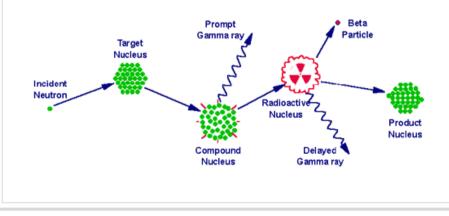
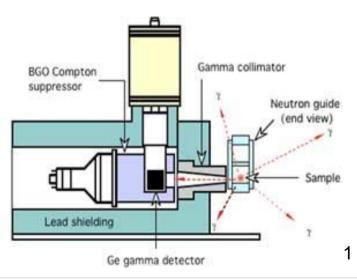
# OpenAGS: an Online Analysis Program for Prompt & Delayed Gamma Activation Spectra


## Christopher Stallard Mentor: Dr. Heather Chen-Mayer




## Why PGAA?

Detecting boron at concentrations ~10ppb

- Only method with this level of precision for boron
- Detecting chlorine within concrete
  - Can pose failure risks even at small conc.
- So how does it work?

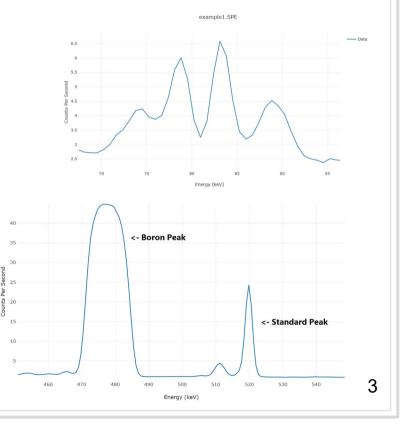




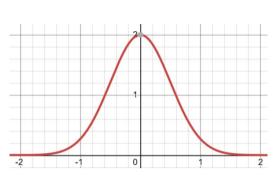
#### Data Analysis for PGAA

- Peak area is directly related to elemental mass
- Calculate a sensitivity value using a known mass (Counts per Second / mg)
- Use this sensitivity to determine an unknown mass based on area of new peak

#### Example:

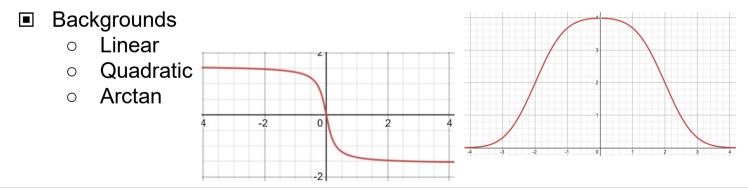

- Irradiate 100mg of Calcium-41
- $\circ$  Find peak area, say 10 cps
- Sensitivity = .1 cps/mg.
- Irradiate unknown sample
- $\circ$  Find peak area, say 15cps
- 15cps/(.1 cps/mg) = 150 mg
- Create Sensitivity Table

|    | Α       | В            | С           | D        |
|----|---------|--------------|-------------|----------|
| 1  | Isotope | Energy (keV) | Sensitivity | (cps/mg) |
| 2  | Yb-175  | 41.218       | 1.2907      |          |
| 3  | As-76   | 44.425       | 1.702192    |          |
| 4  | Eu-152  | 48.31        | 301.5848    |          |
| 5  | Rh-104  | 51.5         | 42.12355    |          |
| 6  | I-128   | 58.11        | 0.662855    |          |
| 7  | Re-186  | 59.01        | 8.974821    |          |
| 8  | Sb-122  | 61.413       | 1.924258    |          |
| 9  | Re-188  | 63.582       | 13.71547    |          |
| 10 | Tb-160  | 63.686       | 2.935628    |          |
| 11 | Th-233  | 63.81        | 14.76416    |          |
| 12 | Tb-160  | 64.11        | 2.424496    |          |
| 12 | \\/ 107 | 72 002       | 2 122223    |          |


#### **Complexities with Data Analysis**

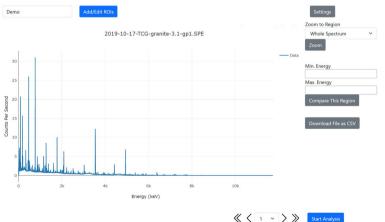
The Boron Peak

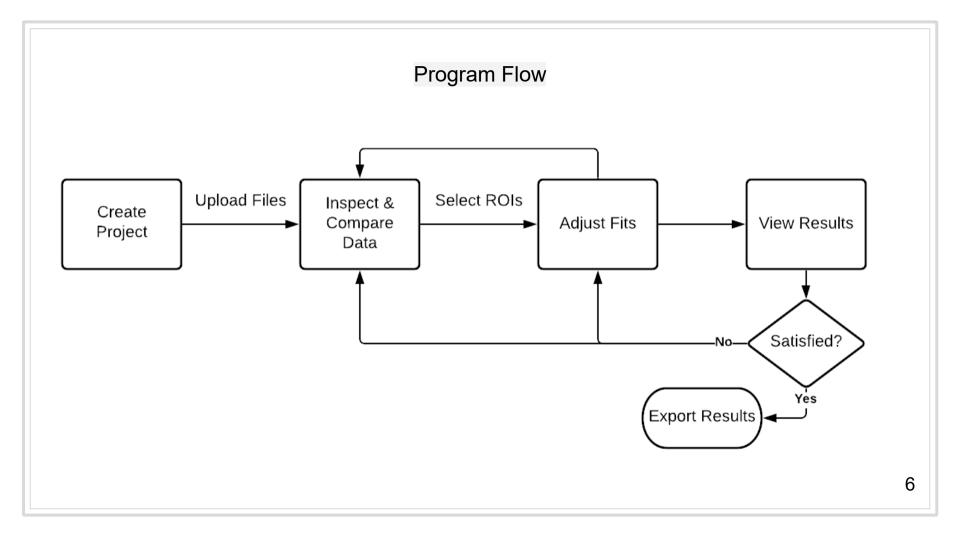
- Different decay path
- $\circ \quad \text{B-10} + n \rightarrow \text{B-11}^* \rightarrow \text{Li-7}^* + a$
- $\circ \quad \text{Li-7*} \rightarrow \text{Li-7} + \gamma$
- No analytical solution
- Overlapping Peaks
- Low SNR
- Compton Scattering
  - Background must compensate

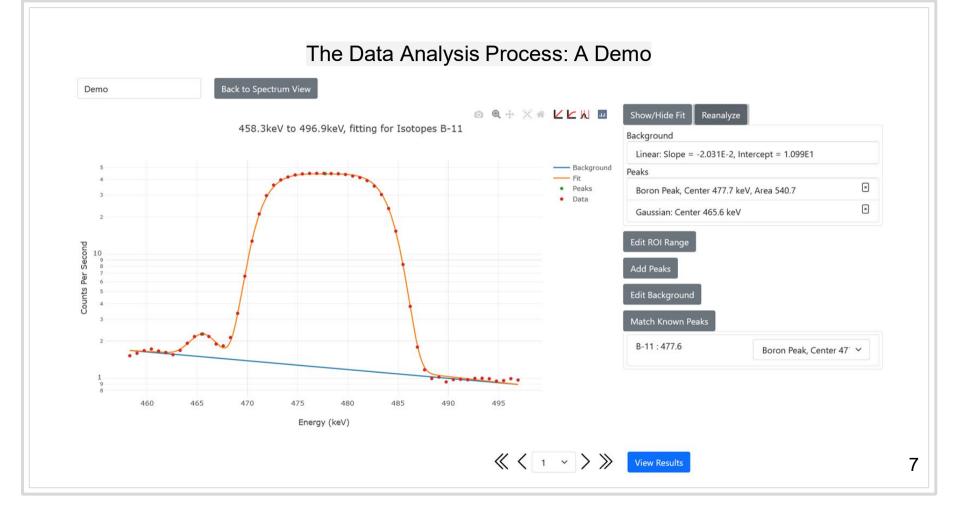



#### **Model Function Choices**




4


- Peaks
  - Simple Gaussian
  - Complex Gaussian-like model (accounts for charge carrier build-up)
  - Boron peak approximation (difference of 2 error functions)
  - Physical Boron peak model (requires numerical convolution)

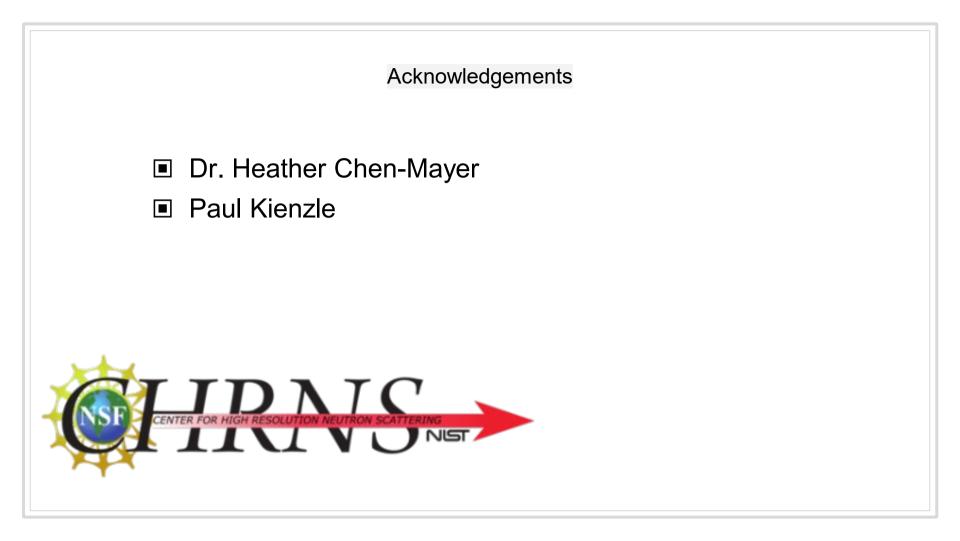



### My Approach

- Nonlinear least squares (LM) fitting
- User chooses peak/background models to use
  - This lets them balance # of fitter params and physical accuracy of models
- User then selects regions to fit
- Program finds and fits peaks
- User adjusts fit
- Program outputs results
  - $\circ$  .xlsx and .csv formats








#### Comparison to Existing Solution

| Program  | Availability                           | Peak Fitting                                  | ROI Editing                                              | Batch Processing | Collaborative                           |
|----------|----------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------|-----------------------------------------|
| OpenAGS  | Free & Open-Source                     | Fit with multiple peaks,<br>user chooses type | Simultaneous, can<br>manually adjust region<br>and peaks | Yes              | Yes (link sharing)                      |
| PeakEasy | Proprietary, only available to US Gov. | Predetermined fit with<br>1-2 Gaussians       | Silmultaneous, can<br>manually adjust region             | Yes              | Files must be emailed<br>back and forth |

Both programs support reading proprietary spectrum file formats

Both also support several output formats (including CSV)



# Questions?

#### References

- Paul, R. L., & Lindstrom, R. M. (2000). Prompt Gamma-Ray Activation Analysis: Fundamentals and Applications. Journal of Radioanalytical and Nuclear Chemistry, 243(1), 181–189. https://doi.org/10.1023/a:1006796003933
- Szentmiklósi, L., Gméling, K., & Révay, Z. (2007). Fitting the Boron peak and resolving interferences in the 450–490 KEV region Of PGAA spectra. Journal of Radioanalytical and Nuclear Chemistry, 271(2), 447–453. https://doi.org/10.1007/s10967-007-0229-7
- https://www.nist.gov/laboratories/tools-instruments/prompt-gamma-ray-activationanalysis-pgaa
- https://www.nist.gov/laboratories/tools-instruments/instrumental-neutron-activationanalysis-inaa
- https://numpy.org/
- https://www.scipy.org/
- <u>https://pgjones.gitlab.io/quart/</u>
- https://github.com/wojdyr/xylib