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ABSTRACT

We examine the utility of the lattice Boltzmann method for modeling fluid flow in large microstructures. First,
results of permeability calculations are compared to predicted values for several idealized geometries. Large scale
simulations of fluid flow through digitized images of Fontainebleau sandstone, generated by X-ray microtomography,
were then carried out. Reasonably good agreement was found when compared to experimentally determined values
of permeability for similar rocks. We also calculate relative permeability curves as a function of fluid saturation and
driving force. The Onsager relation, which equates off-diagonal components of the permeability tensor for two phase
flow, is shown not to hold for intermediate to low nonwetting saturation, since the response of the fluid flow to an
applied body force was nonlinear. Values of permeability from three phase flows are compared to corresponding two
phase values. Performance on several computing platforms is given.
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1. INTRODUCTION

The lattice Boltzmann (LB) method has evolved into a powerful computational method for the modeling of fluid
flow in complex geometries like porous media. It naturally accommodates a variety of boundary conditions such
as the pressure drop across the interface between two fluids and wetting effects at a fluid-solid interface. Since
the LB method can be derived from the Boltzmann equation, its physical underpinnings can be understood from
a fundamental point of view. In addition, the LB method generally needs nearest neighbor information at most
so that it is ideally suited for parallel computers. While LB methods are developing rapidly in response to recent
theoretical advances and the availability of resources for large scale computation, there is still a lack of critical
comparisons between experimental results and simulation. Such comparisons are crucial, not only to validate LB
methods, but to further their development. In this paper we examine the utility of the Shan and Chen' model of
multicomponent fluids for describing large scale flow in complex geometries. This model has been adapted to three
dimensions and extended to include fluid-solid interactions and applied forces.? After a brief review of the theory
of the LB method, results are presented to validate predictions of fluid flow through a few simple pore geometries.
Large scale simulations of fluid flow through a Fontainebleau sandstone microstructure, which was generated by
X-ray microtomography, will then be presented. Single phase flow calculations were carried out on 510 systems.
We also calculate relative permeability curves as a function of fluid saturation and driving force. The Onsager
relation, which equates off-diagonal components of the permeability tensor for two phase flow, is found not to hold
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for intermediate to low nonwetting saturation as the flow response to an applied body force was nonlinear. Values of
relative permeability from three phase flows were compared to corresponding two phase values. Finally, a comparison
of the performance of such codes on different computing platforms is given.

2. LATTICE BOLTZMANN MODEL WITH FLUID PHASE SEPARATION

The LB method of modeling fluid dynamics is actually a family® of models with varying degrees of faithfulness to
the properties of real liquids. These methods are currently in a state of evolution as the models become better
understood and corrected for various deficiencies. In this paper we utilize a version of LB proposed by Shan and
Chen!-? that is particularly simple in form and adaptable to complex flow conditions like the presence of solid-fluid
and fluid-fluid boundaries.

The approach of LB is to consider a typical volume element of fluid to be composed of a collection of particles
that are represented in terms of a particle velocity distribution function at each point in space. The particle velocity
distribution, ni(x,t), is the number density of particles at node x, time ¢, and velocity, e,, where (a = 1,...,b)
indicates the velocity direction and superscript ¢ labels the fluid component. The time is counted in discrete time
steps, and the fluid particles can collide with each other as they move under applied forces.

For this study we use the D3Q19 (3 Dimensional lattice with b = 19)* lattice.? The microscopic velocity, e,,
equals all permutations of (£1,+1,0) for 1 < a < 12, (+1,0,0) for 13 < a < 18, and (0,0,0) for a = 19. The units
of e, are the lattice constant divided by the time step. Macroscopic quantities such as the density, n’(x,t), and
the fluid velocity, u!, of each fluid component, i, are obtained by taking suitable moment sums of ni(x,t). Note
that while the velocity distribution function is defined only over a discrete set of velocities, the actual macroscopic
velocity field of the fluid is continuous.

The time evolution of the particle velocity distribution function satisfies the following LB equation:
na(X + eq,t +1) —ng(x, 1) = A (x, 1), (1)

where ¢ is the collision operator representing the rate of change of the particle distribution due to collisions. The
collision operator is greatly simplified by use of the single time relaxation approximation®-%
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where ni®? (x,t) is the equilibrium distribution at (x,) and 7; is the relaxation time that controls the rate of

approach to equilibrium. The equilibrium distribution can be represented in the following form for particles of each
typeS:
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and where m’ is the molecular mass of the ith component, and t, = 1/36 for 1 < a < 12,t, =1/18 for 13 < a < 18

and t;9 = 1/3 . The free parameter d, can be related to an effective temperature, T, for the system by the following
moment of the equilibrium distribution:
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which results in T'= (1 — d,)/2 (we take units such that the Boltzmann constant ky = 1).

It has been shown that the above formalism leads to a velocity field that is a solution of the Navier-Stokes®
2
equation with the kinematic viscosity, v = %(Ef CiTi — %) where ¢; is the concentration of each component.5



2.1. Interaction Potential

In order to model the phase separation of fluids, an interaction between the fluids is needed to drive them apart.

Here a force, dd—‘f(x), between the two fluids is introduced that effectively perturbs the equilibrium velocity!? for

each fluid so that they have a tendency to phase separate:

) / . dp’
n'(x)v (x) = n*v(x) + Tid—lz(x) (1)
where v’ is the new velocity used in Egs. [3] and [4]. We use a simple interaction that depends on the density of

each fluid, as follows!2:
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with G% = 2G for |e?| = 1;G%, = G for |e?| = v/2; and G%, = 0 for i = i'. G is a constant that controls the strength
of the interaction. Clearly, the forcing term is related to the density gradient of the fluid. It has been shown that
the above forcing term can drive the phase separation process and naturally produce an interfacial surface tension

effect consistent with the Laplace law boundary condition [3].

In this model, phase separation takes place when the mutual diffusivity of the binary mixture becomes negative.
An analytical expression for the mutual diffusivity has been determined in a previous work.® For the case of a
critical composition the condition for the system studied to undergo phase separation is G > 12(n17T+n2)

3. IMPLEMENTATION

The approach to implementation of the algorithm is relatively straightforward. At each active site we hold the
necessary velocity and mass data for each fluid component. Over the course of an iteration we visit each cell in the
data volume and calculate the distribution of each fluid component to be streamed to neighboring cells. New mass
and velocity values are accumulated at each cell as its neighbors make their contributions. The most notable aspects
of the implementation were our tactics for managing the large amounts of memory required by the algorithm, and
the adaptation of the code for use in parallel computing environments.

3.1. Memory Optimizations

Experience with the implementation of related algorithms indicated that the memory required for modeling large
systems would be prohibitive. We therefore looked for ways to conserve and reduce memory usage. There are several
tactics that we used in this implementation:

e Store data only at the active sites.
This is accomplished in the C implementation by representing the medium as a three dimensional array of
pointers. At each active site the pointer references a data structure with the necessary velocity and mass data.
At the inactive sites the pointer is NULL; no additional storage is required at the inactive sites. For a low
porosity medium the memory savings are very large.

e Assume that 7 = 1.
This assumption simplifies evaluation of equations 1-5 such that at each active site we need only store the
density of each fluid component, and a single velocity vector. Without this assumption, we must store all 19
values associated with the velocity distribution, n;, at each site.

e Only one copy of the data volume is stored.
Rather than keeping an entire second data volume in which to accumulate the newly calculated data, we exploit
the fact that the algorithm only uses nearest neighbors at each site. Thus we only need an additional buffer of
three planes of data at any one time.

Assuming that floating point numbers and C pointers each take four bytes, these memory optimizations yield
savings of over 94 % of memory usage in the one component case for systems of useful sizes. The memory savings
are even greater when more fluid components are used or when larger floating point representations are used.



3.2. Parallelization

The amount of computation and memory required for a large system suggested that it would be advantageous to
adapt the implementation so that a single problem could be run in parallel across a collection of processors. The
nearest-neighbor dependence of the algorithm also suggested that parallelization would be straightforward and would
yield substantial benefits. Parallelization enables us to run larger systems by distributing the memory requirements
across many machines, and gives us faster performance by distributing the computation.

We implemented the parallel version of the algorithm using the Message Passing Interface” (MPI). This is an
industry-standard library of routines for coordinating execution and communicating between processes in a paral-
lel computing environment. The parallelization was accomplished within a simple Single Program Multiple Data
(SPMD) model. The data volume is divided into spatially contiguous blocks along the Z axis; multiple copies of
the same program run simultaneously, each operating on its block of data. Each copy of the program runs as an
independent process and typically each process runs on its own processor. At the end of each iteration, data for the
planes that lie on the boundaries between blocks are passed between the appropriate processes and the iteration is
completed. The periodic boundary condition is handled transparently; the process handling the “top” plane of data
volume simply exchanges data with the process handling the “bottom” plane of the data volume.

4. NUMERICAL TESTS

Several numerical tests were carried out to verify our algorithm. Results from two cases, fluid flow between parallel
plates and through an overlapping sphere model, are given below. For both cases we determined the fluid permeability,
k, as defined by Darcy’s law, (7) = —%VP, where (¥) is the average flow rate, VP is the pressure gradient and
i is the fluid viscosity. Figure 1 shows the permeability, in units of the lattice spacing squared, as a function of
the distance between parallel plates. Clearly, there is excellent agreement between the simulation and theoretical
prediction. Surprisingly, very accurate results were obtained even for the case of a one node wide channel. Since
permeability depends on the average flow or net flux rate of fluid, we conclude that the LB method accurately
determines the net flux across a voxel surface, not the velocity at a point. Hence, resolving the actual local flow field
at a point would require more nodes. We next consider the permeability of a simple cubic array of spheres that are
allowed to overlap for large enough radius (i.e. when the solid fraction, ¢, exceeds ¢ ~ .5236). In Fig. 2 we compare
our simulation data with that of Chapman and Higdon,® which is based on the numerical solution of coefficients of
a harmonic expansion that satisfies the Stokes equations. Note that our calculations were performed on a relatively

small 64° system. Again, agreement is very good, especially given that the solid inclusion is a digitized sphere.
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Figure 1. Flow through parallel plates. Figure 2. Flow through spheres centered on a
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5. COMPARISON WITH EXPERIMENTAL DATA

We next determined the permeability of several microtomography-based images of Fontainebleau sandstone. Figure 3
depicts portions of two of these sandstone images. The resolution was 5.72um per lattice spacing and data sets were
5102 voxels. A mirror image boundary condition was applied along directions perpendicular to the applied forcing.
The porous medium was made periodic in the flow direction by creating its mirror image at the inlet. The numerical
calculations were carried out on a 1020 x 510 x 510 system for all but the lowest porosity system. We found that at
the lowest porosity (7.5 %) there were not enough nodes across the pores to produce a reliable flow field. So for this
case the permeability was determined from a 2562 piece of the sandstone image that was mapped to a 5123 image,
and calculations were performed on a 1024 x 512 x 512 system. In addition to requiring sufficient resolution, another
potential source of error is not having precise knowledge of the location of the pore/solid interface. For example,
an error of half a lattice spacing could be significant when modeling flow in narrow channels like that in the low
porosity system. Figure 4 shows the computed permeability compared to experimental data.® Clearly there is good
agreement, especially at the higher porosities.

Figure 3. 64 x 64 portions of the Fontainebleau sandstone media. On the left is the 7.5 % porosity medium, on
the right is the 22 % porosity medium. The solid matrix is made transparent to reveal the pore space (grey shaded

region).
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Figure 4. Measured and modeled permeabilities of Fontainebleau sandstone medium.



6. RELATIVE PERMEABILITY

We next present a sample calculation of the relative permeability for the 22 % porosity Fontainebleau sandstone.
Although there is debate as to the correct formulation of the macroscopic two phase flow equations,!® we use the
following empirical relation to describe the response of a multiphase fluid system to an external driving force:

K K

7 =-—2vp - —vp (9)
M2 M1
K K

¥ =-——2lvp — =22VPp, (10)
231 M2

Here the Kj;; are the components of a permeability tensor and the applied pressure gradient on each fluid com-
ponent VP; is from a simple body force, VP = pg, where g is an acceleration constant. The forcing can be applied
to each phase separately allowing determination of the off-diagonal terms in the permeability tensor. The viscosity
; is the same for both fluids. Relative permeability data is usually presented in terms of constant capillary number,
C, = *fy—”, where 7y is the interfacial surface tension. For our body force driven fluids, we can define an effective

capillary number, C*, by replacing v with the Darcy velocity so that C} = <2 — k%. Below is a plot of the

relative permeability of the ¢ = 22 % rock for the cases of C* = 7.5 x 10~* and 7.5 x 107°.
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Figure 5. Relative permeabilities of 22 % porosity Fontainebleau sandstone versus wetting fluid saturation, Oy .
The solid and dashed lines correspond to C* = 7.5 x 10~* and C* = 7.5 x 107° respectively. The lower curves
correspond to the off-diagonal elements of the permeability tensor with the * denoting the case where the nonwetting
fluid is driven.

Clearly, as the forcing decreases the relative permeability decreases. Also note that at lower wetting saturation
the relation K152 = K»5; holds fairly well. This is the well known Onsager relation. However, as the wetting phase
increases, this relation appears to break down. In this regime, the nonwetting phase is beginning to form disconnected
blobs that do not respond in a linear fashion to the applied force due to pinning effects as the nonwetting blobs are
pushed through the smaller pores.

The LB code can be easily extended to model three or more fluid components. As a simple test case we considered
a three component system with each component having a pore volume fraction of 1/3. In addition, two phases were
made non-wetting while the third was wetting. A forcing was applied to one of the nonwetting phases. We found,
over the range 7.5 x 10™* < C* < 3.75 x 1073, there was an approximately 30 % to 35 % decrease in flow of the driven
nonwetting fluid as compared to the case where 1/3 fluid was non wetting and 2/3 was wetting. Presumably, this
decrease can be understood as the non-driven nonwetting phase interfering with the flow of the driven nonwetting
phase as the fluids move through narrow channels.



7. PERFORMANCE RESULTS

We ran a series of timing tests in an effort to understand how performance of our implementation scales on different
computer architectures. We have tested on an SGI Onyx with 12 R10000 processors running at 196MHz, an IBM
SP2 with 37 RS/6000 processors, most running at 66MHz. The same code and the same cases were run on the two
systems. The results are presented in Tables 1 and 2. The performance reported was somewhat affected by other
jobs that were running at the same time that the tests were being run, although efforts were made to minimize the
effect.

# # Fluid Components # # Fluid Components
Processors 1 2 3
Processors 1 2 3
1 14.70 24.70 33.27 L 38.48 62.36  99.93
2 19.30 31.32 51.16
2 7.39 12.22 16.69
4 10.44 16.83 26.97
4 3.80 6.23 857
N 214 348 468 8 6.86 10.01 15.54
) ) ) 16 4.37  6.00 8.30
Table 1. Execution times in seconds for Table 2. Execution time in seconds for
one iteration on the SGI Onyx. one iteration on the IBM SP2.

These data closely agree with a very simple model describing performance: T = P/N + S, where T is the total
time for a single iteration, P is the time for the parallelizable computation, S is the time for the non-parallelizable
computation, and N is the number of processors. The parallelizable computation is that portion of the processing
that can be effectively distributed across the processors. The non-parallelizable computation includes processing
that cannot be distributed; this includes time for inter-process communication as well as computation that must be
performed either on a single processor, or must be done identically on all processors.

For example, the two-component fluid performance data for the SGI Onyx, closely match this formula: T =
4.78 4 487.26/N seconds, where N is the number of processors. Similarly, the timings for the two component runs
on the IBM SP2 closely match: T = 41.67 + 1198.45/N seconds. Formulae for the other cases are easily derived.
Figures 6 and 7 present these results graphically.
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Much of the difference between the performance of these two systems is likely due simply to the relative compu-
tational speeds of each processor. But the difference in the serial overhead (4.78 seconds on the SGI versus 41.67



seconds on the IBM), is most likely due to the different memory architectures of the two systems. The SGI Onyx uses
a Non-Uniform Memory Access (NUMA) architecture that enables processes to pass data to one another through
shared memory, However, on the IBM SP2 no memory is shared and data must be transferred over an external
high-speed network. Thus the overhead for message passing on the SGI Onyx is considerably lower than that on the
IBM SP2. We intend to run timing tests to measure the difference in message passing overhead.

The time for the parallelizable portion of the code is expected to be in proportion to the number of active sites,
which depends on the porosity and the size of the volume. But the time for the non-parallelizable portion of the
code is likely to be dominated by the inter-process communication. Assuming that communication time is roughly
proportional to the amount of data transferred, the communication time should be proportional to the number of
active sites on an XY plane.

So as we process larger systems, the time for the parallelizable portion of the code should increase proportionally
with the cube of the linear size of the system, while the non-parallelizable portion should increase with the square of
the linear size of the system. This means that for larger systems, a larger proportion of the time is in the parallelizable
computation, and greater benefits can be derived from running on multiple processors. We are still in the process of
investigating the scaling of the software’s performance with system size.

These performance data give us a general idea of how long it takes to get practical results for real-world problems
on the computing platforms tested. For example, a typical case requires about 10000 iterations to converge. So from
the performance described above, a one-component run of the sample size and porosity (22 %) described above will
take about 41 hours on one processor on an SGI Onyx. On four processors, the same run will take approximately
10.6 hours. Approximate times for other sizes and porosities are easily calculated from the data above.

8. CONCLUSION

Lattice Boltzmann methods for simulating fluid flow in complex geometries have developed rapidly in recent years.
The LB method produces accurate flows and can accommodate a variety of boundary conditions associated with
fluid-fluid and fluid-solid interactions. With the advent of large memory/parallel workstations (or PC clusters),
computations on fairly large systems that were considered beyond the reach of even some ”super” computers from a
decade ago can now be considered routine. Further work is needed to model fluids with large viscosity and density
mismatches, which is the subject of current research.
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