OpenAGS: an Analysis Program for Prompt Gamma Activation Spectra

Christopher Stallard - Poolesville High School Mentor: Heather Chen-Mayer

How PGAA Works

- The sample in question is irradiated using a neutron beam
- Sample nuclei become excited
- Nuclei emit gamma rays upon de-excitation
- The energy of these gamma rays depends on the specific element that produced them
- Several advantages over traditional INAA
- Detects a few specific elements (B, Cd, Sm, Gd) at 10-100 ppb, many others at 1-10 ppm

Project Goals

Current Workflow for PGAA Data Analysis:

Project Goals

Planned Workflow:

Finding Elemental Mass from Data

- Plot counts per second as a function of energy
- Look for peaks at predetermined locations
- Find area under peak (A)
- Sensitivities (S) have already been determined by irradiating a known amount of the target element (S = A/mass)
- Mass = A/S
- So given a peak with area 20 cps and sensitivity 2 cps/mg, we can determine that there are 10 mg of the associated element in the sample

Finding the True Area of Peaks

- Overlapping Peaks
- Background Noise
- Peaks not in predictions library
- Solution: Nonlinear Least-Squares Fitting

Gaussian Peaks and why they Matter

- Like Normal distributions, but area underneath can be any value
- Caused by detector response to gamma rays at a single frequency (the center)
- Overall equation to model multiple peaks

 $ae^{-rac{(x-b)^2}{2c^2}}$

My Approach to the Problem

- Find local maxima
- Guess initial parameters for Gaussians
- Guess the equation of a line that models background data
- Use a curve fitter (scipy.curve_fit) to optimize my guesses
- Match peaks to isotopes
- Divide by sensitivity, and output the mass

Live Demo

Comparison With Existing Solution

Software	Integration	Proprietary Software	Time for Setup	Batch Processing	ROI Editing	Peak Fitting
	3 steps, several	PeakEasy, closed source and				
	intermediate	only available to US			Simultaneous, can manually	Predetermined fit with
Existing Solution (R Code and PeakEasy)	files	Government	10-30min	Yes	adjust region	1-2 Gaussians
					Sequential, can manually	
					adjust region and	Fits multiple Gaussians
OpenAGS	1 step	None	Comparable	Yes	add/remove Gaussians	and background line

Future Work

- Present more data to the user during the analysis process
- Fit Doppler-Broadened Gaussians like the B-11 peak
- Add support for more complex functions to model the Detector Response
- Add a feature which allows the user to calculate sensitivities from spectra created by irradiating known masses

Questions?