Statistical Basis to Determine Probabilities of Occurrence of Handwriting Characteristics

NIST Meeting 2013
Sargur Srihari, University at Buffalo, The State University of New York Kirsten Singer, Dept of Veterans Affairs, Office of the Inspector General

Previous Research

- 1963 -- Frequency of Certain Characteristics in Handwriting, Pen Printing of 200 People," Livingston
- 1976 - A Statistical Examination of Selected Handwriting Characteristics, Muehlberger, et al
- 1990 -- "Uniqueness of Writing," Huber
- 1996 -- A Study of the Occurrence of Certain Handwriting Characteristics in a Random Population," Horton
- 1998 -- A Statistical Study of Some Differentiating Characteristics of the Handwritten Letters IT," Zlotnick
- 2013 -- "Frequency of Selected Hand Printing Characteristics Occurring within a National Population: The New International Version Bible Across America@" Bishop

Current Research

- "Statistical Examination of Handwriting Characteristics using Automated Tools," Singer/ Srihari, SUNY
- "Development of Individual Handwriting Characteristics in ~1800 Students: Statistical Analysis and Likelihood Ratios that Emerge over an Extended Period of Time", Lisa Hanson, Minnesota Bureau of Criminal Apprehension, Dr. Srihari, SUNY
- "Frequency Occurrence of Handwriting and Hand-Printing Characteristics" Vastrick and Whitcomb with University of Central Florida

Previous Research

1. Height relationship of the " t " to the " h "
a. t shorter than h (78\%)
b. t even with h (1.5\%)
c. t taller than $h \quad$ (5.5\%)
d. No set pattern (15\%)
2. Shape of loop of "h"
a. Retraced (27.5\%)
b. curved right side and straight left side (32\%)
c. curved left side and straight right side (2.5\%)
d. Both sides curved
(17\%)
e. No set pattern
(21\%)

"and"

Rank *	Trigram *
1	the
2	and
3	tha
4	ent
5	ing

Singer/Moran

1. Number of strokes for formation of "a":
(a)
a
(b)

(c)
u
(d)

A

(a) one continuous														
(b) two strokes														
(c) three strokes														
(d) uppercase														
(e) no fixed pattem														

2. Formation of staff of "a":
(a) a_{6}
(b) \boldsymbol{a}_{8}
(c)
CQ_{87}
(d)

(a) tented												
(b) retraced												
(c) looped												
(d) no staff												
(e) no fixed pattem												

Truthing Tool

Truthing Tool

Cursive

Location of mid-point of " n "

Shape of arch of " n "

Formation of staff of "d"

Initial stroke of "d"

Unusual formations
Symbol in place of the word "and"

© Hand-printed

Number of strokes for formation of "a"

one continuous

two strokes
three strokes
uppercase
no fixed pattern

Formation of staff of " $п$ "

Formation of initial stroke of "d"

Formation of terminal stroke of "d"

\square

Truthing Tool

Truthing Tool

Writer ID

Probabilistic Analysis

and and

121022322

Bayesian Network Joint Probability
Independent Joint Probability

$1.39 \mathrm{e}-004$

Joint Probability Calculation

- Calculation of probability of a given combination of characteristics is complex
- How much data is needed?
- If we don't assume that the nine characteristics are independent, we will need to determine over a million probabilities
- 100 million to billion samples needed
- How much time for the computation?
- NP-hard

What if we assume independence?

True Joint Probabilities: Prob (height, weight)

$\mathrm{P}(\mathrm{a}, \mathrm{b})$	b^{0} (heavy)	$\mathrm{b}^{1} \quad$ (light)	$\mathrm{P}(\mathrm{a})$
$\mathrm{a}^{0} \quad$ (tall)	0.6	0.05	0.65
$\mathrm{a}^{1} \quad$ (short)	0.05	0.3	0.35
$\mathrm{P}(\mathrm{b})$	(weight)	0.65	0.35

Prob(tall, light) < Prob(short,light) Given that person is light, six times likely to be short
Assuming Independence

$P(a, b)$	b^{0} (heavy)	$b^{1} \quad$ (light)	$P(a)$ (height)
$a^{0} \quad$ (tall)	0.42	0.23	0.65
$a^{1} \quad$ (short)	0.23	0.12	0.35
$P(b)$ (weight)	0.65	0.35	

P(tall,light) > P(short,light) Given that person is light, twice likely to be tall

Compromise Solution: PGMs

- Revolution in big data analysis
- Led by statistical machine learning and probabilistic graphical models
- Exploit as to what independencies exist rather than assume everything is independent
- PGMs are directed (Bayesian Networks) or undirected (Markov networks)

Bayesian Networks for and

Cursive

99 parameters
Handprint

77 parameters

Common and Rare and

(a) Cursive-Common

Samples with Characteristics	Proba- bility		
and and and [111022122]	$5.46 \times$ 10^{-3}		
and amd [211022122]	$5.39 \times$ 10^{-3}		
amdd and [211022022]	$4.86 \times$ and [111322122]		
and and and	$4.52 \times$ 10^{-3}		
and			$4.46 \times$
10^{-3}			

(b) Cursive-Rare

Samples with Characteristics	Proba- bility
and and and [132332022]	$4.15 \times$ 10^{-8}
and and and [020133132]	$4.09 \times$ 10^{-8}
and and and [222433342]	$8.64 \times$ and and and [242433342]
and $[342431242]$	$7.50 \times$

(c) Handprint-Common

Samples with Characteristics	Probability
and and and [010110112]	$\begin{aligned} & 1.51 \times \\ & 10^{-2} \times \end{aligned}$
$\begin{aligned} & \text { and and } \\ & \text { and } \\ & \text { [010110302] } \end{aligned}$	$\begin{aligned} & 1.44 \times \times \\ & 10^{-2} \end{aligned}$
$\begin{aligned} & \text { and and } \\ & \text { and } \\ & \text { [000110112] } \end{aligned}$	$\begin{aligned} & 1.21 \times \\ & 10^{-2} \times \end{aligned}$
and and and [000110302]	$\begin{aligned} & 1.15 \times \times \\ & 10^{-2} \end{aligned}$
and and and [010110512]	$\begin{aligned} & 7.42 \times \\ & 10^{-3} \end{aligned}$

(d) Handprint-Rare

Samples with Characteristics	Probability
$\begin{aligned} & \text { and and } \\ & \text { and } \\ & {[130323332]} \end{aligned}$	$\begin{aligned} & 5.90 \times \\ & 10^{-9} \end{aligned}$
and and and [343301302]	$\begin{aligned} & 4.66 \times \\ & 10^{-9} \end{aligned}$
	$\begin{aligned} & 3.75 \times \\ & 10^{-9} \end{aligned}$
and and and [333323332]	$\begin{aligned} & 7.81 \times \\ & 10^{-10} \end{aligned}$
and and and $[313203301]$	$\begin{aligned} & 7.23 \times \\ & 10^{-10} \end{aligned}$

Probabilities available online

Cursive data: http://www.cedar.buffalo.edu/~srihari/HW-Stats/cursive-and Handprint data: http:/www.cedar.buffalo.edu/~srihari/HW-Stats/handprint-and

\#	Samples	ID	Characteristics	BN Joint Prob	Indep Joint Prob	\#	Samples	ID	Characteristics	BN Joint Prob	Indep Joint Prob
986	and and and and and	0387b	220101021	$\begin{aligned} & 4.70 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 4.57 \mathrm{e}- \\ & 007 \end{aligned}$	1000	and and and and	1271c	012422222	$\begin{aligned} & 2.50 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 3.53 \mathrm{e}- \\ & 006 \end{aligned}$
987	and and and 1∞ and	0522c	312402032	$\begin{aligned} & 4.68 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 7.20 \mathrm{e}- \\ & 006 \end{aligned}$	1001	and and and and	0354c	100101322	$\begin{aligned} & 2.49 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 5.85 \mathrm{e}- \\ & 007 \end{aligned}$
988	and and and and	1123a	212101121	$\begin{aligned} & 4.16 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 6.34 \mathrm{e}- \\ & 007 \end{aligned}$	1002	and and ued	1091a	312422342	$\begin{aligned} & 2.22 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 1.12 \mathrm{e}- \\ & 005 \end{aligned}$
989	and Andare	1198a	302422042	$\begin{aligned} & 3.76 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 9.24 \mathrm{e} \\ & 006 \end{aligned}$	1003	and and and and and	0556b	020102111	$\begin{aligned} & 2.07 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 5.45 \mathrm{e}- \\ & 007 \end{aligned}$
990	and anil and and and	1198b	101320221	$\begin{aligned} & 3.65 e- \\ & 007 \end{aligned}$	$\begin{aligned} & 9.33 \mathrm{e} \\ & 007 \end{aligned}$	1004	and and and and, and	0556c	010103101	$\begin{aligned} & 2.05 \mathrm{e} \\ & 007 \end{aligned}$	$\begin{aligned} & 3.66 \mathrm{e}- \\ & 007 \end{aligned}$
991	and and and	1098a	010101111	$\begin{aligned} & 3.38 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 1.17 \mathrm{e}- \\ & 006 \end{aligned}$	1005	and and and and and	0387a	010201222	$\begin{aligned} & 1.87 \mathrm{e}- \\ & 007 \end{aligned}$	$\begin{aligned} & 3.50 \mathrm{e} \\ & 006 \end{aligned}$

Markov networks for and

Conclusions

- FDEs defined a set of characteristics for a common word and
- Developed a truthing interface
- FDEs entered data using interface
- Developed learning algorithms to create statistical models
- Models used to infer probability of characteristics

Future Research

- Continue to mine existing data for information, add more individualizing characteristics
- Continue to research "th" combination
- Study the same characteristics with a more homogenous population (e.g. Durina research, twins)

$855, a, 1,2,1,0,2,2,1,0,-1$

