

Quantification of Uncertainty in Materials Science Gaithersburg, January 14-15, 2016

Certainty and Uncertainty at Multiple Scales

Marius Stan

Senior Computational Scientist, Energy and Global Security Directorate, Argonne National Laboratory Senior Fellow, Computation Institute, University of Chicago Senior Fellow, Institute for Science and Engineering, Northwestern University

Uncertainty of Nuclear Fuels Data

- Uncertainty in fuel thermo-mechanical properties is often >10%
- Uncertainty of chemical properties (free energy) can be 10-15 %

Example:

- Uncertainty quantification the UO_2 -Pu O_2 phase diagram*. $\Delta T = 50K$, $\Delta c = 3\%$
- Bayesian analysis of 15 data sets (melting temperatures, transformation enthalpies, ...).
- Optimization via a genetic algorithm.

* M. Stan and B. J. Reardon, *CALPHAD*, **27** (2003) 319-323.

[1] M. G. Adamson, E. A. Aitken, and R. W. Caputi, J. Nucl. Mater., 130 (1985) 349-365.

[2] T. D. Chikalla, J. Am. Ceram. Soc., 47 (1964) 309-309.

Major sources of uncertainty - Nuclear Energy¹

- Models of material properties are oversimplified. Often ranges of model validity are not specified.
- Extensive use of empirical correlations. These are needed 'to close' the balance equations and are also reported as 'constitutive equations' or 'closure relationships'.
- Imperfect knowledge of boundary conditions and initial conditions.
- Approximate equations are solved by approximate numerical methods.
- Software errors.
- Computer/compiler errors.
- The 2nd principle of thermodynamics is not necessarily fulfilled.
- Different groups of users having the same code and the same information for modeling a Nuclear Power Plant do not achieve the same results.

• • • •

¹IAEA Report (authors: Allison C., Balabanov E., D'Auria F., Jankowski M., Misak J., Salvatores S., Snell V.) "Accident Analysis for Nuclear Power Plants" IAEA Safety Reports Series No 23, pp 1-121, 4 ISSN 1020-6450; ISBN 92-0-115602-2, Vienna (A), 2002.

Goal: Understand, predict, and control thermal conductivity of uranium dioxide (UO_2)

Thermal conductivity of UO2 decreases with

- temperature
- burnup

Empirical model [1]
$$k(b) = \frac{1}{1+e^{\frac{20-b}{6}}} - 0.015267$$

Target model: k(T, x, p, b, microstructure, time)

Multi-scale theoretical and computational methods

M. Stan, Materials Today, 12 (2009) 20.

6

FEM simulations of porosity effects on thermal transport in UO₂ fuels

Microstructure of UO₂ - Phase Field vs Experiment

Simulation of gas bubbles evolution in polycrystalline UO_2 fuel¹⁻³. Color scheme of FP concentration: red = high, blue = low.

> ¹M. Stan, J. Nucl. Eng. Technology, **41** (2009) 39-52. ²S.Y. Hu et al., J. Nucl. Mater. **392** (2009) 292–300. ³I. Zacharie *et. al.*, J. Nucl. Mater. **255** (1998), 92-¹04.

Thermal Conductivity of UO₂ by Molecular Dynamics

Thermal conductivity of UO₂ calculated by EMD with various potentials. Good agreement with experiment above 1000K.

Comparison of thermal conductivity calculated by EMD and NEMD methods using the Basak potential.

Accuracy of Interatomic Potentials – Ab Initio MD

The Iterative Potential Refinement (IPR) potential of UO₂ makes excellent predictions of both phonons and defect energetics

Schottky defect formation energies and uncertainty

Computational Microscopy: zoom in and out

Bridging scales expands the investigation time and space domains.

- Lower scales help improve the understanding of underlying mechanisms.
- Higher scales help improve the prediction of global properties.

ZOOM - a multi-scale computational microscope (ANL-Univ. of Chicago) Contact mstan@uchicago.edu

M. Stan, in Characterization of Materials, John Wiley & Sons, 2012. 12

Summary

Evaluating uncertainty improves

- Understanding identifying the key physics
- Prediction qualitative is important!
- Control optimizing properties, materials design

Uncertainty is not only a calculation output; it provides feedback to establish the necessary accuracy of measurements and simulations

Ideas for collaboration

- Quantify uncertainty of 2-D and 3-D exp/comp images
- Evaluate uncertainty propagation across time and length scales, e.g. phase stability, phase transformations
- Use machine learning for UQ, big data
- Write position paper titled "Sometimes UQ Matters"