
Using the Unravel Program Slicing Tool to Evaluate High Integrity

Software

James R. Lyle
jlyle@nist.gov
(301) 975-3270

Dolores R. Wallace
dwallace@nist.gov
(301) 975-3340

Technology Administration
National Institute of Standards and Technology

Information Technology Laboratory
Gaithersburg, MD 20899

ABSTRACT

This paper describes a program slicing tool, unravel,
that can assist in the evaluation of high integrity soft-
ware by using program slices to extract a single compu-
tation from a program for examination and test. The
tool, available through the National Institute of Stan-
dards and Technology, can currently be used to evaluate
software written in ANSI C and is designed such that
other languages can be added.

I. INTRODUCTION

High integrity software systems are often used in envi-
ronments where a lack of response can cause an accident
or result in severe �nancial loss due to an operational fail-
ure. Detecting a fault in the code is di�cult and costly.
This paper describes a program slicing tool, unravel,
that can assist in the evaluation of high integrity software
by using program slices to extract a single computation
for examination and test. The tool, available through the
National Institute of Standards and Technology[6], can
currently be used to evaluate software written in ANSI
C and is designed such that capability for slicing other
languages can be added (we are currently considering
FORTRAN, C++ and Java).
Program slicing is a static analysis technique that ex-

tracts all statements relevant to the computation of a
given variable. This is accomplished by using data-
ow
analysis [4] to analyze the program source code without
the need to actually execute the program. Application of
program slicing to the evaluation of high integrity soft-
ware reduces the e�ort of examining software by allowing
a reviewer to focus attention on one computation at a
time. Program slicing can be used to identify the code
associated with some key variable. The process for iden-

tifying the code is independent of the requirements and
speci�cations for the code. Since the slice identi�es all
code and variables associated with a variable, test cases
may be structured for the speci�c variable. Analysis of
the code within the slice helps to de�ne test requirements
needed to evaluate the code.

By combining program slices using logical set oper-
ations (e.g., union or intersection), unravel can iden-
tify code that is common to each slice. Analysis and
evaluation of the code common to each slice by a re-
viewer is important because it provides a measure of the
independence and degree of isolation between di�erent
computations. This information is useful since a failure
involving this code may lead to a malfunction of more
than one logical program component. Manual exami-
nation of a program is often a slow, tedious, error-prone
process. With unravel, once two di�erent computations
have been identi�ed, program slices can be identi�ed to
�nd statements relevant to each computation. A fault
in any source program statements common to two slices
has the potential to cause common mode failure. Re-
view and the careful test of the common code within the
two slices is critical to the assurance of high integrity
software.

II. A PROGRAM SLICING TOOL

Program slicing, an application of data-
ow analysis[4],
can be used to transform a large program into a smaller
one containing only those statements relevant to the
computation of a given variable. Program slices have
been shown to aid testing[2], debugging[5], program
maintenance[1], program understanding[7], and auto-
matic integration of program variants[3].

A Program Slice is de�ned as follows:

1



Figure 1: Slice on Output 1

Given a syntactically correct source program P, in some
programming language, and a slicing criterion C =<
L; V >. Where L is a location in the program and V is
a variable in the program. S is a slice of program P for
criterion C if

(1) S is derived from P by deleting statements from P,

(2) S is syntactically correct, and

(3) for all executions of P and S, in any given execution
of P and of S with the same inputs, the value of V
in the execution of slice S just before control reaches
location L is the same as the value of V in program
P just before control reaches location L.

The function of the slicing criterion is to specify the pro-
gram variable that is of interest along with a location in
the program where the value of the variable is desired.
The program slicing tool, unravel, constructs pro-

gram slices from the control structure of the program
and the pattern of assignment and reference to variables
by backward chaining from the slicing criterion to the
beginning of the program. Figure 1 shows the unravel
output for a short program of three inputs and three
outputs with a slice on output1 highlighted.
The following de�nitions are helpful in understanding

how program slices are constructed.

Defs(n): The set of variables de�ned (assigned to) at
statement n.

Refs(n): The set of variables referenced at statement
n.

Req(n): A set of statements that is included in a slice
along with statement n. The set is used to spec-
ify control statements (e.g., if or while) enclosing
statement n or other characters that are syntacti-
cally part of statement n but are not contiguous
with the main group of characters comprising the
statement.

An algorithm for constructing program slices must lo-
cate all statements relevant to a given slicing criterion.
The essence of a slicing algorithm is the following: start-
ing with the statement speci�ed in the slicing criterion,
include each predecessor statement that assigns a value
to any variable in the slicing criterion, generate a new
slicing criterion for the predecessor by deleting the as-
signed variables from the original slicing criterion, and
add any variables referenced by the predecessor. The
unravel slicing algorithm considers the following issues:

1 Assignment statements (expression statements in C)
2 Compound control statements
3 Declared structures
4 Pointers
5 Dynamic structures
6 References to structure members by pointer
7 Assignment to structure members by pointer
8 Procedure calls

Only assignment and compound control statements
are discussed in this paper.
For expression statement n, a predecessor of statement

m, the defs(n) set and the slicing criterion determines if
an expression statement is included in a slice.

S<m;v> =

�
S<n;v> if v 62 defs(n)
fng [ S<n;x>8x 2 refs(n) otherwise

For example, to use the above rule for slicing on assign-
ment statements to determine the value of y at line 15 of
the program in Figure 2 the criterion would be < 15; y >.
The rule for assignment statements yields one of two re-
sults based on whether y is assigned a value or not at line
14 (the predecessor of 15). Since y is assigned a value at
line 14 the second part of the rule would be used so that
line 14 is included in the slice and new slicing criteria
are generated for any variables that y depends on at line
14. In this case, the criterion < 14; a > would be gener-
ated and the slice on that criterion would be a subset of
the slice < 15; y >. To construct the slice on < 14; a >
the �rst part of the rule is used, since a is not assigned
a value at line 13. The generated criterion is < 13; a >
which again generates a criterion without adding a state-
ment to the slice. This would continue until line 8 was

2



Figure 2: Slice on Output 2

added into the slice by the criterion < 9; a >. Construct-
ing the slice on output2 at line 21 presented in Figure
2 generates the criterion < 15; y > as an intermediate
step in the construction of the slice on < 21; output2 >.
A compound control statement is a statement that

has a condition directly controlling the execution of an-
other statement (possibly a compound statement). Sim-
ple compound statements (a list of statements enclosed
in braces) and procedure de�nitions (a procedure header
and braces to enclose the procedure statements) are
treated like compound control statements with no condi-
tion. Control statements such as if, switch, while, for
and do : : :while should be included in a program slice
whenever any statement governed by the control state-
ment is included in a slice. When control statement n
is added to a program slice, the slice on the criterion
< n; refs(n) > is added to the original slice. For each
statement, n, associate a set, req(n), of statements that
are required to be included in any slice containing state-
ment n. The slicing rule for v 2 defs(n) becomes:

S<m;v> = fng
S�S

x2refs(n) S<n;x>

�S
�S

y2refs(k)

S
k2req(n) S<k;y>

�

The result of the revised rule is to include the set of
required statements for statement n, req(n), whenever
statement n is included in a slice. In the program in
Figure 1 statements on lines 7-21 require lines 1, 2 and

22 to capture the enclosing procedure de�nition and en-
closing braces.
From unions and intersections of slices, a slice-based

model of program structure can be built that has ap-
plications to program understanding tasks, such as soft-
ware reviewing. Figure 3 illustrates how slices can be
used to quickly examine a program's structure. The ini-
tial view of an unfamiliar program, left part of Figure
3, usually contains some inputs, some outputs, and a
shapeless mass of code with unknown connections among
inputs and outputs. After constructing a slice on some
variable, the program is partitioned into two parts, state-
ments relevant to the computation of the slice variable,
and statements not relevant to the computation of the
slice variable. The middle part of Figure 3 represents
what is known about the program after constructing a
slice on Output3. To answer questions about the com-
putation of Output3, the slice on Output3 (shaded re-
gion labeled �), should be examined and the statements
not in the slice (unshaded region !) can be ignored.
Program slices can be combined with logical set op-

erations to explore dependencies between two computa-
tions. The right part of Figure 3 shows how program
slices can further re�ne knowledge about the program.
The intersection of slices onOutput1 and Output2, la-
beled �, contains statements relevant to both variables.
A single bug could cause both outputs to be incorrect. In
a debugging task, if a programmer suspects that a single
bug is causing both outputs to be incorrect, then the in-
tersection of slices should be examined. However, if the
programmer has some con�dence that one output is cor-
rectly computed, then a bug is more likely to be found
among the statements not in the intersection of slices.
For example, if Output1 fails some set of test data but
Output2 appears to be correct, then the programmer
should look for the error among the statements unique
to Output1 (shaded region labeled �1 in Figure 3).

III. USING UNRAVEL

Unravel is useful in assisting a designer or reviewer in
planning assurance activities as well as the analysis of
software.
To verify code with respect to the speci�cations for

the software, compute a slice and then compare the slice
to the speci�cation. For example, after constructing a
program slice on output3 it is trivial to verify from the
unravel output in Figure 4 that output3 depends on
input2 and input3 and does not depend on input1.
The program requirements for output3 can be quickly
examined and compared to the slice. If the requirements
indicate that input1 should be relevant to output3
then an error is clearly present. In a similar fashion, if
the requirements indicate that either input2 or input3

3



ρ2ρ1

β ωω σ

Output 3Output 2Output 1

Input 3

Input 2Input 1

Output 2Output 1

Input 3

Input 2Input 1

Output 3 Output 2Output 1

Input 3

Input 2Input 1

Output 3

Initial View After Slice on Output 3 Relations Between Two Slices

Figure 3: Slice Based Model of Program Structure

have no relation to output3 then a closer examination
of the slice and requirements is called for. There may
be an error or it may be that there is a subtle relation-
ship among the inputs that was not recognized by the
requirements writer.
Another type of functional analysis is the evaluation

of the independence and isolation between two computa-
tions. This feature of unravel allows a reviewer to evalu-
ate if common software exists (and potential for common
failure) between two computations. The ideal situation
is to have no common software shared by critical compu-
tations. However, if common software is shared by criti-
cal computations, then this software must be thoroughly
analyzed and tested to ensure no faults exist within it.
Figure 5 shows the unravel output for the intersection

of slices on output1 (Figure 1) and output2 (Figure 2).
Figure 6 shows the unravel output for the code in the
slice of output1 that is not shared with the computa-
tion of output2. By automatically locating statements
shared between two computations or code unique to a
single computation, the task of evaluating the interac-
tion between the functions implemented by the compu-
tations is simpli�ed.

IV. EMPIRICAL EVALUATION OF UNRAVEL

Unravel was initially evaluated[6] by a software re-
viewer in the context of reviewing safety system software
for quality. This preliminary evaluation considered the

Figure 4: Slice on Output 3

4



Figure 5: Intersection of Slices on Output 1 and Out-
put 2

Figure 6: Statements Unique to Output 1

size of slices produced, time to compute slices, and us-
ability by a novice user. This should not be considered a
complete evaluation, but rather a demonstration of the
potential of the tool, to be con�rmed by further use.
The objectives of the evaluation were to determine the

following:

(1) Are program slices smaller than the original pro-
gram to an extent that is useful to a software re-
viewer evaluating a program?

(2) Can program slices be computed quickly enough to
be useful in a review?

(3) Is unravel usable by a novice user?

An example of typical high integrity system code was
used to test and re�ne unravel. Demonstration of un-
ravel using this and other examples were given to the
software reviewer. The reviewer provided useful sugges-
tions that resulted in improvements to the user interface
and in the identi�cation of features to be explained in
more depth in a user manual or to be included in a later
version of unravel.
The safety system example (1200 lines) came in three

versions. One version was written to conform to avoid
common code between separate critical computations
while the other two were deliberately seeded with com-
mon code. Unravel was able to verify and display the
presence of the common code in the seeded versions and
show the absence of common code in the diverse version.
The reviewer directed unravel to compute slices for

both safety and nonsafety related process variables. The
reviewer was able to identify several unanticipated con-
nections between subsystems. The following observa-
tions by the reviewer are relevant to the evaluation of
unravel:

(1) Use of unravel in a review should signi�cantly en-
hance the ability to extract a given computation for
analysis.

(2) Unravel is easy to operate for a person with com-
puter skills.

(3) Unravel can disclose subtle relationships between
safety related and nonsafety related code that would
require a C expert to discover.

(4) The majority of the slices (90 percent for this ex-
ample) were less than 25 percent of the size of the
original program. The user of unravel can expect
to eliminate a signi�cant portion of code from con-
sideration when using program slicing to extract a
given computation for examination.

(5) Requested slices were computed in less than one
minute.

5



V. CURRENT WORK

We are currently developing several enhancements to
unravel. These include the following:

Interface: Cosmetic changes to the user interface to
make source navigation and slicing criterion spec-
i�cation easier.

C Dialects: Some compiler writers extend ANSI C in
ways that make it di�cult to write general code
analysis tools. Some examples from our experience
with unravel are the following:

� New keywords, e.g., near, far, near, used
as data (declaration) attributes. Usually such
keywords could be ignored for computing a
program slice.

� New keywords that de�ne new data types, e.g.,
bit, complex. These keywords cannot be ig-
nored but, they can be replaced with another
keyword that unravel recognizes as a type
name.

� New syntax cannot in general be recognized.
The unravel parser is being modi�ed to allow
extended syntax that we have encountered.

� One compiler writer decided to extend the C
preprocessor to allow the keyword sizeof even
though the ANSI standard forbids the exten-
sion, thus making code using this feature dif-
�cult to examine by a software analysis tool
without manual replacement of preprocessor
statements using sizeof. This impacts un-
ravel because we want to allow unravel to
be run on a system other than the system con-
taining the development environment but, we
wanted to avoid writing our own version of
cpp. The practical resolution is to use the na-
tive cpp of the development environment be-
fore taking the source code to the system run-
ning unravel for analysis.

The solution to recognizing extended keywords is in
two parts.

1. Add a run time switch that toggles recognition
of common extended keywords.

2. Add a con�guration �le that contains a list of
keywords paired with a (possibly null) substi-
tution.

This takes care of the common extensions and al-
lows the unravel user to handle unexpected key-
word extensions that have no impact on data-
ow
semantics.

Libraries: Library or system calls are a mystery to un-
ravel since the source code of the library routine is
not available for analysis. The current approach is
for unravel to guess by assuming that if a value is
passed it is referenced and if an address is passed
then the object is changed. Nothing is assumed
about any global variable. We are designing a sim-
ple scripting language that would allow an unravel
user to prepare summary of variable dependence re-
lationships in the library call among input parame-
ters, output parameters and global variables.

Call Tree: We are adding the ability to unravel for
displaying the slice call tree with an indication of
the parts of each called procedure that are included
in the slice.

VI. FUTURE WORK

Using program slicing in software development and the
analysis of the �nal software product has potential to
increase software quality in several ways that we plan to
explore.
We have studied the feasibility of extending unravel

to C++. There are C++ features that would be di�cult
for unravel to analyze. Many of these are inappropriate
for high integrity code. Unravel can draw attention to
the use of these patterns and features.
It is important to note that C++ is a much larger lan-

guage than C. The major addition to C provided by C++
is the notion of classes, which provide data hiding, guar-
anteed initialization, user de�ned conversions, dynamic
binding (through virtual functions) and multiple inher-
itance. Other signi�cant additions include strong type
checking, function name overloading, operator overload-
ing, function inlining, constant data objects and mem-
ber functions, a reference type, heap operators new and
delete, declarations occurring anywhere in a block, tem-
plates, and exception handling. These features and their
interactions pose new challenges for unravel. At the
same time, features such as C++'s strong typing will al-
low unravel to produce more accurate slices. Extending
unravel to analyze C++ programs will require substan-
tial e�ort.
The following features of C++ present potential di�-

culties in any analysis of the kind performed by unravel.
\Being hard to analyze" indicates that these features are
hard to understand, which in turn indicates that they
should be avoided in high integrity programs. The last
two, unions and varargs, exist in C.

exceptions Exceptions provide an error handling tech-
nique or alternatively another control 
ow struc-
ture. Exceptions are di�cult to analyze because
they represent non-local (often interprocedural)

6



control transfers (gotos). Besides being di�cult for
unravel to analyze, exceptions are new to C++.
Their implementation and semantics represent a
moving target, not suitable for high integrity code.

pointers to members A pointer to a class member
when combined with an object of the class yields a
class member. Like pointers to functions, pointers
to class members signi�cantly complicate the data-

ow analysis that unravel must perform.

templates A template provides a generic declaration
(of a function or class) that includes a type parame-
ter. By supplying a concrete type for this parameter
a concrete declaration is formed. Analyzing tem-
plates would add signi�cantly to the complexity of
unravel.

unions A union, where two or more �elds share the
same memory, must have a tag �eld to discriminate
through which �eld the shared memory should be
accessed. Unions are taken from C; consequently,
like C, C++ provides no checking of union access
�elds and the present values of the tags. This pre-
vents unravel from correctly knowing which �eld
may be accessed.

varargs Varargs allows a function to have an undeter-
mined number of arguments having undetermined
type. It is very di�cult to track the data-
ow
through such calls to such functions.

VII. CONCLUSIONS

Unravel is a tool to assist a designer or reviewer to
understand software. While the initial evaluation of un-
ravel considered only a single reviewer applying the tool
on one program, the results suggest that further use may
con�rm that unravel is a powerful tool for assurance ac-
tivities of high integrity software.

VIII. OBTAINING UNRAVEL

Additional information about unravel can be found on
the unravel World Wide Web home page:
http://hissa.ncsl.nist.gov/unravel

Unravel can be obtained by anonymous ftp from:
hissa.ncsl.nist.gov

References

[1] K. B. Gallagher and J. R. Lyle. Using program slic-
ing in software maintenance. IEEE Transactions on
Software Engineering, 17(8):751{761, August 1991.

[2] M. Harman and S. Danicic. Using program slicing to
simplify testing. Software Testing, Veri�cation and
Reliability, 5:143{162, September 1995.

[3] S. Horwitz, J. Prins, and T. Reps. Integrating non-
interfering versions of programs. ACM Transactions
on Programming Languages and Systems, 11(3):345{
387, July 1989.

[4] K. Kennedy. A survey of data 
ow analysis tech-
niques. In Steven S. Muchnick and Neil D. Jones,
editors, Program Flow Analysis: Theory and Appli-
cations. Prentice-Hall, Englewood Cli�s, New Jersey,
1981.

[5] J. R. Lyle and M. D. Weiser. Experiments in Slicing-
Based Debugging Aids. In Empirical Studies of Pro-
grammers, Elliot Soloway and Sitharama Iyengar,
eds. Ablex Publishing Corporation, Norwood, New
Jersey, 1986.

[6] J.R. Lyle, D.R. Wallace, J.R. Graham, K.B. Gal-
lagher, J.P. Poole, and D.W. Binkley. A case tool to
evaluate functional diversity in high integrity soft-
ware. Technical Report NISTIR 5691, U.S. Depart-
ment of Commerce, Technology Administration, Na-
tional Institute of Standards and Technology, Com-
puter Systems Laboratory, Gaithersburg, MD, 1995.

[7] M. Weiser. Programmers use slicing when debugging.
CACM, 25(7):446{452, July 1982.

7


