NIST Special Database 18

Mugshot Identification Database
C.LWatson

National Institute of Standards and Technology
Advanced Systems Division
Visual Image Processing Group
December 1994

1.0 Introduction

This document describes NIST Special Database 18, which contains 8-bit gray scale images of
mugshot photographs. This database is being distributed for use in developing and testing of mug-
shot identification systems. The database contains images of 1573 individuals (cases) with a total
of 3248 images stored in NIST’s IHead raster data format. The mugshots are mainly of male cases,
with the database containing 1495 male cases and 78 female cases. The sex and age of each indi-
vidual are stored in the header of each file as well as an included log file. The included log file also
gives information about which files are of the same individual (see section 5).

The database images consist of both front views and side views (profiles), although not every
case has both a front and profile. Looking at the front views and profiles separately, there are 131
cases with two or more front views and 1418 with only one front view. There are 89 cases with two
or more profiles and 1268 with only one profile. In cases that have both fronts and profiles, there
are only 89 cases with two or more of both fronts and profiles, 27 with two or more fronts and one
profile, and 1217 with only one front and one profile.

The size of each image varies, because the mugshot photographs vary in size from 17 - 2 1/2”
in height. Rather than storing an image that was more than 50% background pixels, some of the
background was discarded. All of the images except for 43 were scanned at 19.685 pixels/mm (500
dpi). The 43 that weren’t scanned 19.685 pixels/mm were full front views of the individual. In
order to get sufficient facial information the heads of these image were scanned at 39.37 pixels/mm
(1000 dpi).

2.0 Modified JPEG Lossless Compression

The compression used was developed from techniques outlined in the WG10 “JPEG” (draft)
standard [1] for 8-bit gray scale images with modifications to the compressed data format. The
NIST IHead format already contained most of the information needed in the decompression algo-
rithm, so the JPEG compressed data format was modified to contain only the information needed
when reconstructing the Huffman code tables and identifying the type of predictor used in the cod-
ing process. Codes used to compress and decompress the images are still developed per the draft
standard, but only applied to 8-bit gray scale images.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

3.0 Database Scanning Procedures

The images were scanned using a Kodak MegaPixell camera [2] and lighting powered by a
direct current (DC) power supply to eliminate light flicker. In order to scan images of consistent
quality the reflectance and focusing were checked approximately every two hours using the proce-
dures described in the next two sections.

3.1 Database Reflectance Calibration

The reflectance for the images scanned in NIST Special Database 18 was calibrated using two
reflectance charts. The first one consisted of continuous gray tones from black to white and the sec-
ond contained only 64 gray levels from black to white partitioned into distinct blocks. The lighting
intensity was adjusted so that the charts, when scanned, produced gray levels from 38 to 255. The
range of 217 gray levels was the maximum range the camera was able to distinguish.

3.2 Camera Focusing

The focusing procedure used a target image which consisted of equally spaced, alternating
black and white lines. Using a software tool, the standard deviation of the gray level values on a
line perpendicular to the black and white lines in the target image was calculated. The procedure
used was to adjust the camera focus so that the standard deviation of the cross-section was maxi-
mum. The maximum standard deviation is the point at which there is the least “blurring” in the
transition regions between the white and black lines thereby focusing the camera.

4.0 Mugshot File Format

Image file formats and effective data compression and decompression are critical to the useful-
ness of image archives. Each mugshot was digitized in 8-bit gray scale form at 19.6850 pixels/mm
(500 pixels/inch), 2-dimensionally compressed using a modified JPEG lossless algorithm, and tem-
porarily archived onto computer magnetic mass storage. Once all prints were digitized, the images
were mastered and replicated onto ISO-9660 formatted CD-ROM discs for permanent archiving
and distribution.

After digitization, certain attributes of an image are required to correctly interpret the 1-dimen-
sional pixel data as a 2-dimensional image. Examples of such attributes are the pixel width and
pixel height of the image. These attributes can be stored in a machine readable header prefixed to
the raster bit stream. A program which manipulates the raster data of an image is able to first read
the header and determine the proper interpretation of the data which follows it.

Numerous image formats exist, but most image formats are proprietary. Some are widely sup-
ported on small personal computers and others on larger workstations. A header format named
IHead [3] has been developed for use as a general purpose image interchange format. The IHead
header is an open image format which can be universally implemented across heterogeneous com-
puter architectures and environments. Both documentation and source code for the [Head format

1. The Kodak MegaPixel is identified in order to adequately specify or describe the subject matter of this
work. In no case does such identification imply recommendation or endorsement by the National Institute of
Standards and Technology, nor does it imply that the equipment is necessarily the best available for the pur-

pose.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

are publicly available and included with this database. IHead has been designed with an extensive
set of attributes in order to adequately represent both binary and gray level images, to represent
images captured from different scanners and cameras, and to satisfy the image requirements of
diversified applications including, but not limited to, image archival/retrieval, character recogni-
tion, fingerprint classification, and mugshot identification. Figure 1 illustrates the [Head format.

Header Length

ASCII Format Image Header

8-bit Gray Scale Raster Stream
110101001101001111010010110.. ..

* Representing the digital scan across the
page left to right, top to bottom.
* 8 bits to a pixel
« 256 levels of gray
* 1 Pixel is packed into a single byte
of memory.

Figure 1: An illustration of the Thead raster file format.

Since the header is represented by the ASCII character set, [Head has been successfully ported
and tested on several systems including UNIX workstations and servers, DOS personal computers,
and VMS mainframes. All attribute fields in the [Head structure are of fixed length with all multiple
character fields null-terminated, allowing the fields to be loaded into main memory in two distinct
ways. The [Head attribute fields can be parsed as individual characters and null-terminated strings,
an input/output format common in the ‘C’ programming language, or the header can be read into
main memory using record-oriented input/output. A fixed-length field containing the size in bytes
of the header is prefixed to the front of an IHead image file as shown in Figure 1.

The IHead structure definition written in the ‘C’ programming language is listed in Figure 2.
Figure 3 lists the header values from an IHead file corresponding to the structure members listed
in Figure 2. This header information belongs to the database file f00001_1.pct. Referencing the
structure members listed in Figure 2, the first attribute field of [Head is the identification field, id.
This field uniquely identifies the image file, typically by a file name. The identification field in this
example not only contains the image’s file name, but also the sex and age of the individual.

The attribute field, created, is the date on which the image was captured or digitized. The next
three fields hold the image’s pixel width, height, and depth. A binary image has a pixel depth of
1 whereas a gray scale image containing 256 possible shades of gray has a pixel depth of 8. The

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

attribute field, density, contains the scan resolution of the image; in this case, 19.6850 pixels/mm
(500 pixels/inch). The next two fields deal with compression.

/xx e 24 2 KK e 2l 3K A 3 H kR 2K

File Name; [Head h
Package: NIST Internal Image Header
Author: Michael D. Garris

Date: 2/08/90
* /

/* Defines used by the ihead structure */
#define IHDR _SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_CHARS 8 /* # of ASCII chars to represent a short */
#define BUFSIZE 80 /* default buffer size */
#define DATELEN 26 /* character length of data string */
typedef struct ihead{

char id[BUFSIZE]; /* identification/comment field */

char created[DATELENT; /* date created */

char width[SHORT_CHARSY; /* pixel width of image */

char height{fSHORT CHARS]; /* pixel height of image */

char depth{SHORT_CHARS]; /* bits per pixel */

char density[SHORT_CHARS]; /* pixels per inch */
char compress{SHORT_CHARS]; /* compression code */
char complen(SHORT_CHARS]; /* compressed data length */

char align{[SHORT_CHARS]; /* scanline muitiple: 8116132 */

char unitsize{SHORT_CHARS]; [* bit size of image memory units */
char sigbit; /* O->sigbit first | 1->sigbit last */
char byte_order; /* O->highlow | 1->lowhigh*/

char pix_offset{SHORT_CHARS]; /* pixel column offset */
char whitepix(SHORT_CHARS]; /* intensity of white pixel */

char issigned; /* O->unsigned data | 1->signed data */
charrm_cm; /* 0->row maj | 1->column maj */
char tb_bt; /* O->top2bottom | 1->bottom2top */
char Ir_rl; /* O->left2right | 1->right2left */
char parent(BUFSIZE]; /* parent image file */
char par_x[SHORT _CHARS]; /* from x pixel in parent */
char par_y[SHORT _CHARS]; /* from y pixel in parent */

}JHEAD:;

Figure 2: The IHead ‘C’ programming language structure definition.

In the [Head format, images may be compressed with virtually any algorithm. Whether the
image is compressed or not, the [Head is always uncompressed. This enables header interpretation
and manipulation without the overhead of decompression. The compress field is an integer flag
which signifies which compression technique, if any, has been applied to the raster image data
which follows the header. If the compression code is zero, then the image data is not compressed,
and the data dimensions: width, height, and depth, are sufficient to load the image into main mem-
ory. However, if the compression code is nonzero, then the complen field must be used in addition
to the image’s pixel dimensions. For example, the image described in Figure 3 has a compression

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

code of 6. This signifies that modified JPEG lossless compression has been applied to the image
data. In order to load the compressed image data into main memory, the value in complen is used
to determine the size of the compressed block of image data.

IMAGE FILE HEADER

Identdty : f0001_Ol.pctm 37
Header Size : 288 (bytes)

Date Created : Thu Sep 15 09:19:49 1994
Width : 912 (pixels)

Height : 1016 (pixels)

Bits per Pixel : 8

Resolution : 500 (pp1)

Compression : 6 (code)

Compress Length : 415293 (bytes)
Scan Alignment : 8 (bits)
Image Data Unit : 8 (bits)

Byte Order : High-Low

MSBit : First

Column Offset : 0 (pixels)

White Pixel 1255

Data Units : Unsigned

Scan Order : Row Msjor,
Top to Bottom,
Left to Right

Figure 3: The IHead values for the mugshot data file f00001_1.pct.

Once the compressed image data has been loaded into memory, JPEG lossless decompression
can be used to produce an image which has the pixel dimensions consistent with those stored in its
header. Using JPEG lossless compression and this compression scheme on the images in this data-
base, an average compression ratio of 2.2 : 1 was achieved.

The attribute field, align, stores the alignment boundary to which scan lines of pixels are pad-
ded. Pixel values of 8-bit gray scale images are stored 1 pixel (or 8 bits) to a byte, so the images
will automatically align to an even byte boundary. '

The next three attribute fields identify data interchanging issues among heterogeneous com-
puter architectures and displays. The unitsize field specifies how many contiguous bits are bundled
into a single unit by the digitizer. The sigbit field specifies the order in which bits of significance
are stored within each unit; most significant bit first or least significant bit first. The last of these
three fields is the byte_order field. If unitsize is a multiple of bytes, then this field specifies the
order in which bytes occur within the unit. Given these three attributes, data incompatibilities
across computer hardware and data format assumptions within application software can be identi-
fied and effectively dealt with.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

The pix_offset attribute defines a pixel displacement from the left edge of the raster image data
to where a particular image’s significant image information begins. The whitepix attribute defines
the value assigned to the color white. For example, the gray scale image described in Figure 3 is
gray print on a white background and the value of the white pixel is 255. This field is particularly
useful to image display routines. The issigned field is required to specify whether the units of an
image are signed or unsigned. This attribute determines whether an image with a pixel depth of 8,
should have pixel values interpreted in the range of -128 to +127, or 0 to 255. The orientation of
the raster scan may also vary among different digitizers. The attribute field, rm_cm, specifies
whether the digitizer captured the image in row-major order or column-major order. Whether the
scan lines of an image were accumulated from top to bottom, or bottom to top, is specified by the
field, tb_bt, and whether left to right, or right to left, is specified by the field, ri_Ir.

The final attributes in IHead provide a single historical link from the current image to its parent
image. The images used in this database were mixed and renamed from their original filenames and
the ‘link’ to the original filename was stored in the parent field. The par_x and par_y fields con-
tain the origin, upper left hand corner pixel coordinate, from where the extraction took place from
the parent image. These fields provide a historical thread through successive generations of images
and subimages. We believe that the [Head image format contains the minimal amount of ancillary
information required to successfully manage binary and gray scale images.

decker

decker

decker

decker

decker

decker

5.0 Database Organization and Content

NIST Special Database 18 contains a total of 3248 gray scale (8 bits/byte) mugshot images
which are stored in the data directory (see Figure 4). The images, which use approximately 530
Megabytes of storage compressed and 1.2 Gigabytes of storage uncompressed, are distributed on
an ISO-9660 formatted CD-ROM and compressed using a modified JPEG lossless compression
algorithm. Decompression software and documentation are included with the mugshot data.

NIST Special Database 18

T T

data man src doc
F alce SoftLvare Falce Image
Images Manual Software Information
Pages Utilities File

Figure 4: Top level directory tree for NIST Special Database 18.

The top level of the file structure contains four directories src, man, data, and doc. The code
needed to decompress and use the image data is contained in the src directory with man pages for
the source code stored in the man directories. Descriptions of the source code are given in section
6 of this document.

The data directories of discs 1-3 contain the mugshot images stored in a set of subdirectories
as shown in figure 5. The directory muitiple contains all of the cases for which there are two or
more photos of an individual from the same view (front or profile). In the multiple directory:
fm_pm contains all cases for which there are two or more images of both the front and profile
views, fm_p1 contains all cases with two or more images of the front view but only one image for
the profile view, and fm_p0 is all files with two or more front views and no profiles. The single
directory is divided in much the same manner with: f1_p1 containing all the images having only
one front and one profile view, f1_p0 is for one front view and no profile view, and f0_plisno
fronts and one profile. Since f1_p1 contained 2434 images it was divided into subdirectories
(sing01-sing24) with each containing 50 cases, except for the first (sing01-68 cases) and last
(sing24-49 cases).

The file naming structure consist of a letter, a five digit number, a single digit number, and a
“.pet” extension (figures 5 and 6 show some file names from the database). The letter is always an
f (front) or p (profile) indicating what view of the individual is contained in the image. The profile
could be a left or right profile. The five digit (for example 00001) number immediately following
the letter is a “case” sequence number; all files with the same case sequence number are different
images of the same person. The final number is separated from the case sequence number by an
“_” symbol. This final number is used to distinguish between multiple mugshots of the same case,

with the mugshot of the person at their youngest age first (_1) and older age mugshots following

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

in order, by age (_2, _3, ...). If a front and profile have the same case number and the final digit is
the same it means the images were taken at the same “sitting” with one pose being a front and one

being a profile. Not all front views have an accompanying profile.

data

/\

multiple
fm__pm/fm_pl fm_p0

fm_pm.og fm_pldog fm_p0.log
f00001_1.pct f00090_1.pct f00117_1.pct
p00001_1.pct p00090_1.pct f00117_2.pct

f00089_3.pct f00116_2.pct f00131_1.pct
p00089_2.pct p00116_1.pct f00131_2.pct

sing(1

f1_p1_0l.log
f00132_1.pct
p00132_1.pct

f00199._1.pct
p00199_1.pct

sing02

f1_pl1_02.log
f00200_1.pct
p00200_1.pct

f00249_1.pct
p00249_1.pct

e

f1_p0.log fO_pL.log
f01349_1.pct p01550_1.pct
f01350_1.pct p01551_1.pct

f01548_1.pct p01572_1.pct
f01549_1.pct p01573_1.pct

sing24

f1_pl_24.log
f01300_1.pct
p01300_1.pct

<+« f01348_l.pct

p01348_1.pct

Figure 5: Arrangement of data files for NIST Special Database 18.

Looking at figure 5, disc 1 contains the multiple subdirectory and sing01-sing04 of the f1_p1
subdirectory contained in the single directory. Disc 2 contains sing05-sing13 of the f1_p1 subdi-
rectory contained in the single directory. Disc 3 contains sing14-sing24 of the f1_p1 subdirectory
contained in the single directory as well as the subdirectories f1_p0 and f0_p1 in the single direc-

tory.

The doc directory contains the file info.log, which has information about each file in the data-
base. Info.log contains one line for each file in the database. The entry for each file is divided into
four fields (see Figure 6). The first three fields contain the filename, sex (m or f), and age of the

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

individual respectively. If the letters na (not available) appear in the age field it means there wasn’t
enough information to calculate the age.The fourth field contains a list of filenames for all the other
files, of the same view (i.e. front or profile), in the database which are images of the same person.
Each filename is separated by a colon. For example, figure 6 shows that file f00001_1.pct has two
matches in the database contained in files f00001_2.pct and f00001_3.pct. Notice in figure 6 that
the fourth vertical line indicates the end of the entry for that file. A log file is also contained in each
subdirectory with the same information as the info.log file, but only for the files in that subdirectory
(see *.log files in figure 5)

f00001_l.pct I m [37 | f00001_2.pct : f00001_3.pet |
p0C001_1.pct I m |37 | p00001_2.pet : p00001_3.pet |
f00001_2.pct I m | 41 | f00001_1.pet : f00001_3.pet |
p00001_2.pct | m | 41 | p00001_1.pct : p00001_3.pet |
f00001_3.pct I m 42 1 f00001_1.pct : f00001_2.pct |
p00001_3.pct | m 142 | p00001_1.pet : p00001_2.pet |

Figure 6: Entry for first individual (case) in the info.log file.

The mugshot images vary in size because the original mugshot photographs vary in size from
17 to 2 1/2 inches in size. The camera scanned an image that was 1312 X 1016 pixels in size and
rather than store an image that was more than 50% background (mostly uniform background) some
of the background was discarded. This allowed more mugshots to be available on the database.

6.0 Software for Accessing Database

Included with the mugshot images are documentation and software written in the ‘C’ program-
ming language. Four programs are included in the src directory: dumpihdr, ihdr2sun, sunalign,
and deplljpg. These routines are provided as an example to software developers of how IHead
images can be manipulated and used. Descriptions of these programs and their subroutines are
given below as well as in the included man pages located in the man directory. Copies of the man-
ual pages are also included in Appendix A.

6.1 Compilation

The CD-ROM, on which NIST Special Database 18 is provided, is aread only storage medium.
The files in the src directory must be copied to a read-writable partition prior to compiling. After
copying these files, executable binaries can be produced by invoking the UNIX utility make to exe-
cute the included makefile. An example of this command follows.

make -f makefile.mak

6.2 Dumpihdr <Ihead file>

Dumpihdr is a program which reads an image’s IHead data from the given file and formats the
header data into a report which is printed to standard output. The report shown in Figure 3 was gen-
erated using this utility. The main routine for dumpihdr is found in the file dumpihdr.c and calls
the external function readihdr().

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

Readihdr() is a function responsible for loading an image’s [Head data from a file into main
memory. This routine allocates, reads, and returns the header information from an open image file
in an initialized IHead structure. This function is found in the file ihead.c. The [Head structure def-
inition is listed in Figure 2 and is found in the file ihead.h

6.3 Thdr2sun <Ihead file>

Ihdr2sun converts an image from NIST IHead format to Sun rasterfile format. Thdr2sun loads
an IHead formatted image from a file into main memory and writes the raster data to a new file
appending the data to a Sun rasterfile header. The main routine for this program is found in the file
ihdr2sun.c and calls the external function ReadTheadRaster() which is found in the file raste-
rio.c.

ReadIheadRaster() is the procedure responsible for loading an [Head image from a file into
main memory. This routine reads the image’s header data returning an initialized IHead structure
by calling readihdr(). In addition, the image’s raster data is returned to the caller uncompressed.
The images in this database have been 2-dimensionally compressed using a modified JPEG lossless
compression algorithm, therefore ReadTheadRaster() invokes the external procedure jpglldep()
which is responsible for decompressing the raster data. Upon completion, ReadTheadRaster()
returns an initialized [Head structure, the uncompressed raster data, the image’s width and height
in pixels, and pixel depth.

Jpglldep() accepts image raster data compressed using the modified JPEG lossless compres-
sion algorithm and returns the uncompressed image raster data. J pglldcp() was developed using
techniques described in the WG10 “JPEG” (draft) standard [1] and adapted for use with this data-
base. Source code for the algorithm is found in jpglldcp.c.

6.4 Dcplljpg <lossless JPEG compressed file>

Deplljpg is a program which decompresses a face image file (approximately 12 seconds per
image on a scientific workstation) that was compressed using the modified JPEG compression rou-
tine. The routine accepts a compressed image in NIST IHead format and writes the uncompressed
image to the same filename using the NIST IHead format. The main routine is found in deplljpeg.c
and calls the external functions ReadlheadRaster() (see section 6.3 for ReadTheadRaster descrip-
tion) and writeihdrfile().

Writeihdrfile() is a routine that writes an IHead image into a file. This routine opens the passed
filename and writes the given IHead structure and corresponding data to the file. Writeihdrfile()
is found in the src file rasterio.c.

Acknowledgment

The author would like to acknowledge Mike Gilcrest, Charles Wilson, Mike McCabe and Rem-
igius Onyshczak for input and assistance in this data collection.

10

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

References

[1] WG10 “JPEG”, committee draft ISO/IEC CD 10198-1, “Digital Compression and Coding of
Continuous-Tone Still Images,” March 3, 1991.

[2] The camera used was a Kodak MegaPixel Model 1.4.

[31M.D. Garris, “Design and Collection of a Handwriting Sample Image Database,” Social Sci-
ence Computing Journal, Vol. 10:196-214, 1992.

11

decker

decker

decker

decker

decker

decker

decker

Appendix A: Manual Pages for Database Source Code

12

decker

decker

decker

decker

decker

decker

DCPLLJPG (1) USER COMMANDS DCPLLJPG (1)

NAME

deplljpg - non—-standard JPEG lossless decompression for
Ihead 8 bit gray scale images

SYNOPSIS

dcpllipg ihdrfile

DESCRIPTION

Dcpllijpg takes an 8 bit gray scale ihead image, which was
compressed using jpegcomp4, and decompresses it using tech-
niques from the committee draft ISO/IEC CD 10198-1 for
"Digital Compression and Coding of Continuous-tone Still
images" with modifications to the draft image header.

NOTE: dcplljpg does not allow more than 8 bits/pixel input
precision,

OPTIONS
ihdrfile
Any 8 bit gray scale ihead raster image (previously
compressed using jpegcompd) .
EXAMPLES
dcpllipg foo.pct
FILES
ihead.h NIST’s raster header include file
jpeg.h Include file for jpeg algorithm
SEE ALSO

dumpihdr (1), ihdr2sun(l), ReadIheadRaster(3),
writeihdrfile (3)

DIAGNOSTICS
deplljpg exits with a status of -1 if an error occurs.
BUGS
deplljpg only handles gray scale images up to 8 bits per
pixel precision.
Release 4.1 Last change: 14 November 1991 1

13

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

DUMPIHDR(1) USER COMMANDS DUMPIHDR (1)

NAME
dumpihdr - takes a NIST IHead image file and prints its
header content to stdout
SYNOPSIS
dumpihdr ihdrfile
DESCRIPTION
Dumpihdr opens a NIST IHead rasterfile and formats and
prints its header contents to stdout.
OPTIONS
ihdrfile
any NIST IHead image file name
EXAMPLES
dumpihdr foo.pct
FILES
ihead.h NIST’s raster header include file
SEE ALSO
ihdr2sun(1l), ReadIheadRaster (3), writeihdrfile (3),
writeihdr (3), readihdr(3), printihdr(3)
DIAGNOSTICS
Dumpihdr exits with a status of -1 if opening ihdrfile
fails.
BUGS
Sun Release 4.1 Last change: 15 March 1990 1

14

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

IHEDRZSUN (1) USER COMMANDS THDR2SUN (1)

NAME
ihdr2sun - takes a NIST ihead image and converts it to a
Sun rasterfile

SYNOPSIS
ihdr2sun [-9 outfile] ihdrfile [mapfile]

DESCRIPTION
Thdr2sun converts a NIST ihead rasterfile to a Sun raster-—
file. If the optional argument mapfile is included on the
command line and the input image is multiple bitplane, the
colormap in mapfile will be inserted into the Sun raster-—
file, otherwise a default colormap gray.map will be used
when necessary. The Sun image file created will have the
root name of ihdrfile with the extension .ras appended,
unless an alternate outfile is specified.

OPTIONS
ihdrfile

any ihead raster image
mapfile
© optional colormap file

EXAMPLES . .
ihdr2sun foo.pct gray.map

FILES
/usr/include/rasterfile.h

sun’s raster header include file

ihead.h NIST’s raster header include file

SEE ALSO
dumpidhr (1), sunalign(l), rasterfile(5)

DIAGNOSTICS
Thdr2sun exits with a status of -1 if opening ihdrfile
fails.

BUGS
Ihdr2sun does not currently support multiple bit levels per
pixel other than depth 8.

Sun Release 4.1 Last change: 08 March 1990 1

15

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

SUNAL

NAME

SYNOP

DESCR

OPTIO

EXAMP

FILES

IGN (1) USER COMMANDS SUNALIGN (1)

sunalign - takes a sun rasterfile and word aligns its scan-
lines

SIS
sunalign sunrasterfile

IPTION
Sunalign takes the file sunrasterfile and determines if the

stored scan lines in the file require word alignment., If
so, the command overwrites the image data making scan lines
word aligned. This command is useful when taking clipped
images from the HP Scan Jet and importing them into Frame
Maker.

NS
sunrasterfile

any sun rasterfile image
LES

sunalign foo.ras

/usr/include/rasterfile.h
sun’s raster header include file

SEE ALSO

rasterfile(5)

DIAGNOSTICS

BUGS

Sunalign exits with a status of -1 if opening sunrasterfile
fails.

Sun Release 4.1 Last change: 08 March 1990 1

16

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

JPGLLDCP (3) C LIBRARY FUNCTIONS JPGLLDCP (3)

NAME
Jpglldcp - takes a JPEG lossless compressed input data
buiffer (with modified data header) and writes the
uncompressed data to the passed output buffer
SYNOPSIS
void jpglldcp(indata, width, height, depth, outbuffer)
unsigned char *indata, *outbuffer;
int width, height, depth;
DESCRIPTION
Jpglldcp () takes the input buffer indata and decompresses it
writing the uncompressed data into the output buffer out-
buffer with length equal to the original image dimensions
given. This procedure was developed using techniques from
the committe draft ISO/IEC CD 10198-1 for "Digital Compres-—
sion and Coding of Continuous—tone Still Images" with modif-
ications to the draft image header. The source is found in
the source code file jpglldcp.c.
indata
- the compressed data input buffer
width
- the pixel width of the image from which the input
data came
height
— the pixel height of the image from which the input
data came
depth
— the pixel depth of the image from which the input
data came
outbuffer
- the output buffer in which the uncompressed data is
to be returned
SEE ALSO
deplljpg(l), ReadIheadRaster (3), writeihdrfile(3)
BUGS
NOTE: jpglldcp will only work with gray-scale images that
were compressed using a modified data header (not the stan-—
dard lossless JPEG data header).
Sun Release 4.1 Last change: 14 January 1992 1

17

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

PRINTIHDR (3) C LIBRARY FUNCTIONS

NAME

printihdr - prints an ihead structure
poincer

SYNOPSIS
#include <ihead.h>

printihdr (head, f£p)
IHEAD *ihead;
FILE *fp;

DESCRIPTION

PRINTIHDR (3)

to the passed

[ai)
I
ft
®

Printihdr () takes a pointer to an ihead structure and prints
the ihead structure to the file pointed to by fp. The source
is found in the source code file ihead.c.

fp - an open file pointer

ihead

~ & pointer to an initialized ihead structure

SEE ALSO

writeihdrfile(3), writeihdr(3), readihdr(3), ReadIlheadRas-

ter(3), dumpihdr (1)

BUGS

Sun Release 4.1 Last change: 15 January 1992

18

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

READIHEADRASTER (3) C LIBRARY FUNCTIONS READIHEADRASTER (3)

NAME
ReadIheadRaster - locads into memory an ihead structure and
corresponding image data from a file

SYNOPSIS
#include <ihead.h>
ReadIheadRaster (file, head, data, width, height, depth)
char *file;

IHEAD **head;
unsigned char **data;
int *width, *height, *depth;
DESCRIPTION :
ReadIheadRaster () opens a file named file and allocates and
loads into memory an ihead structure and its corresponding
raster image data. If the image data is compressed,
ReadTheadRaster will uncompress the data before returning
the data buffer. This routine also returns several integers
converted from their corresponding ASCII entries found in
the header. The source is found in the source code file
rasterio.c.
file - the name of the file to be read from
head - a pointer to where an ihead structure is to be allo-
cated and loaded

data - a pointer to where the array of binary raster image
data is to be allocated and loaded

width
— integer pointer containing the image’s pixel width
upon return

height
- integer pointer containing the image’s pixel height
upon return

depth
— integer pointer containing the image’s Bits Per Pixel
upon return

SEE ALSO
printihdr(3), readihdr(3), writeihdrfile(3), writeihdr (3),
dumpihdr (1)

DIAGNOSTICS
ReadIheadRaster() exits with -1 when opening file fails.

BUGS

Sun Release 4.1 Last change: 05 March 1990 1

19

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

READIHDR (3) C LIBRARY FUNCTIONS READTIHDR (3)

NAME
readihdr - allocates and reads header information into an
ihead structure and returns the initialized structure
SYNOPSIS
#include <ihead.h>
readihdr (fp)
FILE *fp;
DESCRIPTION
Readihdr () takes a file pointer to an ihead structured file.
Then allocates and reads the header information from the
file into an ihead structure. The source is found in the
source code file ihead.c.
fp - an open file pointer
SEE ALSO
ReadIheadRaster(3), writeihdrfile(3), printihdr(3),
writeihdr (3), dumpihdr (1)
BUGS
Sun Release 4.1 Last change: 16 January 1992 1

20

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

WRITEIHDR (3) C LIBRARY FUNCTIONS WRITEIHDR (3)

NAME
writeihdr - writes an ihead structure to an open file

SYNOPSIS
#include <ihead.h>

writeihdr (£fp, ihead)
FILE *fp;
IHEAD *ihead;
DESCRIPTION
Writeihdr() takes a pointer to an ihead structure and writes

it to the open file pointed to by fp. The source is found in
the source code file ihead.c.

fp - an open file pointer

ihead
= & pointer to an initialized ihead structure

SEE ALSO
writeihdrfile(3), printihdr(3), readihdr(3), ReadIheadRas-
ter(3), dumpihdr(l)

BUGS

Sun Release 4.1 Last change: 02 March 1990 1

21

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

WRITEIHDRFILE (3) C LIBRARY FUNCTIONS WRITEIHDRFILE (3)

NAME
writeihdrfile - writes an ihead structure and corresponding
image data to a file
SYNQOPSIS
#include <ihead.h>
writeihdrfile (£ile, head, data)
char *file;
IHEAD *head;
unsigned char *data;
DESCRIPTION
Writeihdrfile() opens a file name file and writes an ihead
structure and its corresponding image data to it. The source
is found in the source code file rasterio.c.
file - the name of the file to be created
head - a pointer to an initialized ihead structure
data - the array of raster image data
SEE ALSO
writeihdr (3), printihdr(3), ReadIheadRaster(3), readihdr (3),
dumpihdr (1)
DIAGNOSTICS
Writeihdrfile() exits with -1 when opening file fails.
BUGS
Sun Release 4.1 Last change: 02 March 1990 1

22

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

