Ligand Dynamics in Metal-Organic Frameworks

Wei Zhou, Nick Butch, Craig Brown

CHRNS Summer School 2023

Outline

- Metal-organic frameworks (MOFs)
 - What are MOFs
 - Why ligand dynamics matter
- Mn[N(CN)₂]₂.pyrazine
 - Physical Properties
 - Review data from other techniques
 - Compare behaviour with related compounds
- SIFSIX-1-Cu
- Categories of experiments performed on DCS

Porous adsorbents

- Porous Carbon / Activated Carbon
- Zeolites

("crystal sponge")

• Metal-organic frameworks (MOFs) (also called "coordination polymer")

* MOF-5, O. M. Yaghi *et al.*, *Nature* 402, 276 (1999).

Porous MOFs

- Well-defined structures: well-defined pore geometry
- Versatile chemistry: various metal clusters and numerous organic linkers possible
- Tunable pore size & functionality
- Structural flexibility
- Many promising gas-adsorption related applications: gas storage and separation etc.

* IRMOF-n, O. M. Yaghi *et al.*, *Science* 295, 469 (2002).

Why ligand dynamics matter

- The atoms in a crystal are NOT static.
- Ligand dynamics influence the gas adsorption.

e.g., The linkers in ZIF-8 aid in the diffusion of surprisingly large guest molecules through the otherwise small micropores, by swinging, or partially rotating.

* Gate-opening effect in ZIF-8, A. J. Ramirez-Cuesta and J. Silvestre-Albero *et al.*, *Chem. Commun*. 52, 3639 (2016). A. Gonzalez-Nelson et al., *Nanomaterials*, 9, 330 (2019).

Common techniques used

- Various techniques can be used to probe the ligand dynamics of MOFs:
 - NMR
 - IR/Raman scattering
 - Neutron scattering
 - DFT lattice dynamic calculation, MD simulation

- ...

Mn[N(CN)₂]₂.pyrazine

• In this MOF, the rotational dynamics of pyrazine is relatively simple, making it a good example to learn how to use neutron scattering to study dynamics of a material.

Pyrazine

Interactions

Structure and dynamics

- Deuterated sample for coherent Bragg diffraction to obtain structure as a function of temperature
- Protonated to observe both single particle motion (quasielastic) and to weigh the inelastic scattering spectrum in favor of hydrogen (vibrations)
 - Deuteration can help to *assign* particular vibrational modes and provide a '*correction*' to the quasielastic data for the paramagnetic scattering of manganese and coherent quasielastic scattering.

Magnetic Structure

One of the interpenetrating lattices shown. *a* is up, *b* across, *c* into page
Magnetic cell is (½, 0, ½) superstructure
Exchange along Mn-pyz-Mn chain 40x

J. L. Manson *et. al* J. Am. Chem. Soc. 2000

J. Magn. Mag. Mats. 2003

$Mn[N(CN)_2]_2$.pyrazine

Weight Loss (%)

- **1.3 K** 3-D antiferromagnetic order below ~2.5 K
 - Magnetic moments aligned along a (4.2 $\mu_{\rm B}$)
 - Monoclinic lattice (*a*=7.3 Å, *b*=16.7 Å, *c*=8.8 Å)

~200 K

- Phase transition to orthorhombic structure
- Large Debye-Waller factor on dicyanamide ligand
- Diffuse scattering

408 K

- Phase transition
 - Large Debye-Waller factors on pyrazine

~435 K• Decomposes and loses pyrazine.

As a function of Temperature

The other compounds

AIMS

- Experience Practical QENS
 - sample thoice

•

•

•

- geometry consideration
- Learn something about the instrument
 - Wavelength / Resolution / Intensity
- Data Reduction
 - Data Analysis and Interpretation
 - instrument resolution function and fitting
 - extract EISF and linewidth
 - spatial and temporal information

Rotational potential curve

The Measured Scattering

Quasielastic Scattering

- The intensity of the scattered neutron is broadly distributed about zero energy transfer to the sample
- Lineshape is often Lorentzian-like
- Arises from atomic motion that is
 - Diffusive
 - Reorientational
- The instrumental resolution determines the timescales observable
- The *Q*-range determines the spatial properties that are observable
- (The complexity of the motion(s) can make interpretation difficult)

Types of Experiments

- Translational and rotational diffusion processes, where scattering experiments provide information about time scales, length scales and geometrical constraints; the ability to access a wide range of wave vector transfers, with good energy resolution, is key to the success of such investigations
- Low energy vibrational and magnetic excitations and densities of states
- Tunneling phenomena
- **Chemistry** --- e.g. clathrates, molecular crystals, fullerenes, MOFs
- **Polymers** ---- bound polymers, glass phenomenon, confinement effects
- **Biological systems** --- protein folding, protein preservation, water dynamics in membranes
- **Physics** --- magnetic systems, adsorbate dynamics in mesoporous systems (zeolites and clays) and in confined geometries, metal-hydrogen systems, glasses
- **Materials** --- negative thermal expansion materials, low conductivity materials, hydration of cement, carbon nanotubes, proton conductors, metal hydrides, hydrogen diffusion, CH₄ dynamics....