthwaite formula [16]. For the calibration
in the calibration coefficients, but also the errors captured H}irameters we estimatgg as
[S€] and[SP], which contribute to the uncertainty in the DUT.

Formulating the problem in this way is extremely convenient (S%AL + 5§YST)2
for the user, who need only specifiz ¢ to translate all of the Veft = s Sdyer 17
errors captured il\S;1, ASs2, andA S, and their correlations —
; P : : : : VCAL  VSYST
into uncertainties and correlations in the entire solution vector, _
including those related to the DUT. For the DUTSs, we estimate.s as
2 2 2 2
C. Combined Uncertainty Veff = (sar + sbur + sSvst) (18)

1 1 1
SCAL + SputT + SsysT
VCAL VDUT  VSYST

The algorithm reports a combined standard uncertainty
described by the covariance mat®svsr+caL+pur =
Ysyst + Lcar4+pur. This covariance matrix describes bottwhere we estimatesg ,; as sg¢ . ,pur — Shur When
the type-A and the type-B uncertainties and their correlation$ ,; , ,yr — shyr IS positive, and as zero otherwise. This
in the combined calibration/DUT solution. The diagonal elds because when the true value of the uncertainty due to the
ments of¥syst+caL+puT contain the square of the standaraalibration is small compared to the true value of the uncer-
uncertainties of each of the measured calibration and DUdinty due to the DUT, there is a nonnegligible probability
parameters, which we can represent either as real-imaginantat sg ,; . ,ur < shyr- In such cases, without additional
in-phase-quadrature pairs. information, we setkcar, = 0.

Fig. 4 plots the combined standard uncertainty We determine the number of degrees of freedaim; and
ssysT+caL+puT Of the quadrature component of thepyr in (17) and (18) as the number of measured real values
transmission coefficient of a DUT calibrated with an the calibration and DUT problems minus the number of real
TRL calibration obtained from the in-phase/quadratunealues we solve for in those problems after accounting for any
representation of¥gyst+car+pur as a solid line. This deficiencies in the rank of the solution. By default, we set the
figure also plots the standard uncertainfyyr obtained from number of degrees of freedomyst associated with the sys-
Yput and the standard uncertainty., 1 pyr Obtained from tematic errors to infinity, although the user may override this
ZCAL+DUT- default.
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;5. The covariance matriX.,. can usually be estimated from di-

5 0015 — mensional tolerances, electrical models, or other physical pa-
2 _____ Predicted standard uncertainty rameters pf the callb.ratlon standards. However, the- elements of
g 001 1 o the covariance matrixX, that describes the uncertainty in the

a \ —— Actual standard deviation . .

5 raw network-analyzer measurements will vary from instrument
E oort 4 to instrument and measurement setup to measurement setup.
T We developed a verification and refinement procedure to ad-
5 009 dress this problem based on a comparison of the measurement
2 el residuals detected by the algorithm with the user-supplied esti-
5 oo Sy mates of those residuals. To perform the comparison, the algo-
® l rithm determines the standard deviationg ando. r of the el-

€ 0005 L — L ; : : ;

§ 0 001 002 003 004 005 008 ements of the residuads of the solution associated with the raw

(7]

measured reflection and transmission coefficients based on the

User-supplied estimate of S, 1 used to construct Ey . "
' user supplied estimatesgf r ands,, r of o, g ando, 7. These

Fig. 5. Actual and predicted standard deviations of the calibration parame®andard deviations.  ando. g reflect the actual lack-of-fit
|51 21| as a function of the user-supplied estimate pfr used to construct,  of the raw measurements to the calibration model based on the
With s, = 0.z = 0.01. user’s initial estimates, r ands, 7. This allows the user to
) . compare the user-defined estimatgs; ands, r to the actual

Finally, we determineko.os from fo.o5(vet), Wheret rep-  measurement residuals, refine the estimages ands, -, and
resents the studentisdistribution [16]. Fig. 4 plotS/y.95 = resolve the problem with a set of optimized covariance matrices
ko.955caL+pUT+sysT as @ dashed line. Since all of the deg_reegy andY, and weights that better correspond to the actual in-
of freedom were atleast 40 for the calibration problem of Fig. 4trument and measurement setup.
ko.gs ~ 2 in Fig. 4. Our on-wafer test case illustrates that by using uniform
weighting(s, ~ = s,,gr = 0.01) for our on-wafer test case, the
standard deviation of the residuats  and o, r associated

As we explained earlier, the algorithm can make use of us¥ith the transmission and reflection coefficients were 0.0277
supplied block-diagonal covariance matriégsdescribing the and 0.0088, respectively. These estimates are quite close to
errors in the raw network-analyzer measurementsX@pdie- the actual standard deviationg r = 0.03 ando, p = 0.01
scribing the errors in the calibration-standard definitions. Thef the measurement error we added into these transmission
algorithm uses, andX, to determine the relative weights = measurements in the Monte Carlo simulation (see Fig. 5). In
andws that it uses to find solutions, and to estimate the uncdact, Fig. 5 shows that results based on weights derived from
tainties in its results. In this section, we will discuss the effesettings, r = 0.0277 are nearly identical to those obtained
of the user-supplied estimatesily on the solution and the un- based on the actual value of r = 0.03, and demonstrate
certainty the algorithm predicts for that solution, as well asricely the utility of this re-weighting scheme.
strategy for verifying and refining user-supplied estimates. ~ Although our first cycle of refinement of the estimates pf

In the on-wafer test case we discussed in Section V, W&ds, r Were quite good, in some situations, it might be pos-
added error with a standard deviatio) z of 0.01 into the sible to iterate o, 7 ands, r to improve on these estimates.
simulated reflection-coefficient measurements and standdMg tested this by adjusting, r ands,, r to 0.0277 and 0.0088,
deviationo, 1 of 0.03 into the simulated transmission-coefand recalculating the residuals. We then obtained similar esti-
ficient measurements. To illustrate ideas, we constructedT@t€So:r = 0.0283 ando., p = 0.00982 for o, 7 andoy g.
diagonal &, matrix from user-supplied estimates  and Th_|s |nd_|catgs to the user that no fur_ther improvement is to be
s, of o, r ando, 7. Fig. 5 illustrates the effect of the user’'sgained in this example with more refinement iterations.
estimatess, r on the solution for the calibration parameter
|S1,21] and the uncertainty inS; 21| the algorithm predicts

with s, p = oy, = 0.0L. o We have presented an iterative algorithm based on orthog-
The solid line in Fig. 5 shows the standard deviation of thena) distance regression for performing VNA calibrations. The
error in the calibration parametit; o1 |. This figure shows that algorithm allows a flexible “mix and match” approach to VNA
the algorithm’s solution accuracy is a very weak function of thejiprations that takes into account the relative accuracy in the
user-supplied estimatg, 1 used to construct,,. calibration standards and the relative accuracy in the measure-
The dashed line in Flg 5 shows the standard uncertaintyménts to arrive at an 0ptima| calibration solution.
|S1,21| estimated by the algorithm. This figure shows that the The algorithm is not intended to replace traditional error
algorithm’s estimate of its own uncertainty improves measusnalyses based on a history of check-standard measurements
ably when the user-supplied estimajer approaches the actualand the application of standard statistical methods to separately
value ofo, r = 0.03 marked by the arrow in the figure. Thisdetermine uncertainty due to repeatability and reproducibility.
demonstrates that there is a small, but tangible, advantage torbese more standard approaches will most likely always result
gained in the accuracy of the algorithms uncertainty predictioimsthe most reliable uncertainty estimates possible. However,
by accurately estimating,, andX,. this algorithm offers an easy-to-implement alternative that

E. Re-Weighting

IX. CONCLUSION
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automatically estimates the uncertainty in the calibration due to
most error sources from measurement residuals, and allows any
remaining systematic errors to be readily added to the overall
uncertainty estimate.

Fig. 6. Model used to describe the impedance of load calibration standards.
APPENDIX

SUPPORTEDCALIBRATION STANDARDS ) L ) ) .
propriate weighting can also be used in TRL calibrations to

Our implementation supports the wide variety of calibratiogj|ow resistors to more accurately set the calibrations reference
standards and DUTs listed below. As long as there are enquﬂJedance at low frequencies or even to augment the TRL
calibration standards with which to solve the problem, any egjipration with well-characterized shorts and opens over part
the calibration standards can be “mixed and matched” Wil g of the frequency band.
any other calibration standards, allowing great flexibility in the The reflection coefficients of the load can be defined from
choice of calibration strategy. The weighis are based on the gata in a file or with the analytic model of Fig. 6. The transmis-
estimated accuracy of the measurements, while the weightssjon line is defined by a delay, a resistance per unit length
are used to account for differences in the relative accuracy gf and a real characteristic impedangg. For consistency
the various standards in any given calibration. with common industrial practice, we use a third-order Taylor-se-
o ries expansion to describe the values of the lumped elements in
A. Thru Calibration Standard Fig. 6. This analytical model is a superset of the most common

The thru calibration standard is realized by forming a zereoaxial standard definitions and of the on-wafer load definitions
length connection at the calibration reference plane. The scaéscribed in [19].
tering parameters of the thru standard are, by definittan,=
Sys = 0andS,; = Si» = 1. Translating the reference planeE. Reciprocal-Adapter Calibration Standard

in the calibration usually requires defining the thru standard asThe reciprocal-adapter calibration standard supported by the
a transmission line of either positive or negative length. algorithm has unknown reflection and transmission coefficients.
However,S»; must equab,. This standard is useful when cali-
brating with an adapter matching different transmission media at

The characteristic impedance of the transmission-line statstwo ports. The algorithm determines the unknown scattering
dard supported by the algorithm is determined from a user-syarameters of the reciprocal adapter during the calibration pro-
plied capacitance per unit length, and is assumed to be caedure.
stant. This is explained in [17] and [18]. The scattering param- Adding a reciprocal-adapter standard to a calibration requires
eters of the transmission-line standard are calculated with egiding its two reflection coefficients and single transmission
spect to a reference impedance of80As a result, the refer- coefficient to the solution vector. The algorithm thus supports
ence impedance of calibrations using these line standards is@dy a single reciprocal-adapter standard in each calibration, al-
to 50Q2. though it may be measured many times.

The algorithm also allows the reference impedance of the
scattering parameters of the line standards to be set to the clrarAttenuator Calibration Standard
acteristic impedance of the transmission-line standard to supa|| of the scattering parameters of the attenuator must be
port calibrations with reference impedance equal to the charggown, and its forward and reverse transmission coefficients
teristic impedance of the line. must be equal. The scattering parameters of the attenuator can
o be defined from data in a file or by the transmission-line model
C. Reflect Calibration Standard of Fig. 6 defined by a delay,, a resistance per unit lengfy,

The reflect calibration standard supported by the algorithamd a real characteristic impedanég
has equal, but unknown reflection coefficients at each port, and
no transmission. Adding a reflect standard to a calibration re~ DUTs

quires adding its reflection coefficiet. to the solution vector.  Tg keep the number of unknowns in the solution vegttr an

The algorithm thus supports only a single reflect in each calibrghsolute minimum, the algorithm supports three types of DUTS,

tion, although it may be measured many times. While the reflagé, puTs with unknown reflection coefficients and no trans-

is essential for setting the reference plane in TRL calibrationgjssion, reciprocal DUTs with unknown reflection coefficients

the algorithm can support the reflect standard in any calibratiofhd unknown, but equal forward and reverse transmission co-
o efficients, and DUTs with unknown reflection and transmission

D. Load Calibration Standard coefficients.

The algorithm supports a load calibration standard with

known, but possibly different reflection coefficients at each SOFTWARE

port, and no _transmlssmn between its ports. .Th's standa_rd 'Sthe StatistiCALsoftware package implementing the method

used for adding shorts, opens, and resistors in SOLT calibra- - !

. ; L scribed here can be downloaded ontine.

tions and adding the match standard in line—reflect-matéeh

(LRM) calibrations. The load calibration standard with ap- 3{Online]. Available: http://www.boulder.nist.gov/dylan/

B. Transmission-Line Calibration Standard
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