NIST Special Publication 955 Suppl. ## Responding to National Needs: **Supplement to Appendices 1994-2009** Compiled and edited by: Keith Martin Barbara P. Silcox # Responding to National Needs: Supplement to Appendices 1994-2009 Compiled and edited by: Keith Martin Barbara P. Silcox Electronic Composition: Karen Wick May 2010 U.S. Department of Commerce *Gary Locke, Secretary* National Institute of Standards and Technology Patrick D. Gallagher, Director #### **FOREWORD** This Supplement to Appendices is a continuation of the data collected in the appendices of NIST Special Publication 955, Responding to National Needs: The National Bureau of Standards Becomes the National Institute of Standards and Technology 1969-1993, by James F. Schooley, November 2000. It incorporates, and therefore supersedes, the previous Supplement published July 2002. This current Supplement covers the period 1993-2009. The data will be used to support the research and compilation of the fourth volume of the NBS/NIST history series Since the publishing of the first Supplement, NIST has had several accomplishments worthy of noting. During this period, NIST had its third Nobel Prize winner in Physics. John L. (Jan) Hall of the NIST Physics Lab and the University of Colorado at Boulder, and Theodor W. Hänsch of the Max-Planck-Institute of Quantum Optics, Garching and Ludwig-Maximilians-Universität, Munich, Germany, were named winners of the 2005 Nobel Prize in Physics, sharing the honor with Roy J. Glauber of Harvard University. Hall shares the Nobel Prize with Hänsch, "for their contributions to the development of laser-based precision spectroscopy, including the optical frequency comb technique." In 2004, NIST made big advances in a small area by building the world's smallest atomic clock. At 1.5 mm long and 4 mm tall, this clock is powered by less than 75 thousandths of a watt and is stable to one part in 10 billion, the equivalent to gaining or losing just one second every 300 years. This minuscule atomic clock with inner workings about the size of a grain of rice, opens the door to atomically precise timekeeping in portable, battery-powered devices for secure wireless communications, more precise navigation, and other applications. In addition to working on new materials and devices, NIST also helped protect old materials by building a hermetically sealed glass and aluminum encasement to house the Waldseemüller map for the Library of Congress. This map, created in 1507, is known as "America's birth certificate" since it was the first map to label our continent "America". The NIST encasement also includes monitoring devices to constantly measure internal environmental conditions. In 2006, NIST opened the Center for Nanoscale Science and Technology, a combined research lab and user facility, providing researchers from U.S. organizations with state-of-the-art tools and facilities to advance basic research in nanotechnology and nano-scale manufacturing. The Center houses a Nanofabrication Facility—a large "clean room"—equipped with a still-growing array of state-of-the-art tools for making, testing, and characterizing prototype nanoscale devices and materials. These instruments are available to collaborators and to outside users. ### **CONTENTS** | | | Page | |----------|---|------| | FOREWOR | KD | iii | | APPENDIC | TES | | | A. | Legislation Relating to the Organization, Functions, and Activities of the National Institute of Standards and Technology 1993-2009 | 1 | | В. | Histories of the National Institute of Standards and Technology and National Bureau of Standards | | | C. | NIST in the Federal Administration | 85 | | D. | Site Information and Maps: Gaithersburg and Boulder | 87 | | E. | NIST Staff, 1996-2007 | 91 | | F. | NIST Postdoctoral Research Associates, 1994-2009 | 95 | | G. | Scientific Awards Given by the Department of Commerce and NIST to Staff Members, 1994-2009 | 119 | | Н. | Members of the Visiting Committee on Advanced Technology | 129 | | I. | NIST Actual Obligations, 2000-2009 | | | J. | NIST Publication Series | | | K | Structure and Leadership of NIST | 139 | #### APPENDIX A ## LEGISLATION RELATING TO THE ORGANIZATION, FUNCTIONS, AND ACTIVITIES OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY 1993-2009 A review of legislation relating to the activities of NIST shows that Congress intended to involve NIST in pressing national and scientific concerns. The problems with punch card ballots encountered in the 2000 presidential election led to calls for improved voting technology. The Help America Vote Act of 2002, Public Law 107-252, required NIST to evaluate and recommend for accreditation voting technology testing and certification laboratories. Another major event of this period, the terrorist attacks of September 11, 2001, brought about an increased focus on issues of national security. The USA Patriot Act, Public Law 107-56, directed NIST to develop an identity standard for persons seeking to enter the United States, and Public Law 109-347, the Safe Port Act, asked NIST to create standards for nonintrusive imaging and radiation detection equipment. NIST was also tasked by the Cyber Security Research and Development Act, Public Law 107-305, to recommend standardized minimum security settings for Federal Government computers. Other legislative acts directed NIST to help protect the nation's infrastructure. Public Law 107-231, The National Construction Safety Team Act, created National Construction Safety Teams to investigate major building failures. Public Law 107-355, the Pipeline Safety Improvement Act of 2002, engaged NIST to perform materials research and assist in developing technical standards for pipelines. The America Competes Act, Public Law 110-69, ended the Advanced Technology Program while establishing the Technology Innovation Program to fund high-risk, high-reward research in areas of critical national need. Congress also passed laws addressing NIST role in research and development. Public Law 108-153, the 21st Century Nanotechnology Research and Development Act, instructed NIST to conduct basic research leading to the development and manufacture of nanotechnology. Those portions of Public Laws applicable to NIST are reproduced in this appendix. October 27, 1993, 107 Stat. 1153 (Public Law 103-121—103rd Congress, 1st session) Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act, 1994. **Public Law 103-121** #### AN ACT Making appropriations for the Department of Commerce, Justice, and State, the Judiciary, and related agencies for the fiscal year ending September 30, 1994, and for other purposes. #### TITLE II—DEPARTMENT OF COMMERCE National Institute of Standards and Technology (107 Stat. 1169-70) Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$226,000,000, to remain available until expended, of which not to exceed \$5,880,000 may be transferred to the "Working Capital Fund" and \$1,500,000 may be transferred to the Department of Commerce "Working Capital Fund." #### **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership, the Advanced Technology Program and the Quality Outreach Program of the National Institute of Standards and Technology, \$232,524,000, to remain available until expended, of which not to exceed \$1,290,000 may be transferred to the "Working Capital Fund." #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$61,686,000, to remain available until expended. **** August 26, 1994, 108 Stat. 1724 (Public Law 103-317—103rd Congress, 2nd session) Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act, 1995. #### **Public Law 103-317** #### AN ACT Making appropriations for the Departments of Commerce, Justice, and State, the Judiciary, and related agencies programs for the fiscal year ending September 30, 1995, and making supplemental appropriations for these departments and agencies for the fiscal year ending September 30, 1994, and for other purposes. #### TITLE II—DEPARTMENT OF COMMERCE National Institute of Standards and Technology (108 Stat. 1740-41) #### Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$265,000,000, to remain available until expended, of which not to exceed \$8,500,000 may be transferred to the "Working Capital Fund." #### **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership, the Advanced Technology Program and the Quality Program of the National Institute of Standards and Technology, \$525,000,000, to remain available until expended, of which not to exceed \$1,710,000 may be transferred to the "Working Capital Fund": Provided, That notwithstanding the time limitations imposed by 15 U.S.C. 278k(c) (1) and (5) on the duration of Federal financial assistance that may be awarded by the Secretary of Commerce to Regional Centers for the Transfer of Manufacturing Technology ("Centers"), such Federal financial assistance for a Center may continue beyond six years and may be renewed for additional periods, not to exceed three years each, at a rate not to exceed one-third of the Center's total annual costs, subject before any such renewal to a positive evaluation of the Center and to a finding by the Secretary of Commerce that continuation of Federal funding to that Center is in the best interest of the Regional Centers for the Transfer of Manufacturing Technology Program. #### Construction of Research
Facilities For construction of new research facilities, including architectural and engineering design, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$64,686,000, to remain available until expended. **** September 13, 1994, 108 Stat. 1796 (Public Law 103-322—103rd Congress, 2nd session) Violent Crime Control and Law Enforcement Act of 1994. **Public Law 103-322** #### AN ACT To control and prevent crime. #### TITLE XXI—STATE AND LOCAL LAW ENFORCEMENT #### Subtitle C—DNA Identification SEC. 210303. (108 Stat. 2068) Quality Assurance and Proficiency Testing Standards. - (a) Publication of Quality Assurance and Proficiency Testing Standards.— - (1) (A) Not later than 180 days after the date of enactment of this Act, the Director of the Federal Bureau of Investigation shall appoint an advisory board on DNA quality assurance methods from among nominations proposed by the head of the National Academy of Sciences and professional societies of crime laboratory officials. - (B) The advisory board shall include as members scientists from State, local, and private forensic laboratories, molecular geneticists and population geneticists not affiliated with a forensic laboratory, and a representative from the National Institute of Standards and Technology. - (C) The advisory board shall develop, and if appropriate, periodically revise, recommended standards for quality assurance, including standards for testing the proficiency of forensic laboratories, and forensic analysts, in conducting analyses of DNA. **** October 13, 1994, 108 Stat. 3243 (Public Law 103-355—103rd Congress, 2nd session) Federal Acquisition Streamlining Act of 1994. **Public Law 103-355** #### AN ACT To revise and streamline the acquisition laws of the Federal Government, and for other purposes. #### TITLE IX—FEDERAL ACQUISITION COMPUTER NETWORK SEC. 9001. (108 Stat. 3399) Federal Acquisition Computer Network Architecture and Implementation. (a) Federal Acquisition Computer Network Architecture.—The Office of Federal Procurement Policy Act (41 U.S.C. 401 et seq.) is amended by adding after section 29, as added by section 1093, the following new sections: "SEC. 30. Federal Acquisition Computer Network (FACNET) Architecture. "(a) In General.— - (1) The Administrator shall establish a program for the development and implementation of a Federal acquisition computer network architecture (hereafter in this section referred to as 'FACNET') that will be Government-wide and provide interoperability among users. The Administrator shall assign a program manager for FACNET and shall provide for overall direction of policy and leadership in the development, coordination, installation, operation, and completion of implementation of FACNET by executive agencies. - "(2) In carrying out paragraph (1), the Administrator shall consult with the heads of appropriate Federal agencies with applicable technical and functional expertise, including the Office of Information and Regulatory Affairs, the National Institute of Standards and Technology, the General Services Administration, and the Department of Defense. **** October 19, 1994, 108 Stat. 3492 (Public Law 103-374—103rd Congress, 2nd session) *Earthquake Hazards Reduction Act of 1977, Authorization and Amendment*. **Public Law 103-374** #### AN ACT To authorize appropriations for carrying out the Earthquake Hazards Reduction Act of 1977 for fiscal years 1995 and 1996. SEC. 1. (108 Stat. 3492) Authorization of Appropriations. Section 12 of the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7706) is amended— (4) by adding at the end of subsection (d) the following new sentence: "There are authorized to be appropriated, out of funds otherwise authorized to be appropriated to the National Institute of Standards and Technology, \$1,900,000 for the fiscal year ending September 30, 1995, and \$1,957,000 for the fiscal year ending September 30,1996". **** April 10, 1995, 109 Stat. 73 (Public Law 104-6—104th Congress, 1st session) *Emergency Supplemental Appropriations and Rescissions for the Department of Defense to Preserve and Enhance Military Readiness Act of 1995; Mexican Debt Disclosure Act of 1995.* Public Law 104-6 #### AN ACT Making emergency supplemental appropriations and rescissions to preserve and enhance military readiness of the Department of Defense for the fiscal year ending September 30, 1995, and for other purposes. #### TITLE II #### Rescissions #### DEPARTMENT OF COMMERCE National Institute of Standards and Technology (109 Stat. 84) #### **Industrial Technology Services** Of the amounts made available under this heading in Public Law 103-317 for the Advanced Technology Program, \$90,000,000 are rescinded. **** May 22, 1995, 109 Stat. 163 (Public Law 104-13—104th Congress, 1st session) Paperwork Reduction Act of 1995. #### Public Law 104-13 #### AN ACT To further the goals of the Paperwork Reduction Act to have Federal agencies become more responsible and publicly accountable for reducing the burden of Federal paperwork on the public, and for other purposes. - SEC. 2. Coordination of Federal Information Policy. Chapter 35 of title 44, United States Code is amended to read as follows: - "SEC. 3504. (109 Stat. 169) Authority and functions of Director - "(h) With respect to Federal information technology, the Director shall— - "(1) in consultation with the Director of the National Institute of Standards and Technology and the Administrator of General Services— - "(A) develop and oversee the implementation of policies, principles, standards, and guidelines for information technology functions and activities of the Federal Government, including periodic evaluations of major information systems; and - "(B) oversee the development and implementation of standards under section 111(d) of the Federal Property and Administration Services Act of 1949 (40 U.S.C. 759(d)); - "(2) monitor the effectiveness of, and compliance with, directives issued under sections 110 and 111 of the Federal Property and Administrative Services Act of 1949 (40 U.S.C. 757 and 759); - "(3) coordinate the development and review by the Office of Information and Regulatory Affairs of policy associated with Federal procurement and acquisition of information technology with the Office of Federal Procurement Policy; - "(4) ensure, through the review of agency budget proposals, information resources management plans and other means— - "(A) agency integration of information resources management plans, program plans and budgets for acquisition and use of information technology; and - "(B) the efficiency and effectiveness of inter-agency information technology initiatives to improve agency performance and the accomplishment of agency missions; and - "(5) promote the use of information technology by the Federal Government to improve the productivity, efficiency, and effectiveness of Federal programs, including through dissemination of public information and the reduction of information collection burdens on the public. - "SEC. 3505. (109 Stat. 170) Assignment of tasks and deadlines - "(a) In carrying out the functions under this chapter, the Director shall— - "(3) in consultation with the Administrator of General Services, the Director of the National Institute of Standards and Technology, the Archivist of the United States, and the Director of the Office of Personnel Management, develop and maintain a Governmentwide strategic plan for Information resources management, that shall include— - "(A) a description of the objectives and the means by which the Federal Government shall apply information resources to improve agency and program performance; - "(B) plans for— - "(i) reducing information burdens on the public, including reducing such burdens through the elimination of duplication and meeting shared data needs with shared resources; - "(ii) enhancing public access to and dissemination of, information, using electronic and other formats: and - "(iii) meeting the information technology needs of the Federal Government in accordance with the purpose of this chapter; and - "(C) a description of progress in applying information resources management to improve agency performance and the accomplishment of missions. "SEC. 3513. (109 Stat. 181) Director review of agency activities; reporting; agency response "(a) In consultation with the Administrator of General Services, the Archivist of the United States, the Director of the National Institute of Standards and Technology, and the Director of the Office of Personnel Management, the Director shall periodically review selected agency information resources management activities to ascertain the efficiency and effectiveness of such activities to improve agency performance and the accomplishment of agency missions. **** July 27, 1995, 109 Stat. 194 (Public Law 104-19—104th Congress, 1st session) *Emergency Supplemental Appropriations for Additional Disaster Assistance, for Anti-Terrorism Initiatives, for Assistance in the Recovery from the Tragedy that Occurred at Oklahoma City, and Rescissions Act, 1995*. #### Public Law 104-19 #### AN ACT Making emergency supplemental appropriations for additional disaster assistance, for anti-terrorism initiatives, for assistance in the recovery from the tragedy that occurred at Oklahoma City, and making rescissions for the fiscal year ending September 30, 1995, and for other purposes. #### TITLE I—SUPPLEMENTALS AND RESCISSIONS #### DEPARTMENT OF COMMERCE National Institute of Standards and Technology (109 Stat. 199) Scientific and Technical Research and Services (Rescission) Of the funds made available under this heading in Public Law 103-317, \$17,000,000 are rescinded. Industrial Technology Services (Rescission) Of the funds made available under this heading in Public Law 103-317, \$16,300,000 are rescinded. Construction of Research Facilities (Rescission) Of the unobligated balances available under
this heading, \$30,000,000 are rescinded. **** January 26, 1996, 110 Stat. 26 (Public Law 104-99—104th Congress, 2nd session) Balanced Budget Downpayment Act. 1996. #### Public Law 104-99 #### AN ACT Making appropriations for fiscal year 1996 to make a downpayment toward a balanced budget, and for other purposes. ## TITLE II—DEPARTMENTS OF COMMERCE, JUSTICE, AND STATE, THE JUDICIARY, AND RELATED AGENCIES APPROPRIATIONS (110 Stat. 35) SEC. 201. (a) ... Provided, that, notwithstanding any other provision of this title of this Act, the rate for operations only for program administration and the continuation of grants awarded in for program administration and the continuation of grants awarded in fiscal year 1995 and prior years of the Advanced Technology Program of the National Institute of Standards and Technology, and the rate for operations for the Ounce of Prevention Council, Drug Courts, Global Learning and Observations to Benefit the Environment, and for the Cops on the Beat Program may be increased up to a level of 75 per centum of the final fiscal year 1995 appropriated amount:... **** February 10, 1996, 110 Stat. 186 (Public Law 104-106—104th Congress, 2nd session) *National Defense Authorization Act for Fiscal Year 1996*. #### **Public Law 104-106** #### AN ACT To authorize appropriations for fiscal year 1996 for military activities of the Department of Defense, for military construction, and for defense activities of the Department of Energy, to prescribe personnel strengths for such fiscal year for the Armed Forces, to reform acquisition laws and information technology management of the Federal Government, and for other purposes. #### TITLE LI—RESPONSIBILITY FOR ACQUISITIONS OF INFORMATION TECHNOLOGY SEC. 5112. (110 Stat. 681) Capital Planning and Investment Control. - (d) Information Technology Standards. The Director shall oversee the development and implementation of standards and guidelines pertaining to Federal computer systems by the Secretary of Commerce through the National Institute of Standards and Technology under section 5131 and section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3). - SEC. 5131. (110 Stat. 687) Responsibilities Regarding Efficiency, Security, and Privacy of Federal Computer Systems. - (a) Standards and Guidelines.— - (1) Authority.—The Secretary of Commerce shall, on the basis of standards and guidelines developed by the National Institute of Standards and Technology pursuant to paragraphs (2) and (3) of section 20(a) of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3(a), promulgate standards and guidelines pertaining to Federal computer systems. Sec. 5607. (110 Stat. 701) Other Laws. - (a) National Institute of Standards and Technology Act.—Section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3) is amended— - (1) in subsection (a)— - (A) by striking out "section 3502(2) of title 44" each place it appears in paragraphs (2) and (3)(A) and inserting in lieu thereof "section 3502(9) of title 44"; and - (B) in paragraph (4), by striking out "section 111(d) of the Federal Property and Administrative Services Act of 1949" and inserting in lieu thereof section 5131 of the Information Technology Management Reform Act of 1996" - (2) in subsection (b)— - (A) by striking out paragraph (2); - (B) in paragraph (3), by striking out "section 111(d) of the Federal Property and Administrative Services Act of 1949" and inserting in lieu thereof "section 5131 of the Information Technology Management Reform Act of 1996"; and - (C) by redesignating paragraphs (3), (4), (5), and (6) as paragraphs (2), (3), (4), and (5); and (3) in subsection (d)— - (A) in paragraph (1)(B)(v), by striking out "as defined" and all that follows and inserting in lieu thereof a semicolon; and - (B) in paragraph (2)— - (i) by striking out "system"—and all that follows through "means" in subparagraph (A) and inserting in lieu thereof "system" "means"; and - (ii) by striking out "and" at the end of subparagraph (A) and all that follows through the end of subparagraph (B) and inserting in lieu thereof a semicolon. **** March 7, 1996, 110 Stat. 775 (Public Law 104-113—104th Congress, 2nd session) *National Technology Transfer and Advancement Act of 1995*. #### **Public Law 104-113** #### AN ACT To amend the Stevenson-Wydler Technology Innovation Act of 1980 with respect to inventions made under cooperative research and development agreements, and for other purposes. #### SEC. 1. SHORT TITLE. This Act may be cited as the "National Technology Transfer and Advancement Act of 1995." #### SEC. 2. FINDINGS. The Congress finds the following: - (1) Bringing technology and industrial innovation to the marketplace is central to the economic, environmental, and social well-being of the people of the United States. - (2) The Federal Government can help United States business to speed the development of new products and processes by entering into cooperative research and development agreements which make available the assistance of Federal laboratories to the private sector, but the commercialization of technology and industrial innovation in the United States depends upon actions by business. - (3) The commercialization of technology and industrial innovation in the United States will be enhanced if companies, in return for reasonable compensation to the Federal Government, can more easily obtain exclusive licenses to inventions which develop as a result of cooperative research with scientists employed by Federal laboratories. #### SEC. 3. USE OF FEDERAL TECHNOLOGY. Subparagraph (B) of section 11(e)(7) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710(e)(7)(B)) is amended to read as follows: "(B) A transfer shall be made by any Federal agency under subparagraph (A), for any fiscal year, only if the amount so transferred by that agency (as determined under such subparagraph) would exceed \$10,000." ## Sec. 4. TITLE TO INTELLECTUAL PROPERTY ARISING FROM COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS Subsection (b) of section 12 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a(b)) is amended to read as follows: - "(b) Enumerated Authority.— - (1) Under an agreement entered into pursuant to subsection (a)(1), the laboratory may grant, or agree to grant in advance, to a collaborating party patent licenses or assignments, or options thereto, in any invention made in whole or in part by a laboratory employee under the agreement, for reasonable compensation when appropriate. The laboratory shall ensure, through such agreement, that the collaborating party has the option to choose an exclusive license for a pre-negotiated field of use for any such invention under the agreement or, if there is more than one collaborating party, that the collaborating parties are offered the option to hold licensing rights that collectively encompass the rights that would be held under such an exclusive license by one party. In consideration for the Government's contribution under the agreement, grants under this paragraph shall be subject to the following explicit conditions: - "(A) A nonexclusive, nontransferable, irrevocable, paid-up license from the collaborating party to the laboratory to practice the invention or have the invention practiced throughout the world by or on behalf of the Government. In the exercise of such license, the Government shall not publicly disclose trade secrets or commercial or financial information that is privileged or confidential within the meaning of section 552(b)(4) of title 5, United States Code, or which would be considered as such if it had been obtained from a non-Federal party. - "(B) If a laboratory assigns title or grants an exclusive license to such an invention, the Government shall retain the right— - "(i) to require the collaborating party to grant to a responsible applicant a nonexclusive, partially exclusive, or exclusive license to use the invention in the applicant's licensed field of use, on terms that are reasonable under the circumstances; or - "(ii) if the collaborating party fails to grant such a license, to grant the license itself. - "(C) The Government may exercise its right retained under subparagraph (B) only in exceptional circumstances and only if the Government determines that— - "(i) the action is necessary to meet health or safety needs that are not reasonably satisfied by the collaborating party;" - "(ii) the action is necessary to meet requirements for public use specified by Federal regulations, and such requirements are not reasonably satisfied by the collaborating party; or - "(iii) the collaborating party has failed to comply with an agreement containing provisions described in subsection (c)(4)(B). This determination is subject to administrative appeal and judicial review under section 203(2) of title 35, United States Code. - "(2) Under agreements entered into pursuant to subsection (a)(1), the laboratory shall ensure that a collaborating party may retain title to any invention made solely by its employee in exchange for normally granting the Government a nonexclusive, nontransferable, irrevocable, paid-up license to practice the invention or have the invention practiced throughout the world by or on behalf of the Government for research or other Government purposes. - "(3) Under an agreement entered into pursuant to subsection (a)(1), a laboratory may— - "(A) accept, retain, and use funds, personnel, services, and property from a collaborating party and provide personnel, services, and property to a collaborating party; - "(B) use funds received from a collaborating party in accordance with subparagraph (A) to hire personnel to carry out the agreement who will not be subject to full-time-equivalent restrictions of the agency; - "(C) to the extent consistent with any applicable agency requirements or standards of conduct, permit an employee or
former employee of the laboratory to participate in an effort to commercialize an invention made by the employee or former employee while in the employment or service of the Government; and - "(D) waive, subject to reservation by the Government of a nonexclusive, irrevocable, paid-up license to practice the invention or have the invention practiced throughout the world by or on behalf of the Government, in advance, in whole or in part, any right of ownership which the Federal Government may have to any subject invention made under the agreement by a collaborating party or employee of a collaborating party. - "(4) A collaborating party in an exclusive license in any invention made under an agreement entered into pursuant to subsection (a)(1) shall have the right of enforcement under chapter 29 of title 35, United States Code. - "(5) A Government-owned, contractor-operated laboratory that enters into a cooperative research and development agreement pursuant to subsection (a)(1) may use or obligate royalties or other income accruing to the laboratory under such agreement with respect to any invention only— - "(A) for payments to inventors; - "(B) for purposes described in clauses (i), (ii), (iii), and (iv) of section 14(a)(1)(B); and - "(C) for scientific research and development consistent with the research and development missions and objectives of the laboratory." ## Sec. 5. DISTRIBUTION OF INCOME FROM INTELLECTUAL PROPERTY RECEIVED BY FEDERAL LABORATORIES Section 14 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710c) is amended— - (1) by amending subsection (a)(1) to read as follows: - "(1) Except as provided in paragraphs (2) and (4), any royalties or other payments received by a Federal agency from the licensing and assignment of inventions under agreements entered into by Federal laboratories under section 12, and from the licensing of inventions of Federal laboratories under section 207 of title 35, United States Code, or under any other provision of law, shall be retained by the laboratory which produced the invention and shall be disposed of as follows: - "(A) (i) The head of the agency or laboratory, or such individual's designee, shall pay each year the first \$2,000, and thereafter at least 15 percent, of the royalties or other payments to the inventor or coinventors. - "(ii) An agency or laboratory may provide appropriate incentives, from royalties, or other payments, to laboratory employees who are not an inventor of such inventions but who substantially increased the technical value of such inventions. - "(iii) The agency or laboratory shall retain the royalties and other payments received from an invention until the agency or laboratory makes payments to employees of a laboratory under clause (i) or (ii). - "(B) The balance of the royalties or other payments shall be transferred by the agency to its laboratories, with the majority share of the royalties or other payments from any invention going to the laboratory where the invention occurred. The royalties or other payments so transferred to any laboratory may be used or obligated by that laboratory during the fiscal year in which they are received or during the succeeding fiscal year— - "(i) to reward scientific, engineering, and technical employees of the laboratory, including developers of sensitive or classified technology, regardless of whether the technology has commercial applications; - "(ii) to further scientific exchange among the laboratories of the agency; - "(iii) for education and training of employees consistent with the research and development missions and objectives of the agency or laboratory, and for other activities that increase the potential for transfer of the technology of the laboratories of the agency; - "(iv) for payment of expenses incidental to the administration and licensing of intellectual property by the agency or laboratory with respect to inventions made at that laboratory, including the fees or other costs for the services of other agencies, persons, or organizations for intellectual property management and licensing services; or - "(v) for scientific research and development consistent with the research and development missions and objectives of the laboratory. - "(C) All royalties or other payments retained by the agency or laboratory after payments have been made pursuant to subparagraphs (A) and (B) that is unobligated and unexpended at the end of the second fiscal year succeeding the fiscal year in which the royalties and other payments were received shall be paid into the Treasury."; - (2) in subsection (a)(2)— - (A) by inserting "or other payments" after "royalties"; and - (B) by striking "for the purposes described in clauses (i) through (iv) of paragraph (1)(B) during that fiscal year or the succeeding fiscal year" and inserting in lieu thereof "under paragraph (1)(B)"; - (3) in subsection (a)(3), by striking "\$100,000" both places it appears and inserting "\$150,000"; - (4) in subsection (a)(4)— - (A) by striking "income" each place it appears and inserting in lieu thereof "payments"; - (B) by striking "the payment of royalties to inventors" in the first sentence thereof and inserting in lieu thereof "payments to inventors"; - (C) by striking "clause (i) of paragraph (1)(B)" and inserting in lieu thereof "clause (iv) of paragraph (1)(B)"; - (D) by striking "payment of the royalties," in the second sentence thereof and inserting in lieu thereof "offsetting the payments to inventors"; and - (E) by striking "clauses (i) through (iv) of"; and (5) by amending paragraph (1) of subsection (b) to read as follows:" - "(1) by a contractor, grantee, or participant, or an employee of a contractor, grantee, or participant, in an agreement or other arrangement with the agency." #### SEC. 6. EMPLOYEE ACTIVITIES. Section 15(a) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710d(a)) is amended— - (1) by striking "the right of ownership to an invention under this Act" and inserting in lieu thereof "ownership of or the right of ownership to an invention made by a Federal employee"; and - (2) by inserting "obtain or" after "the Government, to". #### SEC. 7. AMENDMENT TO BAYH-DOLE ACT. Section 210(e) of title 35, United States Code, is amended by striking ", as amended by the Federal Technology Transfer Act of 1986". #### SEC. 8. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY ACT AMENDMENTS. The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq.) is amended— - (1) in section 10(a)— - (A) by striking "nine" and inserting in lieu thereof "15"; and - (B) by striking "five" and inserting in lieu thereof "10"; - (2) in section 15— - (A) by striking "Pay Act of 1945; and" and inserting in lieu thereof "Pay Act of 1945;" and - (B) by inserting"; and (h) the provision of transportation services for employees of the Institute between the facilities of the Institute and nearby public transportation, notwithstanding section 1344 of title 31, United States Code" after "interests of the Government"; and - (3) in section 19— - (A) by inserting ", subject to the availability of appropriations," after "post-doctoral fellowship program"; and - (B) by striking "nor more than forty" and inserting in lieu thereof "nor more than 60". #### SEC. 9. RESEARCH EQUIPMENT. Section 11(i) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710(i)) is amended by inserting "loan, lease, or" before "give." #### SEC. 10. PERSONNEL. The personnel management demonstration project established under section 10 of the National Bureau of Standards Authorization Act for Fiscal Year 1987 (15 U.S.C. 275 note) is extended indefinitely. #### SEC. 11. FASTENER QUALITY ACT AMENDMENTS. - (a) Section 2 Amendments.—Section 2 of the Fastener Quality Act (15 U.S.C. 5401) is amended— - (1) by striking subsection (a)(4), and redesignating paragraphs (5) through (9) as paragraphs (4) through (8), respectively; - (2) in subsection (a)(7), as so redesignated by paragraph (1) of this subsection, by striking "by lot number"; and - (3) in subsection (b), by striking "used in critical applications" and inserting in lieu thereof "in commerce". - (b) Section 3 Amendments.—Section 3 of the Fastener Quality Act (15 U.S.C. 5402) is amended— - (1) in paragraph (1)(B) by striking "having a minimum tensile strength of 150,000 pounds per square inch"; - (2) in paragraph (2), by inserting "consensus" after "or any other"; - (3) in paragraph (5)— - (A) by inserting "or" after "standard or specification," in subparagraph (B); - (B) by "or" at the end of subparagraph (C); - (C) by striking subparagraph (D); and - (D) by inserting "or produced in accordance with ASTM F 432" after "307 Grade A"; - (4) in paragraph (6) by striking "other person" and inserting in lieu thereof "government agency"; - (5) in paragraph (8) by striking "Standard" and inserting in lieu thereof "Standards"; - (6) by striking paragraph (11) and redesignating paragraphs (12) through (15) as paragraphs (11) through (14), respectively; - (7) in paragraph (13), as so redesignated by paragraph (6) of this subsection, by striking ", a government agency" and all that follows through "markings of any fastener" and inserting in lieu thereof "or a government agency"; and - (8) in paragraph (14), as so redesignated by paragraph (6) of this subsection, by inserting "for the purpose of achieving a uniform hardness" after quenching and tempering". - (c) Section 4 Repeal.—Section 4 of the Fastener Quality Act (15 U.S.C. 5403) is repealed. - (d) Section 5 Amendments.—Section 5 of the Fastener Quality Act (15 U.S.C. 5404) is amended— - (1) in subsection (a)(1)(B) and (2)(A)(i) by striking "subsections (b) and (c)" and inserting in lieu thereof "subsections (b), (c), and (d)"; - (2) in subsection (c)(2) by striking "or, where applicable" and all that follows through "section 7(c)(1)"; - (3) in subsection (c)(3) by striking ", such as the chemical,
dimensional, physical, mechanical, and any other": - (4) in subsection (c)(4) by inserting "except as provided in subsection (d)," before "state whether"; and - (5) by adding at the end the following new subsection: "(d) Alternative Procedure for Chemical Characteristics.—Notwithstanding the requirements of subsections (b) and (c), a manufacturer shall be deemed to have demonstrated, for purposes of subsection (a)(1), that the chemical characteristics of a lot conform to the standards and specifications to which the manufacturer represents such lot has been manufactured if the following requirements are met: - "(1) The coil or heat number of metal from which such lot was fabricated has been inspected and tested with respect to its chemical characteristics by a laboratory accredited in accordance with the procedures and conditions specified by the Secretary under section 6. - "(2) Such laboratory has provided to the manufacturer, either directly or through the metal manufacturer, a written inspection and testing report, which shall be in a form prescribed by the Secretary by regulation, listing the chemical characteristics of such coil or heat number. - "(3) The report described in paragraph (2) indicates that the chemical characteristics of such coil or heat number conform to those required by the standards and specifications to which the manufacturer represents such lot has been manufactured. - "(4) The manufacturer demonstrates that such lot has been fabricated from the coil or heat number of metal to which the report described in paragraphs (2) and (3) relates. In prescribing the form of report required by subsection (c), the Secretary shall provide for an alternative to the statement required by subsection (c)(4), insofar as such statement pertains to chemical characteristics, for cases in which a manufacturer elects to use the procedure permitted by this subsection." - (e) Section 6 Amendment.—Section 6(a)(1) of the Fastener Quality Act (15 U.S.C. 5405(a)(1)) is amended by striking "Within 180 days after the date of enactment of this Act, the" and inserting in lieu thereof "The". - (f) Section 7 Amendments.—Section 7 of the Fastener Quality Act (15 U.S.C. 5406) is amended—(1) by amending subsection (a) to read as follows: - "(a) Domestically Produced Fasteners.—It shall be unlawful for a manufacturer to sell any shipment of fasteners covered by this Act which are manufactured in the United States unless the fasteners— - "(1) have been manufactured according to the requirements of the applicable standards and specifications and have been inspected and tested by a laboratory accredited in accordance with the procedures and conditions specified by the Secretary under section 6; and - "(2) an original laboratory testing report described in section 5(c) and a manufacturer's certificate of conformance are on file with the manufacturer, or under such custody as may be prescribed by the Secretary, and available for inspection."; - (2) in subsection (c)(2) by inserting "to the same" after "in the same manner and"; - (3) in subsection (d)(1) by striking "certificate" and inserting in lieu thereof "test report"; and - (4) by striking subsections (e), (f), and (g) and inserting in lieu thereof the following: - "(e) Commingling.—It shall be unlawful for any manufacturer, importer, or private label distributor to commingle like fasteners from different lots in the same container, except that such manufacturer, importer, or private label distributor may commingle like fasteners of the same type, grade, and dimension from not more than two tested and certified lots in the same container during repackaging and plating operations. Any container which contains fasteners from two lots shall be conspicuously marked with the lot identification numbers of both lots. - "(f) Subsequent Purchaser.—If a person who purchases fasteners for any purpose so requests either prior to the sale or at the time of sale, the seller shall conspicuously mark the container of the fasteners with the lot number from which such fasteners were taken." - (g) Section 9 Amendment.—Section 9 of the Fastener Quality Act (15 U.S.C. 5408) is amended by adding at the end the following new subsection: - "(d) Enforcement.—The Secretary may designate officers or employees of the Department of Commerce to conduct investigations pursuant to this Act. In conducting such investigations, those officers or employees may, to the extent necessary or appropriate to the enforcement of this Act, exercise such authorities as are conferred upon them by other laws of the United States, subject to policies and procedures approved by the Attorney General." - (h) Section 10 Amendments.—Section 10 of the Fastener Quality Act (15 U.S.C. 5409) is amended— - (1) in subsections (a) and (b), by striking "10 years" and inserting in lieu thereof "5 years"; and - (2) in subsection (b), by striking "any subsequent" and inserting in lieu thereof "the subsequent." - (i) Section 13 Amendment.—Section 13 of the Fastener Quality Act (15 U.S.C. 5412) is amended by striking "within 180 days after the date of enactment of this Act". - (j) Section 14 Repeal.—Section 14 of the Fastener Quality Act (15 U.S.C. 5413) is repealed. #### SEC. 12. STANDARDS CONFORMITY. - (a) Use of Standards.—Section 2(b) of the National Institute of Standards and Technology Act (15 U.S.C. 272(b)) is amended— - (1) in paragraph (2), by striking ", including comparing standards" and all that follows through "Federal Government"; - (2) by redesignating paragraphs (3) through (11) as paragraphs (4) through (12), respectively; and - (3) by inserting after paragraph (2) the following new paragraph: - "(3) to compare standards used in scientific investigations, engineering, manufacturing, commerce, industry, and educational institutions with the standards adopted or recognized by the Federal Government and to coordinate the use by Federal agencies of private sector standards, emphasizing where possible the use of standards developed by private, consensus organizations;" - (b) Conformity Assessment Activities.—Section 2(b) of the National Institute of Standards and Technology Act (15 U.S.C. 272(b)) is amended— - (1) by striking "and" at the end of paragraph (11), as so redesignated by subsection (a)(2) of this section; - (2) by striking the period at the end of paragraph (12), as so redesignated by subsection (a)(2) of this section, and inserting in lieu thereof; "and"; and - (3) by adding at the end the following new paragraph: - "(13) to coordinate Federal, State, and local technical standards activities and conformity assessment activities, with private sector technical standards activities and conformity assessment activities, with the goal of eliminating unnecessary duplication and complexity in the development and promulgation of conformity assessment requirements and measures. - "(c) Transmittal of Plan to Congress.—The National Institute of Standards and Technology shall, within 90 days after the date of enactment of this Act, transmit to the Congress a plan for implementing the amendments made by this section. - (d) Utilization of Consensus Technical Standards by Federal Agencies; Reports.— - (1) In general.—Except as provided in paragraph (3) of this subsection, all Federal agencies and departments shall use technical standards that are developed or adopted by voluntary consensus standards bodies, using such technical standards as a means to carry out policy objectives or activities determined by the agencies and departments. - (2) Consultation; participation.—In carrying out paragraph (1) of this subsection, Federal agencies and departments shall consult with voluntary, private sector, consensus standards bodies and shall, when such participation is in the public interest and is compatible with agency and departmental missions, authorities, priorities, and budget resources, participate with such bodies in the development of technical standards. - (3) Exception.—If compliance with paragraph (1) of this subsection is inconsistent with applicable law or otherwise impractical, a Federal agency or department may elect to use technical standards that are not developed or adopted by voluntary consensus standards bodies if the head of each such agency or department transmits to the Office of Management and Budget an explanation of the reasons for using such standards. Each year, beginning with fiscal year 1997, the Office of Management and Budget shall transmit to Congress and its committees a report summarizing all explanations received in the preceding year under this paragraph. - (4) Definition of technical standards.—As used in this subsection, the term "technical standards" means performance-based or design-specific technical specifications and related management systems practices. #### SEC. 13. SENSE OF CONGRESS. It is the sense of the Congress that the Malcolm Baldrige National Quality Award program offers substantial benefits to United States industry, and that all funds appropriated for such program should be spent in support of the goals of the program. Approved March 7, 1996. **** April 26, 1996, 110 Stat. 1321 (Public Law 104-134—104th Congress, 2nd session) *Omnibus Consolidated Rescissions and Appropriations Act of 1996*. #### **Public Law 104-134** #### AN ACT Making appropriations for fiscal year 1996 to make a further downpayment toward a balanced budget, and for other purposes. TITLE II—DEPARTMENT OF COMMERCE AND RELATED AGENCIES Science and Technology #### National Institute of Standards and Technology (101 Stat. 1321-27) #### Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$259,000,000, to remain available until expended, of which not to exceed \$8,500,000 may be transferred to the "Working Capital Fund." #### **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership and the Advanced
Technology Program of the National Institute of Standards and Technology, \$301,000,000, to remain available until expended, of which \$80,000,000 shall be for the Manufacturing Extension Partnership, and of which \$221,000,000 shall be for the Advanced Technology Program: Provided, That not to exceed \$500,000 may be transferred to the "Working Capital Fund." #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$60,000,000, to remain available until expended. National Institute of Standards and Technology (101 Stat. 1321-29) Construction of Research Facilities (Rescission) Of the unobligated balances available under this heading, \$75,000,000 are rescinded. **** September 30, 1996, 110 Stat. 3009 (Public Law 104-208—104th Congress, 2nd session) *Omnibus Consolidated Appropriations Act, 1997*. **Public Law 104-208** #### AN ACT Making omnibus consolidated appropriations for the fiscal year ending September 30, 1997, and for other purposes. #### TITLE II—DEPARTMENT OF COMMERCE AND RELATED AGENCIES Science and Technology National Institute of Standards and Technology (110 Stat. 3009-36-37) Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$268,000,000, to remain available until expended, of which not to exceed \$1,625,000 may be transferred to the "Working Capital Fund". #### **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$95,000,000, to remain available until expended, of which not to exceed \$300,000 may be transferred to the "Working Capital Fund": Provided, That notwithstanding the time limitations imposed by 15 U.S.C. 278k(c) (1) and (5) on the duration of Federal financial assistance that may be awarded by the Secretary of Commerce to Regional Centers for the transfer of Manufacturing Technology ("Centers"), such Federal financial assistance for a Center may continue beyond six years and may be renewed for additional periods, not to exceed one year, at a rate not to exceed one-third of the Center's total annual costs, subject before any such renewal to a positive evaluation of the Center and to a finding by the Secretary of Commerce that continuation of Federal funding to the Center is in the best interest of the Regional Centers for the transfer of Manufacturing Technology Program. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$225,000,000, to remain available until expended, of which not to exceed \$500,000 may be transferred to the "Working Capital Fund." National Institute of Standards and Technology (110 Stat. 3009-39) ## Construction of Research Facilities (Rescission) Of the obligated and unobligated balances available under this heading, \$16,000,000 are rescinded. **** October 11, 1996, 110 Stat. 3411 (Public Law 104-289—104th Congress, 2nd session) Savings in Construction Act of 1996. **Public Law 104-289** #### AN ACT To provide for appropriate implementation of the Metric Conversion Act of 1975 in Federal construction projects, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SEC. 1. SHORT TITLE. This Act may be cited as the "Savings in Construction Act of 1996". SEC. 2. FINDINGS. The Congress finds the following: - (1) The Metric Conversion Act of 1975 was enacted in order to set forth the policy of the United States to convert to the metric system. Section 3 of that Act requires that each Federal agency use the metric system of measurements in its procurement, grants, and other business-related activities, unless that use is likely to cause significant cost or loss of markets to United States firms, such as when foreign competitors are producing competing products in non-metric units. - (2) In accordance with that Act and Executive Order 12770, of July 25, 1991, Federal agencies increasingly construct new Federal buildings in round metric dimensions. As a result, companies that wish to bid on Federal construction projects increasingly are asked to supply materials or products in round metric dimensions. - (3) While the Metric Conversion Act of 1975 currently provides an exemption to metric usage when impractical or when such usage will cause economic inefficiencies, amendments are warranted to ensure that the use of specific metric components in metric construction projects do not increase the cost of Federal buildings to the taxpayers. #### SEC. 3. DEFINITIONS. Section 4 of the Metric Conversion Act of 1975 (15 U.S.C. 205c) is amended— - (1) by striking "and" at the end of paragraph (3); - (2) by striking "Commerce." in paragraph (4) and inserting "Commerce;"; and - (3) by inserting after paragraph (4) the following: - "(5) 'full and open competition' has the same meaning as defined in section 403(6) of title 41, United States Code: - "(6) 'total installed price' means the price of purchasing a product or material, trimming or otherwise altering some or all of that product or material, if necessary to fit with other building components, and then installing that product or material into a Federal facility; - "(7) 'hard-metric' means measurement, design, and manufacture using the metric system of measurement, but does not include measurement, design, and manufacture using English system measurement units which are subsequently reexpressed in the metric system of measurement; - "(8) 'cost or pricing data or price analysis' has the meaning given such terms in section 304A of the Federal Property and Administrative Services Act of 1949 (41 U.S.C. 254b); and - "(9) 'Federal facility' means any public building (as defined under section 13 of the Public Buildings Act of 1959 (40 U.S.C. 612) and shall include any Federal building or construction project— - "(A) on lands in the public main; - "(B) on lands used in connection with Federal programs for agriculture research, recreation, and conservation programs; - "(C) on or used in connection with river, harbor, flood control, reclamation, or power projects; - "(D) on or used in connection with housing and residential projects; - "(E) on military installations (including any fort, camp, post, naval training station, airfield, proving ground, military supply depot, military school, or any similar facility of the Department of Defense); - "(F) on installations of the Department of Veteran Affairs used for hospital or domiciliary purposes; or - "(G) on lands used in connection with Federal prisons, but does not include (i) any Federal building or construction project the exclusion of which the President deems to be justified in the public interest, or (ii) any construction project or building owned or controlled by a State government, local government, Indian tribe, or any private entity." #### SEC. 4. IMPLEMENTATION IN ACQUISITION OF FEDERAL FACILITIES. (a) The Metric Conversion Act of 1975 (15 U.S.C. 205 et seq.) is amended by inserting after section 13 the following new section: ## "Sec. 14. IMPLEMENTATION IN ACQUISITION OF CONSTRUCTION SERVICES AND MATERIALS FOR FEDERAL FACILITIES. - "(a) In General.—Construction services and materials for Federal facilities shall be procured in accordance with the policies and procedures set forth in chapter 137 of title 10, United States Code, section 2377 of title 10, United States Code, title III of the Federal Property and Administrative Services Act of 1949 (41 U.S.C. 251 et seq.), and section 3(2) of this Act. Determination of a design method shall be based upon preliminary market research as required under section 2377(c) of title 10, United States Code, and section 314B(c) of the Federal Property and Administrative Services Act of 1949 (41 U.S.C. 264b(c)). If the requirements of this Act conflict with the provisions of section 2377 of title 10, United States Code, or section 314B of the Federal Property and Administrative Services Act of 1949, then the provisions of 2377 or 314B shall take precedence. - "(b) Concrete Masonry Units.—In carrying out the policy set forth in section 3 (with particular emphasis on the policy set forth in paragraph (2) of that section) a Federal agency may require that specifications for the acquisition of structures or systems of concrete masonry be expressed under the metric system of measurement, but may not incorporate specifications, that can only be satisfied by hard-metric versions of concrete masonry units, in a solicitation for design or construction of a Federal facility within the United States or its territories, or a portion of said Federal facility, unless the head of the agency determines in writing that— - "(1) hard-metric specifications are necessary in a contract for the repair or replacement of parts of Federal facilities in existence or under construction upon the effective date of the Savings in Construction Act of 1996; or - "(2) the following 2 criteria are met: - "(A) the application requires hard-metric concrete masonry units to coordinate dimensionally into 100 millimeter building modules; and - "(B) the total installed price of hard-metric concrete masonry units is estimated to be equal to or less than the total installed price of using non-hard-metric concrete masonry units. Total installed price estimates shall be based, to the extent available, on cost or pricing data or price analysis, using actual hard -metric and non-hard-metric offers received for comparable existing projects. The head of the agency shall include in the writing required in this subsection an explanation of the factors used to develop the price estimates. - "(c) Recessed Lighting Fixtures.—In
carrying out the policy set forth in section 3 (with particular emphasis on the policy set forth in paragraph (2) of that section) a Federal agency may require that specifications for the acquisition of structures or systems of recessed lighting fixtures be expressed under the metric system of measurement, but may not incorporate specifications, that can only be satisfied by hard-metric versions of recessed lighting fixtures, in a solicitation for design or construction of a Federal facility within the United States or its territories unless the head of the agency determines in writing that— - "(1) the redominant voluntary industry consensus standards include the use of hard-metric for the items specified; or - "(2) hard-metric specifications are necessary in a contract for the repair or replacement of parts of Federal facilities in existence or under construction upon the effective date of the Savings in Construction Act of 1996; or - "(3) the following 2 criteria are met: - "(A) the application requires hard-metric recessed lighting fixtures to coordinate dimensionally into 100 millimeter building modules; and - "(B) the total installed price of hard-metric recessed lighting fixtures is estimated to be equal to or less than the total installed price of using non-hard-metric recessed lighting fixtures. Total installed price estimates shall be based, to the extent available, on cost or pricing data or price analysis, using actual hard-metric and non-hard-metric offers received for comparable existing projects. The head of the agency shall include in the writing required in this subsection an explanation of the factors used to develop the price estimates. - "(d) Limitation.—The provisions of subsections (b) and (c) of this section shall not apply to Federal contracts to acquire construction products for the construction of facilities outside of the United States and its territories. - "(e) Expiration.—The provisions contained in subsections (b) and (c) of this section shall expire 10 years from the effective date of the Savings in Construction Act of 1996." #### SEC. 5. OMBUDSMAN. Section 14 of the Metric Conversion Act of 1975, as added by section 4 of this Act, is further amended by adding at the end the following new subsection: - "(f) Agency Ombudsman.—(1) The head of each executive agency that awards construction contracts within the United States and its territories shall designate a senior agency official to serve as a construction metrication ombudsman who shall be responsible for reviewing and responding to complaints from prospective bidders, subcontractors, suppliers, or their designated representatives related to— - "(A) guidance or regulations issued by the agency on the use of the metric system of measurement in contracts for the construction of Federal buildings; and - "(B) the use of the metric system of measurement for services and materials required for incorporation in individual projects to construct Federal buildings. The construction metrication ombudsman shall be independent of the contracting officer for construction contracts. - "(2) The ombudsman shall be responsible for ensuring that the agency is not implementing the metric system of measurement in a manner that is impractical or is likely to cause significant inefficiencies or loss of markets to United States firms in violation of the policy stated in section 3(2), or is otherwise inconsistent with guidance issued by the Secretary of Commerce in consultation with the Interagency Council on Metric Policy while ensuring that the goals of the Metric Conversion Act of 1975 are observed. - "(3) The ombudsman shall respond to each complaint in writing within 60 days and make a recommendation to the head of the executive agency for an appropriate resolution thereto. In such a recommendation, the ombudsman shall consider— - "(A) whether the agency is adequately applying the policies and procedures in this section; - "(B) whether the availability of hard-metric products and services from United States firms is sufficient to ensure full and open competition; and - "(C) the total installed price to the Federal Government. - "(4) After the head of the agency has rendered a decision regarding a recommendation of the ombudsman, the ombudsman shall be responsible for communicating the decision to all appropriate policy, design, planning, procurement, and notifying personnel in the agency. The ombudsman shall conduct appropriate monitoring as required to ensure the decision is implemented, and may submit further recommendations, as needed. The head of the agency's decision on the ombudsman's recommendations, and any supporting documentation, shall be provided to affected parties and made available to the public in a timely manner. - "(5) Nothing in this section shall be construed to supersede the bid protest process established under subchapter V of chapter 35 of title 31, United States Code." #### SEC. 6. EFFECTIVE DATE AND MISCELLANEOUS PROVISIONS. - (a) Effective Date.—This Act and the amendments made by this Act shall take effect 90 days after the date of enactment of this Act. - (b) Savings Provisions.—This Act shall not apply to contracts awarded and solicitations issued on or before the effective date of this Act, unless the head of a Federal agency makes a written determination in his or her sole discretion that it would be in the public interest to apply one or more provisions of this Act or its amendments to these existing contracts or solicitations. Approved October 11, 1996. **** June 12, 1997, 111 Stat. 158 (Public Law 105-18—105th Congress, 1st session) 1997 Emergency Supplemental Appropriations Act for Recovery From Natural Disasters, and for Overseas Peacekeeping Efforts, Including those in Bosnia. Public Law 105-18 #### AN ACT Making emergency supplemental appropriations for recovery from natural disasters, and for overseas peacekeeping efforts, including those in Bosnia, for the fiscal year ending September 30, 1997, and for other purposes. ## TITLE II—EMERGENCY SUPPLEMENTAL APPROPRIATIONS FOR RECOVERY FROM NATURAL DISASTERS Chapter 2. DEPARTMENT OF COMMERCE National Institute of Standards and Technology (111 Stat. 173) **Industrial Technology Services** Of the amount provided under this heading in Public Law 104-208 for the Advanced Technology Program, not to exceed \$35,000,000 shall be available for the award of new grants. National Institute of Standards and Technology (111 Stat. 203) ## Industrial Technology Services (Rescission) Of the unobligated balances available under this heading for the Advanced Technology Program, \$7,000,000 are rescinded. **** October 1, 1997, 111 Stat. 1159 (Public Law 105-47—105th Congress, 1st session) Authorization of Appropriations for Carrying Out the Earthquake Hazards Reduction Act of 1977. #### Public Law 105-47 #### AN ACT To authorize appropriations for carrying out the Earthquake Hazards Reduction Act of 1977 for fiscal years 1998 and 1999, and for other purposes. #### SEC. 3. COMPREHENSIVE ENGINEERING RESEARCH PLAN. (111 Stat. 1162-63) - (a) National Science Foundation.—Section 5(b)(4) of the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7704(b)(4)) is amended— - (1) by striking "and" at the end of subparagraph (D); - (2) by striking the period at the end of subparagraph (E) and inserting; "and"; and - (3) by adding at the end the following: - "(F) develop, in conjunction with the Federal Emergency Management Agency, the National Institute of Standards and Technology, and the United States Geological Survey, a comprehensive plan for earthquake engineering research to effectively use existing facilities and laboratories (in existence at the time of the development of the plan), upgrade facilities and equipment as needed, and integrate new, innovative testing approaches to the research infrastructure in a systematic manner." - (b) Federal Emergency Management Agency.—Section 5(b)(1) of the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7704(b)(1)) is amended— - (1) by striking "and" at the end of subparagraph (D); - (2) by striking the period at the end of subparagraph (E) and inserting; "and"; and - (3) by adding at the end the following: - "(F) work with the National Science Foundation, the National Institute of Standards and Technology, and the United States Geological Survey, to develop a comprehensive plan for earthquake engineering research to effectively use existing testing facilities and laboratories (existing at the time of the development of the plan), upgrade facilities and equipment as needed, and integrate new, innovative testing approaches to the research infrastructure in a systematic manner." - (c) United States Geological Survey.—Section 5(b)(3) of the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7704(b)(3)) is amended— - (1) by striking "and" at the end of subparagraph (E); - (2) by striking the period at the end of subparagraph (G) and inserting; "and"; and - (3) by adding at the end the following: - "(H) work with the National Science Foundation, the Federal Emergency Management Agency, and the National Institute of Standards and Technology to develop a comprehensive plan for earth-quake engineering research to effectively use existing testing facilities and laboratories (in existence at the time of the development of the plan), upgrade facilities and equipment as needed, and integrate new, innovative testing approaches to the research infrastructure in a systematic manner." - (d) National Institute of Standards and Technology.—Section 5(b)(5) of the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7704(b)(5)) is amended— - (1) by striking "and" at the end of subparagraph (B); - (2) by striking the period at the end of subparagraph (C) and inserting; "and"; and - (3) by adding at the end the following: - "(D) work with the National Science Foundation, the Federal Emergency Management Agency, and the United States Geological Survey to develop a
comprehensive plan for earthquake engineering research to effectively use existing testing facilities and laboratories (in existence at the time of the development of the plan), upgrade facilities and equipment as needed, and integrate new, innovative testing approaches to the research infrastructure in a systematic manner." **** November 18, 1997, 111 Stat. 1629 (Public Law 105-85—105th Congress, 1st session) National Defense Authorization Act. 1998. #### Public Law 105-85 #### AN ACT To authorize appropriations for fiscal year 1998 for military activities of the Department of Defense, for military construction, and for defense activities of the Department of Energy, to prescribe personnel strengths for such fiscal year for the Armed Forces, and for other purposes. SEC. 850. Use of Electronic Commerce in Federal Procurement. (111 Stat. 1847-48) - "SEC. 30. Use of Electronic Commerce in Federal Procurement - "(d) Implementation.—The Administrator shall, in carrying out the requirements of this section— - "(3) consult with the heads of appropriate Federal agencies with applicable technical and functional expertise, including the Office of Information and Regulatory Affairs, the National Institute of Standards and Technology, the General Services Administration, and the Department of Defense. SEC. 1073. Technical and Clerical Amendments. (111 Stat. 1906-07) - (h) Amendments to Conform Change in short Title of Information Technology Management Reform Act of 1996.— - (1) Section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3) is amended in subsections (a)(4) and (b)(2) by striking out "Information Technology Management Reform Act of 1996" and inserting in lieu thereof "Clinger-Cohen Act of 1996 (40 U.S.C. 1441)". **** November 26, 1997, 111 Stat. 2440 (Public Law 105-119—105th Congress, 1st session) Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act, 1998. #### **Public Law 105-119** #### AN ACT Making appropriations for the Department of Commerce, Justice, and State, the Judiciary, and related agencies for the fiscal year ending September 30, 1998, and for other purposes. #### TITLE II—DEPARTMENT OF COMMERCE AND RELATED AGENCIES National Institute of Standards and Technology (111 Stat. 2476-77) For necessary expenses of the National Institute of Standards and Technology, \$276,852,000, to remain available until expended, of which not to exceed \$3,800,000 shall be used to fund a cooperative agreement with Texas Tech University for wind research; and of which not to exceed \$5,000,000 of the amount above \$268,000,000 shall be used to fund a cooperative agreement with Montana State University for a research program on green buildings; and of which not to exceed \$1,625,000 may be transferred to the "Working Capital Fund". Industrial Technology Services. For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$113,500,000, to remain available until expended, of which not to exceed \$300,000 may be transferred to the "Working Capital Fund": Provided, That notwithstanding the time limitations imposed by 15 U.S.C. 278k(c)(1) and (5) on the duration of Federal financial assistance that may be awarded by the Secretary of Commerce to Regional Centers for the transfer of Manufacturing Technology ("Centers"), such Federal financial assistance for a Center may continue beyond six years and may be renewed for additional periods, not to exceed one year, at a rate not to exceed one-third of the Center's total annual costs, subject before any such renewal to a positive evaluation of the Center and to a finding by the Secretary of Commerce that continuation of Federal funding to the Center is in the best interest of the Regional Centers for the transfer of Manufacturing Technology Program: Provided further, That the Center's most recent performance evaluation is positive, and the Center has submitted a reapplication which has successfully passed merit review. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$192,500,000, to remain available until expended, of which not to exceed \$82,000,000 shall be available for the award of new grants, and of which not to exceed \$500,000 may be transferred to the "Working Capital Fund." #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$95,000,000, to remain available until expended: Provided, That of the amounts provided under this heading, \$78,308,000 shall be available for obligation and expenditure only after submission of a plan for the expenditure of these funds, in accordance with section 605 of this Act. **** June 9, 1998, 112 Stat. 107 (Public Law 105-178—105th Congress, 2nd session) *Transportation Equity Act For the 21st Century*. #### **Public Law 105-178** #### AN ACT To authorize funds for Federal-aid highways, highway safety programs, and transit programs, and for other purposes. SEC. 5012. (112 Stat. 425) Surface Transportation Research. Chapter 5 of title 23, United States Code (as added by section 5101 of this title), is amended by adding at the end of the following: "SEC. 502 (c) Contents of Research Program.—The Secretary shall include in surface transportation research, technology development, and technology transfer programs carried out under this title coordinated activities in the following areas: "(9) Standardized estimates, to be developed in conjunction with the National Institute of Standards and Technology and other appropriate organizations, of useful life under various conditions for advanced materials of use in surface transportation." **** August 14, 1998, 112 Stat. 1536 (Public Law 105-234—105th Congress, 2nd session) Fastener Quality Act Amendment. #### **Public Law 105-234** #### AN ACT Amending the Fastener Quality Act to exempt from its coverage certain fasteners approved by the Federal Aviation Administration for use in aircraft. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, #### SEC. 1. AMENDMENT. Section 15 of the Fastener Quality Act (15 U.S.C. 5414) is amended— - (1) by inserting "(a) Transitional Rule.—" before "The requirements of this Act"; and - (2) by adding at the end the following new subsection: - "(b) Aircraft Exemption.— - "(1) In general.—The requirements of this Act shall not apply to fasteners specifically manufactured or altered for use on an aircraft if the quality and suitability of those fasteners for that use has been approved by the Federal Aviation Administration, except as provided in paragraph (2) - "(2) Exception.—Paragraph (1) shall not apply to fasteners represented by the fastener manufacturer as having been manufactured in conformance with standards or specifications established by a consensus standards organization or a Federal agency other than the Federal Aviation Administration." #### SEC. 2. DELAYED IMPLEMENTATION OF REGULATIONS. The regulations issued under the Fastener Quality Act by the National Institute of Standards and Technology on April 14, 1998, and any other regulations issued by the National Institute of Standards and Technology pursuant to the Fastener Quality Act, shall not take effect until after the later of June 1, 1999, or the expiration of 120 days after the Secretary of Commerce transmits to the Committee on Science and the Committee on Commerce of the House of Representatives, and to the Committee on Commerce, Science, and Transportation of the Senate, a report on— - (1) changes in fastener manufacturing processes that have occurred since the enactment of the Fastener Quality Act; - (2) a comparison of the Fastener Quality Act to other regulatory programs that regulate the various categories of fasteners, and an analysis of any duplication that exists among programs; and - (3) any changes in that Act that may be warranted because of the changes reported under paragraphs (1) and (2). The report required by this section shall be transmitted to the Committee on Science and the Committee on Commerce of the House of Representatives, and to the Committee on Commerce, Science, and Transportation of the Senate, by February 1, 1999. Approved August 14, 1998. **** October 9, 1998, 112 Stat. 1870 (Public Law 105-251—105th Congress, 2nd session) *Criminal Identification Technology*. #### **Public Law 105-251** #### AN ACT To provide for the improvement of interstate criminal justice identification, information, communications. SEC. 102(b) (112 Stat. 1871) State Grant Program for Criminal Justice Identification, Information, and Communication. - (b) Use of Grant Amounts.—Grants under this section may be used for programs to establish, develop, update, or upgrade— - (1) State centralized, automated, adult and juvenile criminal history record information systems, including arrest and disposition reporting; - (2) automated fingerprint identification systems that are compatible with standards established by the National Institute of Standards and Technology and interoperable with the Integrated Automated Fingerprint Identification System (IAFIS) of the Federal Bureau of Investigation; - (3) finger imaging, live scan, and other automated systems to digitize fingerprints and to communicate prints in a manner that is compatible with standards established by the National Institute of Standards and Technology and interoperable with systems operated by States and by the Federal Bureau of Investigation. **** October 19, 1998, 112 Stat. 2386 (Public Law 105-271—105th Congress, 2nd session) *Year 2000 Information and Readiness Disclosure Act.* #### **Public Law 105-271** #### AN ACT To encourage
the disclosure and exchange of information about computer processing problems, solutions, test practices and test results, and related matters in connection with the transition to the year 2000. Sec. 9. (112 Stat. 2394) NATIONAL INFORMATION CLEARINGHOUSE AND WEBSITE. - (a) National Website.— - (1) In general.—The Administrator of General Services shall create and maintain until July 14, 2002, a national year 2000 website, and promote its availability, designed to assist consumers, small business, and local governments in obtaining information from other governmental websites, hotlines, or information clearinghouses about year 2000 processing of computers, systems, products, and services, including websites maintained by independent agencies and other departments. - (2) Consultation.—In creating the national year 2000 website, the Administrator of General Services shall consult with— - (A) the Director of the Office of Management and Budget; - (B) the Administrator of the Small Business Administration; - (C) the Consumer Product Safety Commission; - (D) officials of State and local governments; - (E) the Director of the National Institute of Standards and Technology; - (F) representatives of consumer and industry groups; and - (G) representatives of other entities, as determined appropriate. **** October 21, 1998, 112 Stat. 2681 (Public Law 105-277—105th Congress, 2nd session) *Omnibus Consolidated and Emergency Supplemental Appropriations Act, 1999*. **Public Law 105-277** #### AN ACT Making omnibus consolidated and emergency appropriations for fiscal year ending September 30, 1999, and for other purposes. #### TITLE II—DEPARTMENT OF COMMERCE AND RELATED AGENCIES National Institute of Standards and Technology (112 Stat. 2681-82-83) #### Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$280,136,000, to remain available until expended, of which not to exceed \$1,625,000 may be transferred to the "Working Capital Fund". Industrial Technology Services. For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$106,800,000, to remain available until expended: Provided, That notwithstanding the time limitations imposed by 15 U.S.C. 278k(c) (1) and (5) on the duration of Federal financial assistance that may be awarded by the Secretary of Commerce to Regional Centers for the transfer of Manufacturing Technology ("Centers"), such Federal financial assistance for a Center may continue beyond six years and may be renewed for additional periods, not to exceed one year, at a rate not to exceed one-third of the Center's total annual costs or the level of funding in the sixth year, whichever is less, subject before any such renewal to a positive evaluation of the Center and to a finding by the Secretary of Commerce that continuation of Federal funding to the Center is in the best interest of the Regional Centers for the transfer of Manufacturing Technology Program: Provided further, That the Center's most recent performance evaluation is positive, and the Center has submitted a reapplication which has successfully passed merit review. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$203,500,000, to remain available until expended, of which not to exceed \$66,000,000 shall be available for the award of new grants, and of which not to exceed \$500,000 may be transferred to the "Working Capital Fund." #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$56,714,000, to remain available until expended: Provided, That of the amounts provided under this heading, \$40,000,000 shall be available for obligation and expenditure only after submission of a plan for the expenditure of these funds, in accordance with section 605 of this Act. National Institute of Standards and Technology (112 Stat. 2681-118) Industrial Technology Services (Rescission) Of the unobligated balances available under this heading for the Advanced Technology Program, \$6,000,000 are rescinded. **** October 28, 1998, 112 Stat. 2919 (Public Law 105-305—105th Congress, 2nd session) Next Generation Internet Research Act of 1998. #### **Public Law 105-305** #### AN ACT To amend the High-Performance Computing Act of 1991 to authorize appropriations for fiscal years 1999 and 2000 for the Next Generation Internet program, to require the President's Information Technology Advisory Committee to monitor and give advice concerning the development and implementation of the Next Generation Internet program and report to the President and the Congress on its activities, and for other purposes. #### SEC. 5. (112 Stat. 2921) NEXT GENERATION INTERNET. Title I of the High-Performance Computing Act of 1991 (15 U.S.C. 5511 et seq.) is amended by adding at the end the following new section: #### "SEC. 103. NEXT GENERATION INTERNET. - "(a) Establishment.—The National Science Foundation, the Department of Energy, the National Institutes of Health, the National Aeronautics and Space Administration, and the National Institute of Standards and Technology may support the Next Generation Internet program. The objectives of the Next Generation Internet program shall be to— - "(1) support research, development, and demonstration of advanced networking technologies to increase the capabilities and improve the performance of the Internet; - "(2) develop an advanced testbed network connecting a significant number of research sites, including universities, Federal research institutions, and other appropriate research partner institutions, to support networking research and to demonstrate new networking technologies; and - "(3) develop and demonstrate advanced Internet applications that meet important national goals or agency mission needs, and that are supported by the activities described in paragraphs (1) and (2). - "(b) Duties of Advisory Committee.—The President's Information Technology Advisory Committee (established pursuant to section 101(b) by Executive Order No. 13035 of February 11, 1997 (62 F.R. 7131), as amended by Executive Order No. 13092 of July 24, 1998), in addition to its functions under section 101(b), shall— - "(1) assess the extent to which the Next Generation Internet program— - "(A) carries out the purposes of this Act; and - "(B) addresses concerns relating to, among other matters— - "(i) geographic penalties (as defined in section 7(1) of the Next Generation Internet Research Act of 1998); - "(ii) the adequacy of access to the Internet by Historically Black Colleges and Universities, Hispanic Serving Institutions, and small colleges and universities (whose enrollment is less than 5,000) and the degree of participation of those institutions in activities described in subsection (a); and - "(iii) technology transfer to and from the private sector; - "(2) review the extent to which the role of each Federal agency and department involved in implementing the Next Generation Internet program is clear and complementary to, and non-duplicative of, the roles of other participating agencies and departments; - "(3) assess the extent to which Federal support of fundamental research in computing is sufficient to maintain the Nation's critical leadership in this field; and - "(4) make recommendations relating to its findings under paragraphs (1), (2), and (3). - "(c) Reports.—The Advisory Committee shall review implementation of the Next Generation Internet program and shall report, not less frequently than annually, to the President, the Committee on Commerce, Science, and Transportation, the Committee on Appropriations, and the Committee on Armed Services of the Senate, and the Committee on Science, the Committee on Appropriations, and the Committee on National Security of the House of Representatives on its findings and recommendations for the preceding fiscal year. The first such report shall be submitted 6 months after the date of the enactment of the Next Generation Internet Research Act of 1998 and the last report shall be submitted by September 30, 2000. - "(d) Authorization of Appropriations.—There are authorized to be appropriated for the purposes of this section— - "(1) for the Department of Energy, \$22,000,000 for fiscal year 1999 and \$25,000,000 for fiscal year 2000; - "(2) for the National Science Foundation, \$25,000,000 for fiscal year 1999 and \$25,000,000 for fiscal year 2000, as authorized in the National Science Foundation Authorization Act of 1998; - "(3) for the National Institutes of Health, \$5,000,000 for fiscal year 1999 and \$7,500,000 for fiscal year 2000; - "(4) for the National Aeronautics and Space Administration, \$10,000,000 for fiscal year 1999 and \$10,000,000 for fiscal year 2000; and - "(5) for the National Institute of Standards and Technology, \$5,000,000 for fiscal year 1999 and \$7,500,000 for fiscal year 2000. Such funds may not be used for routine upgrades to existing federally funded communication networks. **** October 30, 1998, 112 Stat. 2935 (Public Law 105-309—105th Congress, 2nd session) *Technology Administration Act of 1998*. #### **Public Law 105-309** #### AN ACT To authorize appropriations for the National Institute of Standards and Technology for fiscal years 1998 and 1999, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, #### SEC. 1. SHORT TITLE. This Act may be cited as the "Technology Administration Act of 1998". #### SEC. 2. MANUFACTURING EXTENSION PARTNERSHIP PROGRAM CENTER EXTENSION. Section 25(c)(5) of the National Institute of Standards and Technology Act (15 U.S.C. 278k(c)(5)) is
amended by striking, "which are designed" and all that follows through "operation of a Center." and inserting in lieu thereof". After the sixth year, a Center may receive additional financial support under this section if it has received a positive evaluation through an independent review, under procedures established by the Institute. Such an independent review shall be required at least every two years after the sixth year of operation. Funding received for a fiscal year under this section after the sixth year of operation shall not exceed one third of the capital and annual operating and maintenance costs of the Center under the program." #### SEC. 3. MALCOLM BALDRIGE QUALITY AWARD. (a) Additional Awards.—Section 17(c)(3) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3711a(c)(3)) is amended by inserting ", unless the Secretary determines that a third award is merited and can be given at no additional cost to the Federal Government" after "in any year". - (b) Categories.—Section 17(c)(1) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3711a(c)(1)) is amended by adding at the end the following: - "(D) Health care providers. - "(E) Education providers." #### SEC. 4. NOTICE. - (a) Redesignation.—Section 31 of the National Institute of Standards and Technology Act as section 32. - (b) Notice.—The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq.) is amended by inserting after section 30 the following new section: #### "NOTICE - "SEC. 31. (a) Notice of Reprogramming.—If any funds authorized for carrying out this Act are subject to a reprogramming action that requires notice to be provided to the Appropriations Committees of the House of Representatives and the Senate, notice of such action shall concurrently be provided to the Committee on Science of the House of Representatives and the Committee on Commerce, Science, and Transportation of the Senate. - "(b) Notice of Reorganization.— - "(1) Requirement.—The Secretary shall provide notice to the Committees on Science and Appropriations of the House of Representatives, and the Committees on Commerce, Science, and Transportation and Appropriations of the Senate, not later than 15 days before any major reorganization of any program, project, or activity of the Institute. - "(2) Definition.—For purposes of this subsection, the term 'major reorganization' means any reorganization of the Institute that involves the reassignment of more than 25 percent of the employees of the Institute." #### SEC. 5. SENSE OF THE CONGRESS ON THE YEAR 2000 PROBLEM. With the year 2000 fast approaching, it is the sense of the Congress that the National Institute of Standards and Technology should— - (1) give high priority to correcting all 2-digit date-related problems in its computer systems to ensure that those systems continue to operate effectively in the year 2000 and beyond; and - (2) develop contingency plans for those systems that the Institute is unable to correct in time. #### SEC. 6. ENHANCEMENT OF SCIENCE AND MATHEMATICS PROGRAMS. - (a) Definitions.—In this section— - (1) Educationally useful federal equipment.—The term "educationally useful Federal equipment" means computers and related peripheral tools and research equipment that is appropriate for use in schools. - (2) School.—The term "school" means a public or private educational institution that serves any of the grades of kindergarten through grade 12. - (b) Sense of the Congress.— - (1) In general.—It is the sense of the Congress that the Director of the National Institute of Standards and Technology should, to the greatest extent practicable and in a manner consistent with applicable Federal law (including Executive Order No. 12999), donate educationally useful Federal equipment to schools in order to enhance the science and mathematics programs of those schools. - (2) Reports.— - (A) In general.—Not later than 1 year after the date of the enactment of this Act, and annually thereafter, the Director of the National Institute of Standards and Technology shall prepare and submit to the President a report. The President shall submit the report to Congress at the same time as the President submits a budget request to Congress under section 1105(a) of title 31, United States Code. - (B) Contents of report.—The report prepared by the Director under this paragraph shall describe any donations of educationally useful Federal equipment to schools made during the period covered by the report. #### Sec. 7. TEACHER SCIENCE AND TECHNOLOGY ENHANCEMENT INSTITUTE PROGRAM. The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq.) is amended by inserting after section 19 the following: - "SEC. 19A. (a) The Director shall establish within the Institute a teacher science and technology enhancement program to provide for professional development of mathematics and science teachers of elementary, middle, and secondary schools (as those terms are defined by the Director), including providing for the improvement of those teachers with respect to the understanding of science and the impacts of science on commerce. - "(b) In carrying out the program under this section, the Director shall focus on the areas of— - "(1) scientific measurements; - "(2) tests and standards development; - "(3) industrial competitiveness and quality; - "(4) manufacturing; - "(5) technology transfer; and - "(6) any other area of expertise of the Institute that the Director determines to be appropriate. - "(c) The Director shall develop and issue procedures and selection criteria for participants in the program. - "(d) The program under this section shall be conducted on an annual basis during the summer months, during the period of time when a majority of elementary, middle, and secondary schools have not commenced a school year. - "(e) The program shall provide for teachers' participation in activities at the laboratory facilities of the Institute, or shall utilize other means of accomplishing the goals of the program as determined by the Director, which may include the Internet, video conferencing and recording, and workshops and conferences." #### Sec. 8. OFFICE OF SPACE COMMERCIALIZATION. - (a) Establishment.—There is established within the Department of Commerce an Office of Space Commercialization (referred to in this section as the "Office"). - (b) Director.—The Office shall be headed by a Director, who shall be a senior executive and shall be compensated at a level in the Senior Executive Service under section 5382 of title 5, United States Code, as determined by the Secretary of Commerce. - (c) Functions of the Office; Duties of the Director.—The Office shall be the principal unit for the coordination of space-related issues, programs, and initiatives within the Department of Commerce. The primary responsibilities of the Director, in carrying out the functions of the Office, shall include— - (1) promoting commercial provider investment in space activities by collecting, analyzing, and disseminating information on space markets, and conducting workshops and seminars to increase awareness of commercial space opportunities; - (2) assisting United States commercial providers in the efforts of those providers to conduct business with the United States Government; - (3) acting as an industry advocate within the executive branch of the Federal Government to ensure that the Federal Government meets the space-related requirements of the Federal Government, to the fullest extent feasible, using commercially available space goods and services; - (4) ensuring that the United States Government does not compete with United States commercial providers in the provision of space hardware and services otherwise available from United States commercial providers; - (5) promoting the export of space-related goods and services; - (6) representing the Department of Commerce in the development of United States policies and in negotiations with foreign countries to ensure free and fair trade internationally in the area of space commerce; and - (7) seeking the removal of legal, policy, and institutional impediments to space commerce. #### Sec. 9. EXPERIMENTAL PROGRAM TO STIMULATE COMPETITIVE TECHNOLOGY. Section 5 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3704) is amended by adding at the end the following: "(f) Experimental Program To Stimulate Competitive Technology.— - "(1) In general.—The Secretary, acting through the Under Secretary, shall establish for fiscal year 1999 a program to be known as the Experimental Program to Stimulate Competitive Technology (referred to in this subsection as the 'program'). The purpose of the program shall be to strengthen the technological competitiveness of those States that have historically received less Federal research and development funds than those received by a majority of the States. - "(2) Arrangements.—In carrying out the program, the Secretary, acting through the Under Secretary, shall— - "(A) enter into such arrangements as may be necessary to provide for the coordination of the program through the State committees established under the Experimental Program to Stimulate Competitive Research of the National Science Foundation; and - "(B) cooperate with— - "(i) any State science and technology council established under the program under subparagraph (A); and - "(ii) representatives of small business firms and other appropriate technology-based businesses. - (3) Grants and cooperative agreements.—In carrying out the program, the Secretary, acting through the Under Secretary, may make grants or enter into cooperative agreements to provide for— - "(A) technology research and development; - "(B) technology transfer from university research; - "(C) technology deployment and diffusion; and - "(D) the strengthening of technological capabilities through consortia comprised of— - "(i) technology-based small business firms; - "(ii)
industries and emerging companies; - "(iii) universities; and - "(iv) State and local development agencies and entities. - "(4) Requirements for making awards.— - "(A) In general.—In making awards under this subsection, the Secretary, acting through the Under Secretary, shall ensure that the awards are awarded on a competitive basis that includes a review of the merits of the activities that are the subject of the award. - "(B) Matching requirement.—The non-Federal share of the activities (other than planning activities) carried out under an award under this subsection shall be not less than 25 percent of the cost of those activities. - "(5) Criteria for states.—The Secretary, acting through the Under Secretary, shall establish criteria for achievement by each State that participates in the program. Upon the achievement of all such criteria, a State shall cease to be eligible to participate in the program. - "(6) Coordination.—To the extent practicable, in carrying out this subsection, the Secretary, acting through the Under Secretary, shall coordinate the program with other programs of the Department of Commerce. - "(7) Report.— - "(A) In general.—Not later than 90 days after the date of the enactment of the Technology Administration Act of 1998, the Under Secretary shall prepare and submit a report that meets the requirements of this paragraph to the Secretary. Upon receipt of the report, the Secretary shall transmit a copy of the report to the Committee on Commerce, Science, and Transportation of the Senate and the Committee on Science of the House of Representatives. - "(B) Requirements for report.—The report prepared under this paragraph shall contain with respect to the program— - "(i) a description of the structure and procedures of the program; - "(ii) a management plan for the program; - "(iii) a description of the merit-based review process to be used in the program; - "(iv) milestones for the evaluation of activities to be assisted under the program in fiscal year 1999: - "(v) an assessment of the eligibility of each State that participates in the Experimental Program to Stimulate Competitive Research of the National Science Foundation to participate in the program under this subsection; and - "(vi) the evaluation criteria with respect to which the overall management and effectiveness of the program will be evaluated." #### Sec. 10. NATIONAL TECHNOLOGY MEDAL FOR ENVIRONMENTAL TECHNOLOGY. In the administration of section 16 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3711), Environmental Technology shall be established as a separate nomination category with appropriate unique criteria for that category. #### SEC. 11. INTERNATIONAL ARCTIC RESEARCH CENTER. The Congress finds that the International Arctic Research Center is an internationally-supported effort to conduct important weather and climate studies, and other research projects of benefit to the United States. It is, therefore, the sense of the Congress that, as with similar research conducted in the Antarctic, the United States should provide similar support for this important effort. Approved October 30, 1998. **** June 8, 1999, 113 Stat. 118 (Public Law 106-34—106th Congress, 1st session) Fastener Quality Act Amendments Act of 1999. #### Public Law 106-34 #### AN ACT To amend the Fastener Quality Act to strengthen the protection against the sale of mismarked, misrepresented, and counterfeit fasteners and eliminate unnecessary requirements, and for other purposes. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, #### SEC. 1. SHORT TITLE. This Act may be cited as the "Fastener Quality Act Amendments Act of 1999". #### SEC. 2. FINDINGS AND PURPOSE. Section 2 of the Fastener Quality Act (15 U.S.C. 5401) is amended to read as follows: #### "SEC. 2. FINDINGS. "The Congress finds that- - "(1) the United States fastener industry is a significant contributor to the global economy, employing thousands of workers in hundreds of communities; - "(2) the American economy uses billions of fasteners each year; - "(3) state-of-the-art manufacturing and improved quality assurance systems have dramatically improved fastener quality, so virtually all fasteners sold in commerce meet or exceed the consensus standards for the uses to which they are applied; - "(4) a small number of mismarked, misrepresented, and counterfeit fasteners do enter commerce in the United States; and - "(5) multiple criteria for the identification of fasteners exist, including grade identification markings and manufacturer's insignia, to enable purchasers and users of fasteners to accurately evaluate the characteristics of individual fasteners." #### SEC. 3. DEFINITIONS. Section 3 of the Fastener Quality Act (15 U.S.C. 5402) is amended to read as follows: #### "SEC. 3. DEFINITIONS. # "As used in this Act, the term- - "(1) 'accredited laboratory' means a fastener testing facility used to perform end-of-line testing required by a consensus standard or standards to verify that a lot of fasteners conforms to the grade identification marking called for in the consensus standard or standards to which the lot of fasteners has been manufactured, and which— - "(A) meets the requirements of ISO/IEC Guide 25 (or another document approved by the Director under section 10(c)), including revisions from time-to-time; and - "(B) has been accredited by a laboratory accreditation body that meets the requirements of ISO/IEC Guide 58 (or another document approved by the Director under section 10(d)), including revisions from time-to-time; - "(2) 'consensus standard' means the provisions of a document that describes fastener characteristics published by a consensus standards organization or a Federal agency, and does not include a proprietary standard: - "(3) 'consensus standards organization' means the American Society for Testing and Materials, the American National Standards Institute, the American Society of Mechanical Engineers, the Society of Automotive Engineers, the International Organization for Standardization, any other organization identified as a United States consensus standards organization or a foreign and international consensus standards organization in the Federal Register at 61 Fed. Reg. 50582-83 (September 26, 1996), and any successor organizations thereto; - "(4) 'Director' means the Director of the National Institute of Standards and Technology; - "(5) 'distributor' means a person who purchases fasteners for the purpose of reselling them at wholesale to unaffiliated persons within the United States (an original equipment manufacturer and its dealers shall be considered affiliated persons for purposes of this Act); - "(6) 'fastener' means a metallic screw, nut, bolt, or stud having internal or external threads, with a nominal diameter of 6 millimeters or greater, in the case of such items described in metric terms, or 1/4 inch or greater, in the case of such items described in terms of the English system of measurement, or a load-indicating washer, that is through-hardened or represented as meeting a consensus standard that calls for through-hardening, and that is grade identification marked or represented as meeting a consensus standard that requires grade identification marking, except that such term does not include any screw, nut, bolt, stud, or load-indicating washer that is— - "(A) part of an assembly; - "(B) a part that is ordered for use as a spare, substitute, service, or replacement part, unless that part is in a package containing more than 75 of any such part at the time of sale, or a part that is contained in an assembly kit; - "(C) produced and marked as ASTM A 307 Grade A, or a successor standard thereto; - "(D) produced in accordance with ASTM F 432, or a successor standard thereto; - "(E) specifically manufactured for use on an aircraft if the quality and suitability of those fasteners for that use has been approved— - "(i) by the Federal Aviation Administration; or - "(ii) by a foreign airworthiness authority as described in part 21.29, 21.500, 21.502, or 21.617 of title 14 of the Code of Federal Regulations; - "(F) manufactured in accordance with a fastener quality assurance system; or - "(G) manufactured to a proprietary standard, whether or not such proprietary standard directly or indirectly references a consensus standard or any portion thereof; - "(7) 'fastener quality assurance system' means— - "(A) a system that meets the requirements, including revisions from time-to-time, of— - "(i) International Organization for Standardization (ISO) Standard 9000, 9001, 9002, or TS16949; - "(ii) Quality System (QS) 9000 Standard; - "(iii) Verband der Automobilindustrie e. V. (VDA) 6.1 Standard; or - "(iv) Aerospace Basic Quality System Standard AS9000; or - "(B) any fastener manufacturing system- - "(i) that has as a stated goal the prevention of defects through continuous improvement; - "(ii) that seeks to attain the goal stated in clause (i) by incorporating— - "(I) advanced quality planning; - "(II) monitoring and control of the manufacturing process; - "(III) product verification embodied in a comprehensive written control plan for product and process characteristics, and process controls (including process influence factors and statistical process control), tests, and measurement systems to be used in production; and - "(IV) the creation, maintenance, and retention of electronic, photographic, or paper records required by the control plan regarding the inspections, tests, and measurements performed pursuant to the control plan; and - "(iii) that— - "(I) is subject to certification in accordance with the requirements of ISO/IEC Guide 62 (or another document approved by the Director under section 10(a)), including revisions from time-to-time, by a third party who is accredited by an accreditation body in accordance with the requirements of ISO/IEC Guide 61 (or another document
approved by the Director under section 10(b)), including revisions from time-to-time; or - "(II) undergoes regular or random evaluation and assessment by the end user or end users of the screws, nuts, bolts, studs, or load-indicating washers produced under such fastener manufacturing system to ensure that such system meets the requirements of clauses (i) and (ii); - "(8) 'grade identification marking' means any grade-mark or property class symbol appearing on a fastener purporting to indicate that the lot of fasteners conforms to a specific consensus standard, but such term does not include a manufacturer's insignia or part number; - "(9) 'importer' means a distributor located within the United States who contracts for the initial purchase of fasteners manufactured outside the United States; - "(10) 'lot' means a quantity of fasteners of one part number fabricated by the same production process from the same coil or heat number of metal as provided by the metal manufacturer; - "(11) 'manufacturer' means a person who fabricates fasteners for sale in commerce; - "(12) 'proprietary standard' means the provisions of a document that describes characteristics of a screw, nut, bolt, stud, or load-indicating washer and is issued by a person who— - "(A) uses screws, nuts, bolts, studs, or load-indicating washers in the manufacture, assembly, or servicing of its products; and - "(B) with respect to such screws, nuts, bolts, studs, or washers, is a developer and issuer of descriptions that have characteristics similar to consensus standards and that bear such user's identification: - "(13) 'record of conformance' means a record or records for each lot of fasteners sold or offered for sale that contains— - "(A) the name and address of the manufacturer; - "(B) a description of the type of fastener; - "(C) the lot number; - "(D) the nominal dimensions of the fastener (including diameter and length of bolts or screws), thread form, and class of fit; - "(E) the consensus standard or specifications to which the lot of fasteners has been manufactured, including the date, number, revision, and other information sufficient to identify the particular consensus standard or specifications being referenced; - "(F) the chemistry and grade of material; - "(G) the coating material and characteristics and the applicable consensus standard or specifications for such coating; and - "(H) the results or a summary of results of any tests performed for the purpose of verifying that a lot of fasteners conforms to its grade identification marking or to the grade identification marking the lot of fasteners is represented to meet; - "(14) 'represent' means to describe one or more of a fastener's purported characteristics in a document or statement that is transmitted to a purchaser through any medium; - "(15) 'Secretary' means the Secretary of Commerce; - "(16) 'specifications' means the required characteristics identified in the contractual agreement with the manufacturer or to which a fastener is otherwise produced, except that the term does not include proprietary standards; and - "(17) 'through-harden' means heating above the transformation temperature followed by quenching and tempering for the purpose of achieving uniform hardness." #### SEC. 4. SALE OF FASTENERS. (a) Amendment.—Sections 5 through 7 of the Fastener Quality Act (15 U.S.C. 5404-6) are repealed, and the following new section is inserted after section 3 of such Act: #### "SEC. 4. SALE OF FASTENERS. - "(a) General Rule.—It shall be unlawful for a manufacturer or distributor, in conjunction with the sale or offer for sale of fasteners from a single lot, to knowingly misrepresent or falsify— - "(1) the record of conformance for the lot of fasteners; - "(2) the identification, characteristics, properties, mechanical or performance marks, chemistry, or strength of the lot of fasteners; or - "(3) the manufacturer's insignia. - "(b) Representations.—A direct or indirect reference to a consensus standard to represent that a fastener conforms to particular requirements of the consensus standard shall not be construed as a representation that the fastener meets all the requirements of the consensus standard. - "(c) Specifications.—A direct or indirect contractual reference to a consensus standard for the purpose of identifying particular requirements of the consensus standard that serve as specifications shall not be construed to require that the fastener meet all the requirements of the consensus standard. - "(d) Use of Accredited Laboratories.—In the case of fasteners manufactured solely to a consensus standard or standards, end-of-line testing required by the consensus standard or standards, if any, for the purpose of verifying that a lot of fasteners conforms with the grade identification marking called for in the consensus standard or standards to which the lot of fasteners has been manufactured shall be conducted by an accredited laboratory." - (b) Effective Date.—Subsection (d) of section 4 of the Fastener Quality Act, as added by subsection (a) of this section, shall take effect 2 years after the date of the enactment of this Act. #### SEC. 5. MANUFACTURERS' INSIGNIAS. Section 8 of the Fastener Quality Act (15 U.S.C. 5407) is redesignated as section 5 and is amended— - (1) by amending subsection (a) to read as follows: - "(a) General Rule.—Unless the specifications provide otherwise, fasteners that are required by the applicable consensus standard or standards to bear an insignia identifying their manufacturer shall not be offered for sale or sold in commerce unless— - "(1) the fasteners bear such insignia; and - "(2) the manufacturer has complied with the insignia recordation requirements established under subsection (b)."; and - (2) in subsection (b), by striking "and private label" and all that follows and inserting "described in subsection (a)." # SEC. 6. REMEDIES AND PENALTIES. Section 9 of the Fastener Quality Act (15 U.S.C. 5408) is redesignated as section 6 and is amended— - (1) in subsection (b)(3), by striking "of this section" and inserting "of this subsection"; - (2) in subsection (b)(4), by inserting "arbitrate," after "Secretary may"; and - (3) in subsection (d)— - (A) by inserting "(1)" after "Enforcement.—"; and - (B) by adding at the end the following new paragraph: "(2) The Secretary shall establish and maintain a hotline system to facilitate the reporting of alleged violations of this Act, and the Secretary shall evaluate allegations reported through that system and report any credible allegations to the Attorney General." # SEC. 7. RECORDKEEPING REQUIREMENTS. Section 10 of the Fastener Quality Act (15 U.S.C. 5409) is redesignated as section 7 and is amended by striking subsections (a) and (b) and inserting the following: "Manufacturers and importers shall retain the record of conformance for fasteners for 5 years, on paper or in photographic or electronic format in a manner that allows for verification of authenticity. Upon request of a distributor who has purchased a fastener, or a person who has purchased a fastener for use in the production of a commercial product, the manufacturer or importer of the fastener shall make available information in the record of conformance to the requester." ## SEC. 8. RELATIONSHIP TO STATE LAWS. Section 11 of the Fastener Quality Act (15 U.S.C. 5410) is redesignated as section 8. #### SEC. 9. CONSTRUCTION. Section 12 of the Fastener Quality Act (15 U.S.C. 5411) is redesignated as section 9 and is amended by striking "in effect on the date of enactment of this Act". #### SEC. 10. CERTIFICATION AND ACCREDITATION. Sections 13 and 15 of the Fastener Quality Act (15 U.S.C. 5412 and 14) are repealed, and the following new section is inserted at the end of that Act # "SEC. 10. CERTIFICATION AND ACCREDITATION. - "(a) Certification.—A person publishing a document setting forth guidance or requirements for the certification of manufacturing systems as fastener quality assurance systems by an accredited third party may petition the Director to approve such document for use as described in section 3(7)(B)(iii)(I). The Director shall act upon a petition within 180 days after its filing, and shall approve such petition if the document provides equal or greater rigor and reliability as compared to ISO/IEC Guide 62. - "(b) Accreditation.—A person publishing a document setting forth guidance or requirements for the approval of accreditation bodies to accredit third parties described in subsection (a) may petition the Director to approve such document for use as described in section 3(7)(B)(iii)(I). The Director shall act upon a petition within 180 days after its filing, and shall approve such petition if the document provides equal or greater rigor and reliability as compared to ISO/IEC Guide 61. - "(c) Laboratory Accreditation.—A person publishing a document setting forth guidance or requirements for the accreditation of laboratories may petition the Director to approve such document for use as described in section 3(1)(A). The Director shall act upon a petition within 180 days after its filing, and shall approve such petition if the document provides equal or greater rigor and reliability as compared to ISO/IEC Guide 25. - "(d) Approval of Accreditation Bodies.—A person publishing a document setting forth guidance or requirements for the approval of accreditation bodies to accredit laboratories may petition the Director to approve such document for use as described in section 3(1)(B). The Director shall act upon a petition within 180 days after its filing, and shall approve such petition if the document provides equal or greater rigor and reliability as compared to ISO/IEC Guide 58. In addition to any other voluntary laboratory accreditation programs that may be established by private sector persons, the Director shall establish a National Voluntary Laboratory Accreditation Program, for the accreditation of laboratories as described in
section 3(1)(B), that meets the requirements of ISO/IEC Guide 58 (or another document approved by the Director under this subsection), including revisions from time-to-time. # "(e) Affirmation.— (1) An accreditation body accrediting third parties who certify manufacturing systems as fastener quality assurance systems as described in section (7)(B)(iii)(I) shall affirm to the Director that it meets the - requirements of ISO/IEC Guide 61 (or another document approved by the Director under subsection (b)), including revisions from time-to-time. - "(2) An accreditation body accrediting laboratories as described in section 3(1)(B) shall affirm to the Director that it meets the requirements of ISO/IEC Guide 58 (or another document approved by the Director under subsection (d)), including revisions from time-to-time. - "(3) An affirmation required under paragraph (1) or (2) shall take the form of a self-declaration that the accreditation body meets the requirements of the applicable Guide, signed by an authorized representative of the accreditation body, without requirement for accompanying documentation. Any such information shall be considered to be a continuous affirmation that the accreditation body meets the requirements of the applicable Guide, unless and until the affirmation is withdrawn by the accreditation body." SEC. 11. APPLICABILITY. At the end of the Fastener Quality Act, insert the following new section: "SEC. 11. APPLICABILITY. "The requirements of this Act shall be applicable only to fasteners fabricated 180 days or more after the date of the enactment of the Fastener Quality Act Amendments Act of 1999, except that if a manufacturer or distributor of fasteners fabricated before that date prepares a record of conformance for such fasteners, representations about such fasteners shall be subject to the requirements of this Act." SEC. 12. COMPTROLLER GENERAL REPORT. Not later than 2 years after the date of the enactment of this Act, the Comptroller General shall transmit to the Congress a report describing any changes in industry practice resulting from or apparently resulting from the enactment of section 3(6)(B) of the Fastener Quality Act, as added by section 3 of this Act. Approved June 8, 1999. **** November 29, 1999, 113 Stat. 1501 (Public Law 106-113—106th Congress, 1st session) *Consolidated Appropriations Act, 2000.* **Public Law 106-113** ## AN ACT Making consolidated appropriations for the fiscal year ending September 30, 2000, and for other purposes. TITLE—DEPARTMENT OF COMMERCE AND RELATED AGENCIES National Institute of Standards and Technology (113 Stat. 1501A-28-29) Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$283,132,000, to remain available until expended, of which not to exceed \$282,000 may be transferred to the "Working Capital Fund." ## **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$104,836,000, to remain available until expended. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$142,600,000, to remain available until expended, of which not to exceed \$50,700,000 shall be available for the award of new grants, and of which not to exceed \$500,000 may be transferred to the "Working Capital Fund." #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$108,414,000, to remain available until expended: Provided, That of the amounts provided under this heading, \$84,916,000 shall be available for obligation and expenditure only after submission of a plan for the expenditure of these funds, in accordance with section 605 of this Act. Sec. 1252. (113 Stat. 1501A-506) MANDATORY USE OF THE AUTOMATED EXPORT SYSTEM FOR FILING CERTAIN SHIPPERS' EXPORT DECLARATIONS. - (a) Authority.—Section 301 of title 13, United States Code, is amended by adding at the end the following new subsection: - "(h) The Secretary is authorized to require by regulation the filing of Shippers' Export Declarations under this chapter through an automated and electronic system for the filing of export information established by the Department of the Treasury." - (b) Implementing Regulations.— - (1) In general.—The Secretary of Commerce, with the concurrence of the Secretary of State, shall publish regulations in the Federal Register to require that, upon the effective date of those regulations, exporters (or their agents) who are required to file Shippers' Export Declarations under chapter 9 of title 13, United States Code, file such Declarations through the Automated Export System with respect to exports of items on the United States Munitions List or the Commerce Control List. - (2) Elements of the regulations.—The regulations referred to in paragraph (1) shall include at a minimum— (A) provision by the Department of Commerce for the establishment of on-line assistance services to - be available for those individuals who must use the Automated Export System; - (B) provision by the Department of Commerce for ensuring that an individual who is required to use the Automated Export System is able to print out from the System a validated record of the individual's submission, including the date of the submission and a serial number or other unique identifier, where appropriate, for the export transaction; and - (C) a requirement that the Department of Commerce print out and maintain on file a paper copy or other acceptable back-up record of the individual's submission at a location selected by the Secretary of Commerce. - (c) Effective Date.—The amendment made by subsection (a) shall take effect 270 days after the Secretary of Commerce, the Secretary of the Treasury, and the Director of the National Institute of Standards and Technology jointly provide a certification to the Committee on Foreign Relations of the Senate and the Committee on International Relations of the House of Representatives that a secure Automated Export System available through the Internet that is capable of handling the expected volume of information required to be filed under subsection (b), plus the anticipated volume from voluntary use of the Automated Export System, has been successfully implemented and tested and is fully functional with respect to reporting all items on the United States Munitions List, including their quantities and destinations. October 30, 2000, 114 Stat. 1654 (Public Law 106-398—104th Congress, 2nd session) *Department of Defense and Energy—Appropriations*. ## **Public Law 106-398** #### AN ACT To authorize appropriations for fiscal year 2001 for military activities of the Department of Defense, for military construction, and for defense activities of the Department of Energy, to prescribe personnel strengths for such fiscal year for the Armed Forces, and for other purposes. #### TITLE X—GENERAL PROVISIONS Subtitle G—Government Information Security Reform SEC. 1061. Coordination of Federal Information Policy. Chapter 35 of title 44, United States Code, is amended by inserting at the end the following new subchapter: ## "SUBCHAPTER II—INFORMATION SECURITY "SEC. 3533. Authority and functions of the Director. - "(4) oversee the development and implementation of standards and guidelines relating to security controls for Federal computer systems by the Secretary of Commerce through the National Institute of Standards and Technology under section 5131 of the Clinger-Cohen Act of 1996 (40 U.S.C. 1441) and section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3); - "(5) oversee and coordinate compliance with this section in a manner consistent with— - "(A) sections 552 and 552a of title 5; - "(B) sections 20 and 21 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3 and 278g-4); #### SEC. 1062. RESPONSIBILITIES OF CERTAIN AGENCIES. - (a) Department of Commerce.—Notwithstanding section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3) and except as provided under subsection (b), the Secretary of Commerce, through the National Institute of Standards and Technology and with technical assistance from the National Security Agency, as required or when requested, shall— - (1) develop, issue, review, and update standards and guidance for the security of Federal information systems, including development of methods and techniques for security systems and validation programs; - (2) develop, issue, review, and update guidelines for training in computer security awareness and accepted computer security practices, with assistance from the Office of Personnel Management; - (3) provide agencies with guidance for security planning to assist in the development of applications and system security plans for such agencies; - (4) provide guidance and assistance to agencies concerning cost-effective controls when interconnecting with other systems; and - (5) evaluate information technologies to assess security vulnerabilities and alert Federal agencies of such vulnerabilities as soon as those vulnerabilities are known. November 1, 2000, 114 Stat. 1742 (Public Law 106-404—104th Congress, 2nd session) *Technology Transfer Commercialization Act of 2000*. ## **Public Law 106-404** #### AN ACT To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, #### SEC. 1. SHORT TITLE. This Act may be cited as the "Technology Transfer Commercialization Act of 2000". #### SEC. 2. FINDINGS. The Congress finds that— - (1) the importance of linking our
unparalleled network of over 700 Federal laboratories and our Nation's universities with United States industry continues to hold great promise for our future economic prosperity; - (2) the enactment of the Bayh-Dole Act in 1980 was a landmark change in United States technology policy, and its success provides a framework for removing bureaucratic barriers and for simplifying the granting of licenses for inventions that are now in the Federal Government's patent portfolio; - (3) Congress has demonstrated a commitment over the past 2 decades to fostering technology transfer from our Federal laboratories and to promoting public/private sector partnerships to enhance our international competitiveness; - (4) Federal technology transfer activities have strengthened the ability of United States industry to compete in the global marketplace; developed a new paradigm for greater collaboration among the scientific enterprises that conduct our Nation's research and development—government, industry, and universities; and improved the quality of life for the American people, from medicine to materials; - (5) the technology transfer process must be made "industry friendly" for companies to be willing to invest the significant time and resources needed to develop new products, processes, and jobs using federally funded inventions: and - (6) Federal technology licensing procedures should balance the public policy needs of adequately protecting the rights of the public, encouraging companies to develop existing government inventions, and making the entire system of licensing government technologies more consistent and simple. ## SEC. 3. COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENTS. Section 12(b)(1) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a(b)(1)) is amended by inserting "or, subject to section 209 of title 35, United States Code, may grant a license to an invention which is federally owned, for which a patent application was filed before the signing of the agreement, and directly within the scope of the work under the agreement," after "under the agreement," # SEC. 4. LICENSING FEDERALLY OWNED INVENTIONS. (a) Amendment.—Section 209 of title 35, United States Code, is amended to read as follows: "SEC. 209. Licensing federally owned inventions - "(a) Authority.—A Federal agency may grant an exclusive or partially exclusive license on a federally owned invention under section 207(a)(2) only if— - "(1) granting the license is a reasonable and necessary incentive to— - "(A) call forth the investment capital and expenditures needed to bring the invention to practical application; or - "(B) otherwise promote the invention's utilization by the public; - "(2) the Federal agency finds that the public will be served by the granting of the license, as indicated by the applicant's intentions, plans, and ability to bring the invention to practical application or otherwise promote the invention's utilization by the public, and that the proposed scope of exclusivity is not greater than reasonably necessary to provide the incentive for bringing the invention to practical application, as proposed by the applicant, or otherwise to promote the invention's utilization by the public; - "(3) the applicant makes a commitment to achieve practical application of the invention within a reasonable time, which time may be extended by the agency upon the applicant's request and the applicant's demonstration that the refusal of such extension would be unreasonable; - "(4) granting the license will not tend to substantially lessen competition or create or maintain a violation of the Federal antitrust laws; and - "(5) in the case of an invention covered by a foreign patent application or patent, the interests of the Federal Government or United States industry in foreign commerce will be enhanced. - "(b) Manufacture in United States.—A Federal agency shall normally grant a license under section 207(a)(2) to use or sell any federally owned invention in the United States only to a licensee who agrees that any products embodying the invention or produced through the use of the invention will be manufactured substantially in the United States. - "(c) Small business.—First preference for the granting of any exclusive or partially exclusive licenses under section 207(a)(2) shall be given to small business firms having equal or greater likelihood as other applicants to bring the invention to practical application within a reasonable time. - "(d) Terms and Conditions.—Any licenses granted under section 207(a)(2) shall contain such terms and conditions as the granting agency considers appropriate, and shall include provisions— - "(1) retaining a nontransferable, irrevocable, paid-up license for any Federal agency to practice the invention or have the invention practiced throughout the world by or on behalf of the Government of the United States; - "(2) requiring periodic reporting on utilization of the invention, and utilization efforts, by the licensee, but only to the extent necessary to enable the Federal agency to determine whether the terms of the license are being complied with, except that any such report shall be treated by the Federal agency as commercial and financial information obtained from a person and privileged and confidential and not subject to disclosure under section 552 of title 5 of the United States Code; and - "(3) empowering the Federal agency to terminate the license in whole or in part if the agency determines that— - "(A) the licensee is not executing its commitment to achieve practical application of the invention, including commitments contained in any plan submitted in support of its request for a license, and the licensee cannot otherwise demonstrate to the satisfaction of the Federal agency that it has taken, or can be expected to take within a reasonable time, effective steps to achieve practical application of the invention; - "(B) the licensee is in breach of an agreement described in subsection (b); - "(C) termination is necessary to meet requirements for public use specified by Federal regulations issued after the date of the license, and such requirements are not reasonably satisfied by the licensee; or - "(D) the licensee has been found by a court of competent jurisdiction to have violated the Federal antitrust laws in connection with its performance under the license agreement. - "(e) Public Notice.—No exclusive or partially exclusive license may be granted under section 207(a)(2) unless public notice of the intention to grant an exclusive or partially exclusive license on a federally owned invention has been provided in an appropriate manner at least 15 days before the license is granted, and the Federal agency has considered all comments received before the end of the comment period in response to that public notice. This subsection shall not apply to the licensing of inventions made under a cooperative research and development agreement entered into under section 12 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a). - "(f) Plan.—No Federal agency shall grant any license under a patent or patent application on a federally owned invention unless the person requesting the license has supplied the agency with a plan for development or marketing of the invention, except that any such plan shall be treated by the Federal agency as commercial and financial information obtained from a person and privileged and confidential and not subject to disclosure under section 552 of title 5 of the United States Code." (b) Conforming Amendment.—The item relating to section 209 in the table of sections for chapter 18 of title 35, United States Code, is amended to read as follows: "209. Licensing federally owned inventions." # Sec. 5. MODIFICATION OF STATEMENT OF POLICY AND OBJECTIVES FOR CHAPTER 18 OF TITLE 35, UNITED STATES CODE. Section 200 of title 35, United States Code, is amended by striking "enterprise;" and inserting "enterprise without unduly encumbering future research and discovery;" #### SEC. 6. TECHNICAL AMENDMENTS TO BAYH-DOLE ACT. Chapter 18 of title 35, United States Code (popularly known as the "Bayh-Dole Act"), is amended— - (1) by amending section 202(e) to read as follows: - "(e) In any case when a Federal employee is a coinventor of any invention made with a nonprofit organization, a small business firm, or a non-Federal inventor, the Federal agency employing such coinventor may, for the purpose of consolidating rights in the invention and if it finds that it would expedite the development of the invention— - "(1) license or assign whatever rights it may acquire in the subject invention to the nonprofit organization, small business firm, or non-Federal inventor in accordance with the provisions of this chapter; or - "(2) acquire any rights in the subject invention from the nonprofit organization, small business firm, or non-Federal inventor, but only to the extent the party from whom the rights are acquired voluntarily enters into the transaction and no other transaction under this chapter is conditioned on such acquisition."; and - (2) in section 207(a)— - (A) by striking "patent applications, patents, or other forms of protection obtained" and inserting "inventions" in paragraph (2); and - (B) by inserting", including acquiring rights for and administering royalties to the Federal Government in any invention, but only to the extent the party from whom the rights are acquired voluntarily enters into the transaction, to facilitate the licensing of a federally owned invention" after "or through contract" in paragraph (3). # SEC. 7. TECHNICAL AMENDMENTS TO THE STEVENSON-WYDLER TECHNOLOGY INNOVATION ACT OF 1980. The Stevenson-Wydler Technology Innovation Act of 1980 is amended— - (1) in section 4(4) (15 U.S.C. 3703(4)), by striking "section 6 or section 8" and inserting "section 7 or 9"; - (2) in section 4(6) (15 U.S.C. 3703(6)), by striking "section 6 or section
8" and inserting "section 7 or 9"; - (3) in section 5(c)(11) (15 U.S.C. 3704(c)(11)), by striking "State of local governments" and inserting "state or local governments"; - (4) in section 9 (15 U.S.C. 3707), by- - (A) striking "section 6(a)" and inserting "section 7(a)"; - (B) striking "section 6(b)" and inserting "section 7(b)"; and - (C) striking "section 6(c)(3)" and inserting "section 7(c)(3)"; - (5) in section 11(e)(1) (15 U.S.C. 3710(e)(1)), by striking "in cooperation with Federal Laboratories" and inserting "in cooperation with Federal laboratories"; - (6) in section 11(i) (15 U.S.C. 3710(i)), by striking "a gift under the section" and inserting "a gift under this section"; - (7) in section 14 (15 U.S.C. 3710c)— - (A) in subsection (a)(1)(A)(i), by inserting ", other than payments of patent costs as delineated by a license or assignment agreement," after "or other payments"; - (B) in subsection (a)(1)(A)(i), by inserting ", if the inventor's or coinventor's rights are assigned to the United States" after "inventor or coinventors"; - (C) in subsection (a)(1)(B), by striking "succeeding fiscal year" and inserting "2 succeeding fiscal years"; - (D) in subsection (a)(2), by striking "Government-operated laboratories of the"; and - (E) in subsection (b)(2), by striking "inventon" and inserting "invention"; and (8) in section 22 (15 U.S.C. 3714), by striking "sections 11, 12, and 13" and inserting "sections 12, 13, and 14." - (8) section 22 (15 U.S.C. 3714), by striking "sectios 11, 12, and 13" and inserting "sections 12, 13, and 14". #### Sec. 8. REVIEW OF COOPERATIVE RESEARCH AND DEVELOPMENT AGREEMENT PROCEDURES. - (a) Review.—Within 90 days after the date of the enactment of this Act, each Federal agency with a federally funded laboratory that has in effect on that date of the enactment one or more cooperative research and development agreements under section 12 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a) shall report to the Committee on National Security of the National Science and Technology Council and the Congress on the general policies and procedures used by that agency to gather and consider the views of other agencies on— - (1) joint work statements under section 12(c)(5)(C) or (D) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a(c)(5)(C) or (D)); or - (2) in the case of laboratories described in section 12(d)(2)(A) of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a(d)(2)(A)), cooperative research and development agreements under such section 12, with respect to major proposed cooperative research and development agreements that involve critical national security technology or may have a significant impact on domestic or international competitiveness. - (b) Procedures.—Within 1 year after the date of the enactment of this Act, the Committee on National Security of the National Science and Technology Council, in conjunction with relevant Federal agencies and national laboratories, shall— - (1) determine the adequacy of existing procedures and methods for interagency coordination and awareness with respect to cooperative research and development agreements described in subsection (a); and - (2) establish and distribute to appropriate Federal agencies— - (A) specific criteria to indicate the necessity for gathering and considering the views of other agencies on joint work statements or cooperative research and development agreements as described in subsection (a); and - (B) additional procedures, if any, for carrying out such gathering and considering of agency views with respect to cooperative research and development agreements described in subsection (a). Procedures established under this subsection shall be designed to the extent possible to use or modify existing procedures, to minimize burdens on Federal agencies, to encourage industrial partnerships with national laboratories, and to minimize delay in the approval or disapproval of joint work statements and cooperative research and development agreements. - (c) Limitation.—Nothing in this Act, nor any procedures established under this section shall provide to the Office of Science and Technology Policy, the National Science and Technology Council, or any Federal agency the authority to disapprove a cooperative research and development agreement or joint work statement, under section 12 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710a), of another Federal agency. ## Sec. 9. INCREASED FLEXIBILITY FOR FEDERAL LABORATORY PARTNERSHIP INTERMEDIARIES. Section 23 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3715) is amended— - (1) in subsection (a)(1) by inserting ", institutions of higher education as defined in section 1201(a) of the Higher Education Act of 1965 (20 U.S.C. 1141(a)), or educational institutions within the meaning of section 2194 of title 10, United States Code" after "small business firms"; and - (2) in subsection (c) by inserting ", institutions of higher education as defined in section 1201(a) of the Higher Education Act of 1965 (20 U.S.C. 1141(a)), or educational institutions within the meaning of section 2194 of title 10, United States Code," after "small business firms." ## SEC. 10. REPORTS ON UTILIZATION OF FEDERAL TECHNOLOGY. - (a) Agency Activities.—Section 11 of the Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710) is amended— - (1) by striking the last sentence of subsection (b); - (2) by inserting after subsection (e) the following: - "(f) Agency Reports on Utilization.— - "(1) In general.—Each Federal agency which operates or directs one or more Federal laboratories or which conducts activities under sections 207 and 209 of title 35, United States Code, shall report annually to the Office of Management and Budget, as part of the agency's annual budget submission, on the activities performed by that agency and its Federal laboratories under the provisions of this section and of sections 207 and 209 of title 35, United States Code. - "(2) Contents.—The report shall include— - "(A) an explanation of the agency's technology transfer program for the preceding fiscal year and agency's plans for conducting its technology transfer function, including its plans for securing intellectual property rights in laboratory innovations with commercial promise and plans for managing its intellectual property so as to advance the agency's mission and benefit the competitiveness of United States industry; and - "(B) information on technology transfer activities for the preceding fiscal year, including— - "(i) the number of patent applications filed; - "(ii) the number of patents received; - "(iii) the number of fully-executed licenses which received royalty income in the preceding fiscal year, categorized by whether they are exclusive, partially-exclusive, or non-exclusive, and the time elapsed from the date on which the license was requested by the licensee in writing to the date the license was executed; - "(iv) the total earned royalty income including such statistical information as the total earned royalty income, of the top 1 percent, 5 percent, and 20 percent of the licenses, the range of royalty income, and the median, except where disclosure of such information would reveal the amount of royalty income associated with an individual license or licensee; - "(v) what disposition was made of the income described in clause (iv); "(vi) the number of licenses terminated for cause; and - "(vii) any other parameters or discussion that the agency deems relevant or unique to its practice of technology transfer. - "(3) Copy to secretary; attorney general; congress.—The agency shall transmit a copy of the report to the Secretary of Commerce and the Attorney General for inclusion in the annual report to Congress and the President required by subsection (g)(2). - "(4) Public availability.—Each Federal agency reporting under this subsection is also strongly encouraged to make the information contained in such report available to the public through Internet sites or other electronic means.": - (3) by striking subsection (g)(2) and inserting the following: - "(2) Reports.— - "(A) Annual report required.—The Secretary, in consultation with the Attorney General and the Commissioner of Patents and Trademarks, shall submit each fiscal year, beginning 1 year after the enactment of the Technology Transfer Commercialization Act of 2000, a summary report to the President, the United States Trade Representative, and the Congress on the use by Federal agencies and the Secretary of the technology transfer authorities specified in this Act and in sections 207 and 209 of title 35, United States Code. - "(B) Content.—The report shall— - "(i) draw upon the reports prepared by the agencies under subsection (f); - "(ii) discuss technology transfer best practices and effective approaches in the licensing and transfer of technology in the context of the agencies' missions; and - "(iii) discuss the progress made toward development of additional useful measures of the outcomes of technology transfer programs of Federal agencies. - "(C) Public availability.—The Secretary shall make the report available to the public through Internet sites or other electronic means."; and - (4) by inserting after subsection (g) the following: - "(h) Duplication of Reporting.—The reporting obligations imposed by this section— - "(1) are not intended to impose requirements that duplicate requirements imposed by the Government Performance and Results Act of 1993 (31 U.S.C. 1101 note); - "(2) are to be implemented in coordination with the implementation of that Act; and - "(3) are satisfied if an agency provided the information concerning technology transfer activities described in this section in its annual submission under the Government Performance and Results Act of 1993 (31 U.S.C. 1101 note)." - (b) Royalties.—Section 14(c) of the
Stevenson-Wydler Technology Innovation Act of 1980 (15 U.S.C. 3710c(c)) is amended to read as follows: - "(c) Reports.—The Comptroller General shall transmit a report to the appropriate committees of the Senate and House of Representatives on the effectiveness of Federal technology transfer programs, including findings, conclusions, and recommendations for improvements in such programs. The report shall be integrated with, and submitted at the same time as, the report required by section 202(b)(3) of title 35, United States Code." #### SEC. 11. TECHNOLOGY PARTNERSHIPS OMBUDSMAN. - (a) Appointment of Ombudsman.—The Secretary of Energy shall direct the director of each national laboratory of the Department of Energy, and may direct the director of each facility under the jurisdiction of the Department of Energy, to appoint a technology partnership ombudsman to hear and help resolve complaints from outside organizations regarding the policies and actions of each such laboratory or facility with respect to technology partnerships (including cooperative research and development agreements), patents, and technology licensing. - (b) Qualifications.—An ombudsman appointed under subsection (a) shall be a senior official of the national laboratory or facility who is not involved in day-to-day technology partnerships, patents, or technology licensing, or, if appointed from outside the laboratory or facility, function as such a senior official. - (c) Duties.—Each ombudsman appointed under subsection (a) shall— - (1) serve as the focal point for assisting the public and industry in resolving complaints and disputes with the national laboratory or facility regarding technology partnerships, patents, and technology licensing; - (2) promote the use of collaborative alternative dispute resolution techniques such as mediation to facilitate the speedy and low-cost resolution of complaints and disputes, when appropriate; and - (3) report quarterly on the number and nature of complaints and disputes raised, along with the ombuds-man's assessment of their resolution, consistent with the protection of confidential and sensitive information, to— - (A) the Secretary; - (B) the Administrator for Nuclear Security; - (C) the Director of the Office of Dispute Resolution of the Department of Energy; and - (D) the employees of the Department responsible for the administration of the contract for the operation of each national laboratory or facility that is a subject of the report, for consideration in the administration and review of that contract. Approved November 1, 2000. **** November 13, 2000, 114 Stat. 2298 (Public Law 106-503—106th Congress, 2nd session) *Fire Administration Authorization Act of 2000*. #### **Public Law 106-503** ## AN ACT To authorize appropriations for the U.S. Fire Administration, and for carrying out the Earthquake Reduction Act of 1977, for fiscal years 2001, 2002, and 2003, and for other purposes. SEC. 103. STRATEGIC PLAN. (114 Stat. 2299) - (b) Contents of Plan.—The plan required by subsection (a) shall include— - (5) an identification of the fire-related activities of the National Institute of Standards and Technology, the Department of Defense, and other Federal agencies, and a discussion of how those activities can be coordinated with and contribute to the achievement of the goals and objectives identified under paragraph (2); SEC. 104. (114 Stat. 2300) RESEARCH AGENDA. - (a) Requirement.—Not later than 120 days after the date of the enactment of this Act, the Administrator of the United States Fire Administration, in consultation with the Director of the Federal Emergency Management Agency, the Director of the National Institute of Standards and Technology, representatives of trade, professional, and non-profit associations, State and local firefighting services, and other appropriate entities, shall prepare and transmit to the Committee on Science of the House of Representatives and the Committee on Commerce, Science, and Transportation of the Senate a report describing the United States Fire Administration's research agenda and including a plan for implementing that agenda. - (b) Contents of Report.—The report required by subsection (a) shall— - (1) identify research priorities; - (2) describe how the proposed research agenda will be coordinated and integrated with the programs and capabilities of the National Institute of Standards and Technology, the Department of Defense, and other Federal agencies; SEC. 202. (114 Stat. 2305) AUTHORIZATION OF APPROPRIATIONS. - (e) National Institute of Standards and Technology.—Section 12(d) of the Earthquake Hazards Reduction Act of 1977 (42 U.S.C. 7706(d)) is amended— - (1) by striking "1998 and" inserting "1998,"; and - (2) by striking "1999." and inserting "1999, \$2,332,000 for fiscal year 2001, \$2,431,000 for fiscal year 2002, and \$2,534,300 for fiscal year 2003." **** December 21, 2000, 114 Stat. 2762 (Public Law 106-553—106th Congress, 2nd session) D.C. Appropriations-FY 2001. #### **Public Law 106-553** #### AN ACT Making appropriations for the government of the District of Columbia and other activities chargeable in whole or in part against the revenues of said District for the fiscal year ending September 30, 2001, and for other purposes. ### TITLE II—DEPARTMENT OF COMMERCE AND RELATED AGENCIES National Institute of Standards and Technology (114 Stat. 2762A-176-177) Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$312,617,000, to remain available until expended, of which not to exceed \$282,000 may be transferred to the "Working Capital Fund." ## **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$105,137,000, to remain available until expended. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$145,700,000, to remain available until expended, of which not to exceed \$60,700,000 shall be available for the award of new grants. #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$34,879,000, to remain available until expended. **** December 21, 2000, 114 Stat. 2763 (Public Law 106-554—104th Congress, 2nd session) *Consolidated Appropriations—FY2001*. **Public Law 106-554** ## AN ACT Making consolidated appropriations for the fiscal year ending September 30, 2001, and for other purposes. Appendix D-H.R. 5666 Division A Chapter 9 LIBRARY OF CONGRESS (114 Stat. 2763A-195) ### Salaries and Expenses For the Library of Congress, \$25,000,000, to remain available until expended, for necessary salaries and expenses of the National Digital Information Infrastructure and Preservation Program; and an additional \$75,000,000, to remain available until expended, for such purposes: Provided, That the portion of such additional \$75,000,000, which may be expended shall not exceed an amount equal to the matching contributions (including contributions other than money) for such purposes that: - (1) are received by the Librarian of Congress for the program from non-Federal sources; and - (2) are received before March 31, 2003: Provided further, That such program shall be carried out in accordance with a plan or plans approved by the Committee on House Administration of the House of Representatives, the Committee on Rules and Administration of the Senate, the Committee on Appropriations of the House of Representatives, and the Committee on Appropriations of the Senate: Provided further, That of the total amount appropriated, \$5,000,000 may be expended before the approval of a plan to develop such a plan, and to collect or preserve essential digital information which otherwise would be uncollectible: Provided further, That the balance in excess of such \$5,000,000 shall not be expended without approval in advance by the Committee on Appropriations of the House of Representatives and the Committee on Appropriations of the Senate: Provided further, That the plan under this heading shall be developed by the Librarian of Congress jointly with entities of the Federal Government with expertise in telecommunications technology and electronic commerce policy (including the Secretary of Commerce and the Director of the White House Office of Science and Technology Policy) and the National Archives and Records Administration, and with the participation of representatives of other Federal, research, and private libraries and institutions with expertise in the collection and maintenance of archives of digital materials (including the National Library of Medicine, the National Agricultural Library, the National Institute of Standards and Technology, the Research Libraries Group, the Online Computer Library Center, and the Council on Library and Information Resources) and representatives of private business organizations which are involved in efforts to preserve, collect, and disseminate information in digital formats (including the Open e-Book Forum): Provided further, That notwithstanding any other provision of law, effective with the One Hundred Seventh Congress and each succeeding Congress the chair of the Subcommittee on the Legislative Branch of the Committee on Appropriations of the House of Representatives shall serve as a member of the Joint Committee on the Library with respect to the Library's financial management, organization, budget development and implementation, and program development and administration, as well as any other element of the mission of the Library of Congress which is subject to the requirements of Federal law. **** December 29, 2000, 114 Stat. 3088 (Public Law
106-580—106th Congress, 2nd session) *National Institute of Biomedical Imaging and Bioengineering Establishment Act*. #### **Public Law 106-580** #### AN ACT To amend the Public Health Service Act to establish the National Institute of Biomedical Imaging and Bioengineering. SEC.3. Establishment of National Institute of Biomedical Imaging and Bioengineering. (114 Stat. 3089-90) (a) In General.—Part C of title IV of the Public Health Service Act (42 U.S.C. 285 et seq.) is amended by adding at the end the following subpart: "Subpart 18—National Institute of Biomedical Imaging and Bioengineering, "Purpose of the Institute "SEC. 464z(c)(3) (114 Stat. 3090) In addition to the ex officio members specified in section 406(b)(2), the ex officio members of the advisory council shall include the Director of the Centers for Disease Control and Prevention, the Director of the National Science Foundation, and the Director of the National Institute of Standards and Technology (or the designees of such officers). **** October 26, 2001, 115 Stat. 272 (Public Law 107-56—107th Congress, 1st session) *Uniting and Strengthening America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism Act* ## Public Law 107-56 # AN ACT To Unite and Strengthen America by Providing Appropriate Tools Required to Intercept and Obstruct Terrorism (USA Patriot Act) Act of 2001. SEC. 403. (c) Technology Standard to Confirm Identity. - (1) In General.—The Attorney General and the Secretary of State jointly, through the National Institute of Standards and Technology (NIST), and in consultation with the Secretary of the Treasury and other Federal law enforcement and intelligence agencies the Attorney General or Secretary of State deems appropriate and in consultation with Congress, shall within 2 years after the date of the enactment of this section, develop and certify a technology standard that can be used to verify and identify of persons applying for a United States visa or such persons seeking to enter the United States pursuant to a visa for the purposes of conducting background checks, confirming identify, and ensuring that a person has not received a visa under a different name or such person seeking to enter the United States pursuant to a visa. - (2) Integrated.—The Technology standard developed pursuant to paragraph (1), shall be the technological basis for a cross-agency, cross-platform electronic system that is a cost-effective, efficient, fully integrated means to share law enforcement and intelligence information necessary to confirm the identify of - such persons applying for a United States visa or such person seeking to enter the United States pursuant to a visa. - (3) Accessible.—The electronic system described in paragraph (2), once implemented, shall be readily and easily accessible to— - (A) all consular officers responsible for the issuance of visas; - (B) all Federal inspection agents at all United States border inspection points; and - (C) all law enforcement and intelligence officers as determined by regulation to be responsible for investigation or identification of aliens admitted to the United States pursuant to a visa. - (4) Report.—Not later than 18 months after the date of the enactment of this Act, and every 2 years thereafter, the Attorney General and the Secretary of State shall jointly, in consultation with the Secretary of Treasury, report to Congress describing the development, implementation, efficacy, and privacy implications of the technology standard and electronic database system described in this subsection. - (5) Funding.—There is authorized to be appropriated to the Secretary of State, the Attorney General, and the Director of the National Institute of Standards and Technology such sums as may be necessary to carry out the provisions of this subsection. **** November 28, 2001, 115 Stat. 748 (Public Law 107-77—107th Congress, 1st session) *Departments of Commerce, Justice, and State, the Judiciary and Related Agencies Appropriations Act, 2002.* Public Law 107-77 ## AN ACT Making appropriations for the Departments of Commerce, Justice, and State, the Judiciary, and related agencies for the fiscal year ending September 30, 2002, and for other purposes. ## TITLE II—DEPARTMENTS OF COMMERCE AND RELATED AGENCIES National Institute of Standards and Technology (115 Stat. 774) For necessary expenses of the National Institute of Standards and Technology, \$321,111,000, to remain available until expended, of which not to exceed \$282,000 may be transferred to the "Working Capital Fund." Industrial Technology Services. For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$106,522,000, to remain available until expended: Provided, That the Secretary of Commerce is authorized to enter into agreements with one or more nonprofit organizations for the purpose of carrying out collective research and development initiatives pertaining to 15 U.S.C. 278k paragraph (a), and is authorized to seek and accept contributions from public and private sources to support these efforts as necessary. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$184,500,000, to remain available until expended, of which not to exceed \$60,700,000 shall be available for the award of new grants. For construction of new research facilities, including architectural and engineering design, and for renovation of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$62,393,000, to remain available until expended. January 10, 2002, 115 Stat. 2230 (Public Law 107-117—107th Congress, 1st session) Department of Defense and Emergency Supplemental Appropriations for Recovery from and Response to Terrorist Attacks on the U.S. Act, 2002. ## **Public Law 107-117** #### AN ACT Making appropriations for the Department of Defense for the fiscal year ending September 30, 2002, and for other purposes. National Institute of Standards and Technology Scientific and Technical Research and Services For emergency expenses to respond to the September 11, 2001, terrorist attacks on the United States, for "Scientific and Technical Research and Services", \$5,000,000 for a cyber security initiative, to remain available until expended, to be obligated from amounts made available in Public Law 107-38. #### Construction of Research Facilities For emergency expenses to respond to the September 11, 2001, terrorist attacks on the United States, for "Construction of Research Facilities", \$1,225,000, to remain available until expended, to be obligated from amounts made available in Public Law 107-38. **** May 13, 2002, 116 Stat. 134 (Public Law 107-171—107th Congress, 2nd session) Farm Security and Rural Investment Act of 2002. ## **Public Law 107-171** #### AN ACT To provide for the continuation of agricultural programs through fiscal year 2007, and for other purposes. SEC. 9002. FEDERAL PROCUREMENT OF BIOBASED PRODUCTS. - "(c) CONSULTATION.—In carrying out this section, the Secretary shall consult with the Administrator of the United States Fire Administration, the Director of the National Institute of Standards and Technology, and the heads of other Federal agencies, as necessary. - (e) GUIDELINES.— - (1) IN GENERAL.—The Secretary, after consultation with the Administrator, the Administrator of General Services, and the Secretary of Commerce (acting through the Director of the National Institute of Standards and Technology), shall prepare, and from time to time revise, guidelines for the use of procuring agencies in complying with the requirements of this section. Such guidelines shall— - (A) designate those items which are or can be produced with biobased products and whose procurement by procuring agencies will carry out the objectives of this section; - (B) set forth recommended practices with respect to the procurement of biobased products and items containing such materials and with respect to certification by vendors of the percentage of biobased products used; and (C) provide information as to the availability, relative price, performance, and environmental and public health benefits, of such materials and items and where appropriate shall recommend the level of biobased material to be contained in the procured product. **** May 14, 2002, 116 Stat. 543 (Public Law 107-173—107th Congress, 2nd session) *Enhanced Border Security and Visa Entry Reform Act of 2002*. **Public Law 107-173** #### AN ACT To enhance the border security of the United States, and for other purposes. Sec. 202. INTEROPERABLE LAW ENFORCEMENT AND INTELLIGENCE DATA SYSTEM WITH NAME-MATCHING CAPACITY AND TRAINING. (3) CONSULTATION REQUIREMENT.—In the development and implementation of the data system under this subsection, the President shall consult with the Director of the National Institute of Standards and Technology (NIST) and any such other agency as may be deemed appropriate. Sec. 303. MACHINE-READABLE, TAMPER-RESISTANT ENTRY AND EXIT DOCUMENTS. ## (a) REPORT.— - (1) IN GENERAL.—Not later than 180 days after the date of enactment of this Act, the Attorney General, the Secretary of State, and the National Institute of Standards and Technology (NIST), acting jointly, shall submit to the appropriate committees of Congress a comprehensive report assessing the actions that will be necessary, and the considerations to be taken into account, to achieve fully, not later than October 26, 2004— - (A) implementation of the requirements of subsections (b) and (c); and - (B) deployment of the equipment and software to allow biometric comparison and authentication of the documents described in subsections (b) and (c). - (2) ESTIMATES.—In addition to the assessment required by paragraph (1), the report required by that paragraph shall include an estimate of the costs to be
incurred, and the personnel, man-hours, and other support required, by the Department of Justice, the Department of State, and NIST to achieve the objectives of subparagraphs (A) and (B) of paragraph (1). **** August 2, 2002, 116 Stat. 820 (Public Law 107-206—107th Congress, 2nd session) 2002 Supplemental Appropriations Act for Further Recovery from and Response to Terrorist Attacks on the U.S. **Public Law 107-206** # AN ACT Making supplemental appropriations for further recovery from and response to terrorist attacks on the United States for the fiscal year ending September 30, 2002, and for other purposes. National Institute of Standards and Technology Scientific and Technical Research and Services For an additional amount for "Scientific and Technical Research and Services" for emergency expenses resulting from new homeland security activities and increased security requirements, \$37,100,000, of which \$20,000,000 is for a cyber-security initiative: Provided, That the entire amount is designated by the Congress as an emergency requirement pursuant to section 251(b)(2)(A) of the Balanced Budget and Emergency Deficit Control Act of 1985, as amended: Provided further, That \$33,100,000 shall be available only to the extent an official budget request that includes designation of the \$33,100,000 as an emergency requirement as defined in the Balanced Budget and Emergency Deficit Control Act of 1985, as amended, is transmitted by the President to the Congress. SEC. 204. Title II of Public Law 107-77 is amended in the second undesignated paragraph under the heading "Department of Commerce, National Institute of Standards and Technology, Industrial Technology Services" by striking "not to exceed \$60,700,000 shall be available for the award of new grants" and inserting "not less than \$60,700,000 shall be used before October 1, 2002 for the award of new grants". **** August 21, 2002, 116 Stat. 1062 (Public Law 107-217—107th Congress, 2nd session) *Public Buildings, Property, and Works Laws Codification*. #### **Public Law 107-217** To revise, codify, and enact without substantive change certain general and permanent laws, related to public buildings, property, and works, as title 40, United States Code, "Public Buildings, Property, and Works". SEC. 582. Management of buildings by Administrator of General Services. (6) EXCEPTION FOR CERTAIN GOVERNMENT BUILDINGS.—A transfer of functions shall not be made under this subsection for the Treasury Building, the Bureau of Engraving and Printing Building, the buildings occupied by the National Institute of Standards and Technology, and the buildings under the jurisdiction of the regents of the Smithsonian Institution. SEC. 11302. Capital planning and investment control. (d) INFORMATION TECHNOLOGY STANDARDS—The Director shall oversee the development and implementation of standards and guidelines pertaining to federal computer systems by the Secretary of Commerce through the National Institute of Standards and Technology under section 11331 of this title and section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3). SEC. 11331. Responsibilities regarding efficiency, security, and privacy of federal computer systems. - (a) DEFINITIONS.—In this section, the terms "federal computer system" and "operator of a federal computer system" have the meanings given those terms in section 20(d) of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3(d)). - (b) STANDARDS AND GUIDELINES.— - (1) AUTHORITY TO PRESCRIBE AND DISAPPROVE OR MODIFY.— - (A) AUTHORITY TO PRESCRIBE.—On the basis of standards and guidelines developed by the National Institute of Standards and Technology pursuant to paragraphs (2) and (3) of section 20(a) of the Act (15 U.S.C. 278g-3(a)(2), (3)), the Secretary of Commerce shall prescribe standards and guidelines pertaining to federal computer systems. The Secretary shall make those standards compulsory and binding to the extent the Secretary determines necessary to improve the efficiency of operation or security and privacy of federal computer systems. October 1, 2002, 116 Stat. 1471 (Public Law 107-231—107th Congress, 2nd session) National Construction Safety Team Act. # **Public Law 107-231** #### AN ACT To provide for the establishment of investigative teams to assess building performance and emergency response and evacuation procedures in the wake of any building failure that has resulted in substantial loss of life or that posed significant potential of substantial loss of life. #### SEC. 2. NATIONAL CONSTRUCTION SAFETY TEAMS. (a) Establishment.—The Director of the National Institute of Standards and Technology (in this Act referred to as the "Director") is authorized to establish National Construction Safety Teams (in this Act referred to as a "Team") for deployment after events causing the failure of a building or buildings that has resulted in substantial loss of life or that posed significant potential for substantial loss of life. To the maximum extent practicable, the Director shall establish and deploy a Team within 48 hours after such an event. <<NOTE: Federal Register, publication. The Director shall promptly publish in the Federal Register notice of the establishment of each Team. **** October 29, 2002, 116 Stat. 1666 (Public Law 107-252—107th Congress, 2nd session) Help America Vote Act of 2002. ## **Public Law 107-252** ## AN ACT To establish a program to provide funds to States to replace punch card voting systems, to establish the Election Assistance Commission to assist in the administration of Federal elections and to otherwise provide assistance with the administration of certain Federal election laws and programs, to establish minimum election administration standards for States and units of local government with responsibility for the administration of Federal elections, and for other purposes. # SEC. 221. TECHNICAL GUIDELINES DEVELOPMENT COMMITTEE. ### (c) MEMBERSHIP.— - (1) IN GENERAL.—The Development Committee shall be composed of the Director of the National Institute of Standards and Technology (who shall serve as its chair), together with a group of 14 other individuals appointed jointly by the Commission and the Director of the National Institute of Standards and Technology. - (e) TECHNICAL SUPPORT FROM NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.— - (1) IN GENERAL.—At the request of the Development Committee, the Director of the National Institute of Standards and Technology shall provide the Development Committee with technical support necessary for the Development Committee to carry out its duties under this subtitle. - (b) LABORATORY ACCREDITATION.— - (1) RECOMMENDATIONS BY NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.—Not later than 6 months after the Commission first adopts voluntary voting system guidelines under part 3 of subtitle A, the Director of the National Institute of Standards and Technology shall conduct an evaluation of independent, non-Federal laboratories and shall submit to the Commission a list of those laboratories the Director proposes to be accredited to carry out the testing, certification, decertification, and recertification provided for under this section. #### (c) CONTINUING REVIEW BY NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY.— (1) IN GENERAL.—In cooperation with the Commission and in consultation with the Standards Board and the Board of Advisors, the Director of the National Institute of Standards and Technology shall monitor and review, on an ongoing basis, the performance of the laboratories accredited by the Commission under this section, and shall make such recommendations to the Commission as it considers appropriate with respect to the continuing accreditation of such laboratories, including recommendations to revoke the accreditation of any such laboratory. ## PART 3—GRANTS FOR RESEARCH ON VOTING TECHNOLOGY IMPROVEMENTS SEC. 271. GRANTS FOR RESEARCH ON VOTING TECHNOLOGY IMPROVEMENTS. # (d) RECOMMENDATION OF TOPICS FOR RESEARCH.— (1) IN GENERAL.—The Director of the National Institute of Standards and Technology (hereafter in this section referred to as the "Director") shall submit to the Commission an annual list of the Director's suggestions for issues which may be the subject of research funded with grants awarded under this part during the year. PART 4—PILOT PROGRAM FOR TESTING OF EQUIPMENT AND TECHNOLOGY SEC. 281. PILOT PROGRAM. ## (c) RECOMMENDATION OF TOPICS FOR PILOT PROGRAMS.— (1) IN GENERAL.—The Director of the National Institute of Standards and Technology (hereafter in this section referred to as the "Director") shall submit to the Commission an annual list of the Director's suggestions for issues which may be the subject of pilot programs funded with grants awarded under this part during the year. **** November 5, 2002, 116 Stat. 1936 (Public Law 107-277—107th Congress, 2nd session) *Enterprise Integration Act of 2002*. **Public Law 107-277** # AN ACT To authorize the National Institute of Standards and Technology to work with major manufacturing industries on an initiative of standards development and implementation for electronic enterprise integration. **** November 25, 2002, 116 Stat. 2135 (Public Law 107-296—107th Congress, 2nd session) *Homeland Security Act of 2002*. **Public Law 107-296** #### AN ACT To establish the Department of Homeland Security, and for other purposes. SEC. 11331. Responsibilities for Federal information systems Standards. "(b) REQUIREMENT TO PRESCRIBE STANDARDS.— #### "(1) IN GENERAL.— "(A) REQUIREMENT.—Except as provided under paragraph (2), the Director of the Office of Management and Budget shall, on the basis of proposed standards developed by the National Institute of Standards and Technology pursuant to paragraphs (2) and (3) of section 20(a) of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3(a)) and in consultation with the Secretary of Homeland Security, promulgate
information security standards pertaining to Federal information systems. # SEC. 1003. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3), is amended by striking the text and inserting the following: - "(a) The Institute shall— - "(1) have the mission of developing standards, guidelines, and associated methods and techniques for information systems; - "(2) develop standards and guidelines, including minimum requirements, for information systems used or operated by an agency or by a contractor of an agency or other organization on behalf of an agency, other than national security systems (as defined in section 3532(b)(2) of title 44, United States Code); - "(3) develop standards and guidelines, including minimum requirements, for providing adequate information security for all agency operations and assets, but such standards and guidelines shall not apply to national security systems; and - "(4) carry out the responsibilities described in paragraph (3) through the Computer Security Division. - "(b) The standards and guidelines required by subsection (a) shall include, at a minimum— - "(1) (A) standards to be used by all agencies to categorize all information and information systems collected or maintained by or on behalf of each agency based on the objectives of providing appropriate levels of information security according to a range of risk levels; - "(B) guidelines recommending the types of information and information systems to be included in each such category; and - "(C) minimum information security requirements for information and information systems in each such category; - "(2) a definition of and guidelines concerning detection and handling of information security incidents; and - "(3) guidelines developed in coordination with the National Security Agency for identifying an information system as a national security system consistent with applicable requirements for national security systems, issued in accordance with law and as directed by the President. **** November 27, 2002, 116 Stat. 2367 (Public Law 107-305—107th Congress, 2nd session) *Cyber Security Research and Development Act.* #### **Public Law 107-305** ## AN ACT To authorize funding for computer and network security research and development and research fellowship programs, and for other purposes. # (c) CHECKLISTS FOR GOVERNMENT SYSTEMS.— (1) IN GENERAL.—The Director of the National Institute of Standards and Technology shall develop, and revise as necessary, a checklist setting forth settings and option selections that minimize the security risks associated with each computer hardware or software system that is, or is likely to become, widely used within the Federal Government. December 17, 2002, 116 Stat. 2899 (Public Law 107-347—107th Congress, 2nd session) E-Government Act of 2002. ## **Public Law 107-347** #### AN ACT To enhance the management and promotion of electronic Government services and processes by establishing a Federal Chief Information Officer within the Office of Management and Budget, and by establishing a broad framework of measures that require using Internet-based information technology to enhance citizen access to Government information and services, and for other purposes. ## TITLE III—INFORMATION SECURITY #### SEC. 303. NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY. Section 20 of the National Institute of Standards and Technology Act (15 U.S.C. 278g-3), is amended by striking the text and inserting the following: - "(a) IN GENERAL.—The Institute shall— - "(1) have the mission of developing standards, guidelines, and associated methods and techniques for information systems; - "(2) develop standards and guidelines, including minimum requirements, for information systems used or operated by an agency or by a contractor of an agency or other organization on behalf of an agency, other than national security systems (as defined in section 3542(b)(2) of title 44, United States Code); and - "(3) develop standards and guidelines, including minimum requirements, for providing adequate information security for all agency operations and assets, but such standards and guidelines shall not apply to national security systems. **** December 17, 2002, 116 Stat. 2985 (Public Law 107-355—107th Congress, 2nd session) *Pipeline Safety Improvement Act of 2002*. # **Public Law 107-355** # AN ACT To amend title 49, United States Code, to enhance the security and safety of pipelines. ## Sec. 12. PIPELINE INTEGRITY, SAFETY, AND RELIABILITY RESEARCH AND DEVELOPMENT. (2) AREAS OF EXPERTISE.—Under the memorandum of understanding, each of the participating agencies shall have the primary responsibility for ensuring that the elements of the program within its expertise are implemented in accordance with this section. The Department of Transportation's responsibilities shall reflect its lead role in pipeline safety and expertise in pipeline inspection, integrity management, and damage prevention. The Department of Energy's responsibilities shall reflect its expertise in system reliability, low-volume gas leak detection, and surveillance technologies. The National Institute of Standards and Technology's responsibilities shall reflect its expertise in materials research and assisting in the development of consensus technical standards, as that term is used in section 12(d)(4) of Public Law 104-13 (15 U.S.C. 272 note). February 20, 2003, 117 Stat. 11 (Public Law 108-7—108th Congress, 1st session) *Consolidated Appropriations Resolution*, 2003. ## Public Law 108-7 #### Joint Resolution Making consolidated appropriations for the fiscal year ending September 30, 2003, and for other purposes. Science and Technology **Technology Administration** Salaries and Expenses For necessary expenses for the Under Secretary for Technology/Office of Technology Policy, \$9,886,000. National Institute of Standards and Technology Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$359,411,000, to remain available until expended, of which not to exceed \$282,000 may be transferred to the "Working Capital Fund". # **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$106,623,000, to remain available until expended: Provided, That hereafter the Secretary of Commerce is authorized to enter into agreements with one or more nonprofit organizations for the purpose of carrying out collective research and development initiatives pertaining to 15 U.S.C. 278k paragraph (a), and is authorized to seek and accept contributions from public and private sources to support these efforts as necessary. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$180,000,000, to remain available until expended, of which \$60,700,000 shall be expended for the award of new grants before October 1, 2003. # Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation and maintenance of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$66,100,000, to remain available until expended. **** December 3, 2003, 117 Stat. 1923 (Public Law 108-153—108th Congress, 1st session) 21st Century Nanotechnology Research and Development Act. ## **Public Law 108-153** #### AN ACT To authorize appropriations for nanoscience, nanoengineering, and nanotechnology research, and for other purposes. SEC. 7. DEPARTMENT OF COMMERCE PROGRAMS. - (a) NIST PROGRAMS.—The Director of the National Institute of Standards and Technology shall— - (1) as part of the Program activities under section 2(b)(7), establish a program to conduct basic research on issues related to the development and manufacture of nanotechnology, including metrology; reliability and quality assurance; processes control; and manufacturing best practices; and - (2) utilize the Manufacturing Extension Partnership program to the extent possible to ensure that the research conducted under paragraph (1) reaches small- and medium-sized manufacturing companies. **** January 23, 2004, 118 Stat. 3 (Public Law 108-199—108th Congress, 1st session) Consolidated Appropriations Act. 2004. **Public Law 108-199** ## AN ACT Making appropriations for Agriculture, Rural Development, Food and Drug Administration, and Related Agencies for the fiscal year ending September 30, 2004, and for other purposes. Science and Technology **Technology Administration** Salaries and Expenses For necessary expenses for the Under Secretary for Technology Office of Technology Policy, \$6,411,000. National Institute of Standards and Technology Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$344,366,000, to remain available until expended, of which not to exceed \$282,000 may be transferred to the "Working Capital Fund". # **Industrial Technology Services** For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$39,607,000, to remain available until expended. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$179,175,000, to remain available until expended, of which \$60,700,000 shall be expended for the award of new grants before September 30, 2004. #### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation and maintenance of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$64,954,000, to
remain available until expended. August 5, 2004, 118 Stat. 951 (Public Law 108-287—108th Congress, 2nd session) Department of Defense Appropriations Act, 2005. #### **Public Law 108-287** #### AN ACT Making appropriations for the Department of Defense for the fiscal year ending September 30, 2005, and for other purposes. # GENERAL PROVISIONS, THIS CHAPTER SEC. 11001. For the purposes of applying sections 204 and 605 of the Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act, 2004 (division B of Public Law 108-199) to matters in title II of such Act under the heading "National Institute of Standards and Technology" (118 Stat. 69), in the account under the heading "Industrial Technology Services", the Secretary of Commerce shall make all determinations based on the Industrial Technology Services funding level of \$218,782,000 for reprogramming and transferring of funds for the Manufacturing Extension Partnership program and may submit such a reprogramming or transfer, as the case may be, to the appropriate committees within 30 days after the date of the enactment of this Act. **** October 25, 2004, 118 Stat. 1668 (Public Law 108-360—108th Congress, 2nd session) *National Earthquake Hazards Reduction Program Reauthorization*. ## **Public Law 108-360** # AN ACT To reauthorize the National Earthquake Hazards Reduction Program, and for other purposes. "(A) IN GENERAL.—There is established an Interagency Coordinating Committee on Earthquake Hazards Reduction chaired by the Director of the National Institute of Standards and Technology (i) by striking "Federal Emergency Management Agency" and all that follows through "of the Agency" and inserting "National Institute of Standards and Technology shall have the primary responsibility for planning and coordinating the Program. **** October 28, 2004, 118 Stat. 1811 (Public Law 108-375—108th Congress, 2nd session) Ronald W. Reagan National Defense Authorization Act for FY2005. ## **Public Law 108-375** ## AN ACT To authorize appropriations for fiscal year 2005 for military activities of the Department of Defense, for military construction, and for defense activities of the Department of Energy, to prescribe personnel strengths for such fiscal year for the Armed Forces, and for other purposes. Sec. 1008. CLARIFICATION OF FISCAL YEAR 2004 FUNDING LEVEL FOR A NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY ACCOUNT. For the purposes of applying sections 204 and 605 of the Departments of Commerce, Justice, and State, the Judiciary, and Related Agencies Appropriations Act, 2004 (division B of Public Law 108-199) to matters in title II of such Act under the heading "NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY" (118 Stat. 69), in the account under the heading "INDUSTRIAL TECHNOLOGY SERVICES", the Secretary of Commerce shall make all determinations based on the Industrial Technology Services funding level of \$218,782,000 for reprogramming and transferring of funds for the Manufacturing Extension Partnership program and may submit such a reprogramming or transfer, as the case may be, to the appropriate committees within 30 days after the date of the enactment of this Act. **** December 8, 2004, 118 Stat. 2809 (Public Law 108-447—108th Congress, 2nd session) *Consolidated Appropriations Act*, 2005. **Public Law 108-447** #### AN ACT Making appropriations for foreign operations, export financing, and related programs for the fiscal year ending September 30, 2005, and for other purposes. Science and Technology **Technology Administration** Salaries and Expenses National Institute of Standards and Technology Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$383,892,000, to remain available until expended, of which not to exceed \$2,900,000 may be transferred to the "Working Capital Fund." For necessary expenses of the Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$109,000,000, to remain available until expended: Provided, That the Secretary of Commerce shall not recompete any existing Manufacturing Extension Partnership Center prior to 2007: Provided further, That hereafter the Manufacturing Extension Partnership Program authorized under 15 U.S.C. 278k shall be renamed the Hollings Manufacturing Partnership Program and the centers established and receiving funding under 15 U.S.C. 278k paragraph (a) shall be named the Hollings Manufacturing Extension Centers. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$142,300,000, to remain available until expended. # Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation and maintenance of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$73,500,000, to remain available until expended. December 17, 2004, 118 Stat. 3638 (Public Law 108-458—108th Congress, 2nd session) Intelligence Reform and Terrorism Prevention Act of 2004. ## **Public Law 108-458** #### AN ACT To reform the intelligence community and the intelligence and intelligencerelated activities of the United States Government, and for other purposes. ## Subtitle B—Aviation Security SEC. 4011. PROVISION FOR THE USE OF BIOMETRIC OR OTHER TECHNOLOGY. - "(5) USE OF BIOMETRIC TECHNOLOGY IN AIRPORT ACCESS CONTROL SYSTEMS.—In issuing guidance under paragraph (4)(E), the Assistant Secretary of Homeland Security (Transportation Security Administration) in consultation with representatives of the aviation industry, the biometric identifier industry, and the National Institute of Standards and Technology, shall establish, at a minimum— - "(A) comprehensive technical and operational system requirements and performance standards for the use of biometric identifier technology in airport access control systems (including airport perimeter access control systems) to ensure that the biometric identifier systems are effective, reliable, and secure: - "(B) a list of products and vendors that meet the requirements and standards set forth in subparagraph (A); - "(C) procedures for implementing biometric identifier systems— - "(i) to ensure that individuals do not use an assumed identity to enroll in a biometric identifier system; and - "(ii) to resolve failures to enroll, false matches, and false non-matches; and - "(D) best practices for incorporating biometric identifier technology into airport access control systems in the most effective manner, including a process to best utilize existing airport access control systems, facilities, and equipment and existing data networks connecting airports. **** August 8, 2005, 119 Stat. 594 (Public Law 109-58—109th Congress, 1st session) Energy Policy Act of 2005. # Public Law 109-58 ### AN ACT To ensure jobs for our future with secure, affordable, and reliable energy. - "(2) All Federal agencies are encouraged to take actions to maximize the efficiency of air conditioning and refrigeration equipment, including appropriate cleaning and maintenance, including the use of any system treatment or additive that will reduce the electricity consumed by air conditioning and refrigeration equipment. Any such treatment or additive must be— - "(C) shown to increase seasonal energy efficiency ratio (SEER) or energy efficiency ratio (EER) when tested by the National Institute of Standards and Technology according to Department of Energy test procedures without causing any adverse impact on the system, system components, the refrigerant or lubricant, or other materials in the system. Results of testing described in subparagraph (C) shall be published in the Federal Register for public review and comment. For purposes of this section, a hardware device or primary refrigerant shall not be considered an additive. SEC. 806. HYDROGEN AND FUEL CELL TECHNICAL TASK FORCE. - (a) ESTABLISHMENT.—Not later than 120 days after the date of enactment of this Act, the President shall establish an interagency task force chaired by the Secretary with representatives from each of the following: - (1) The Office of Science and Technology Policy within the Executive Office of the President. - (2) The Department of Transportation. - (3) The Department of Defense. - (4) The Department of Commerce (including the National Institute of Standards and Technology). - (5) The Department of State. - (6) The Environmental Protection Agency. - (7) The National Aeronautics and Space Administration. - (8) Other Federal agencies as the Secretary determines appropriate. - "(h) PROCEDURES FOR CALCULATING, MONITORING, AND ANALYZING GREENHOUSE GAS INTENSITY.—The Secretary, in collaboration with the Committee and the National Institute of Standards and Technology, and after public notice and opportunity for comment, shall develop standards and best practices for calculating, monitoring, and analyzing greenhouse gas intensity. **** August 10, 2005, 119 Stat. 1144 (Public Law 109-59—109th Congress, 1st session) Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users or Safetea-Lu. #### Public Law 109-59 #### AN ACT To authorize funds for Federal-aid highways, highway safety programs, and transit programs, and for other purposes. "CHAPTER 5—RESEARCH, TECHNOLOGY, AND EDUCATION." - "(g) SEISMIC RESEARCH.—The Secretary shall-coordination of the research is consistent with— - "(A) planning and coordination activities of the National Institute of Standards and Technology under section 5(b)(1) of that Act (42 U.S.C. 7704(b)(1)); and - "(B) the plan developed by the Director of the National Institute of Standards and Technology under section 8(b) of that Act (42 U.S.C. 7705b(b) **** November 22, 2005, 119 Stat. 2290 (Public Law 109-108—109th Congress, 1st session) *Science,
State, Justice, Commerce, and Related Agencies Appropriations Act, 2006.* #### **Public Law 109-108** #### AN ACT Making appropriations for Science, the Departments of State, Justice, and Commerce, and related agencies for the fiscal year ending September 30, 2006, and for other purposes. ## COMMUNITY ORIENTED POLICING SERVICES (INCLUDING TRANSFERS OF FUNDS) For activities authorized by the Violent Crime Control and Law Enforcement Act of 1994 (Public Law 103-322) (including administrative costs), \$478,300,000, to remain available until expended: Provided, That of the funds under this heading, not to exceed \$2,575,000 shall be available for the Office of Justice Programs for reimbursable services associated with programs administered by the Community Oriented Policing Services Office: Provided further, That section 1703(b) and (c) of the Omnibus Crime Control and Safe Streets Act of 1968 ("the 1968 Act") shall not apply to non-hiring grants made pursuant to part Q of title I thereof (42 U.S.C. 3796dd et seq.): Provided further, That up to \$34,000,000 of balances made available as a result of prior year deobligations may be obligated for program management and administration, of which \$5,000,000 shall be available for transfer to the National Institute of Standards and Technology: Provided further, That any balances made available as a result of prior year deobligations in excess of \$34,000,000 shall only be obligated in accordance with section 605 of this Act. Science and Technology **Technology Administration** Salaries and Expenses For necessary expenses for the Under Secretary for Technology Office of Technology Policy, \$6,000,000. National Institute of Standards and Technology Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$399,869,000, to remain available until expended, of which not to exceed \$1,300,000 may be transferred to the "Working Capital Fund." ## **Industrial Technology Services** For necessary expenses of the Hollings Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$106,000,000, to remain available until expended. In addition, for necessary expenses of the Advanced Technology Program of the National Institute of Standards and Technology, \$80,000,000, to remain available until expended. ## Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation and maintenance of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$175,898,000, to remain available until expended: Provided, That beginning in fiscal year 2007 and for each fiscal year thereafter, the Secretary of Commerce shall include in the budget justification materials that the Secretary submits to Congress in support of the Department of Commerce budget (as submitted with the budget of the President under section 1105(a) of title 31, United States Code) an estimate for each National Institute of Standards and Technology construction project having a total multiyear program cost of more than \$5,000,000 and simultaneously the budget justification materials shall include an estimate of the budgetary requirements for each such project for each of the five subsequent fiscal years. **** November 30, 2005, 119 Stat. 2396 (Public Law 109-115—109th Congress, 1st session) *Transportation, Treasury, Housing and Urban Development, the Judiciary, the District of Columbia, and Independent Agencies Appropriations Act, 2006.* ## **Public Law 109-115** #### AN ACT Making appropriations for the Departments of Transportation, Treasury, and Housing and Urban Development, the Judiciary, District of Columbia, and independent agencies for the fiscal year ending September 30, 2006, and for other purposes #### **Election Assistance Commission** # Salaries and Expenses (Including Transfer of Funds) For necessary expenses to carry out the Help America Vote Act of 2002, \$14,200,000, of which \$2,800,000 shall be transferred to the National Institute of Standards and Technology for election reform activities authorized under the Help America Vote Act of 2002. **** December 30, 2005, 119 Stat. 2680 (Public Law 109-148—109th Congress, 1st session) Department of Defense, Emergency Supplemental Appropriations to Address Hurricanes in the Gulf of Mexico, and Pandemic Influenza Act, 2006. ## **Public Law 109-148** #### AN ACT Making appropriations for the Department of Defense for the fiscal year ending September 30, 2006, and for other purposes. SEC. 801. Of the unobligated balances available under "National Institute of Standards and Technology, Industrial Technology Services" for the Hollings Manufacturing Extension Partnership Program, \$4,500,000 shall be used to assist manufacturers recovering from hurricanes in the Gulf of Mexico in calendar year 2005: Provided, That only Manufacturing Extension Centers in States affected by hurricanes in the Gulf of Mexico in calendar year 2005 shall be eligible for hurricane recovery assistance funds: Provided further, That these funds shall be allocated to the Manufacturing Extension Centers in these States based on an assessment of the needs of manufacturers in the counties declared a disaster by the Federal Emergency Management Agency: Provided further, That employment and productivity shall be among the metric used in developing the needs assessment: Provided further, That the matching provisions of 15 U.S.C. 278(k) paragraph (c) shall not apply to amounts provided by this Act or by Public Law 109-108 to Manufacturing Extension Centers serving areas affected by hurricanes in the Gulf of Mexico in calendar year 2005. **** July 11, 2006, 120 Stat. 516 (Public Law 109-241—109th Congress, 2nd session) Coast Guard and Maritime Transportation Act of 2006. ## **Public Law 109-241** ## AN ACT To authorize appropriations for the Coast Guard for fiscal year 2006, to make technical corrections to various laws administered by the Coast Guard, and for other purposes. - (1) OIL POLLUTION.—The Oil Pollution Act of 1990 (33 U.S.C. 2701 et seq.) is amended— - "(3) MEMBERSHIP.—The Interagency Committee shall include representatives from the Coast Guard, the Department of Commerce (including the National Oceanic and Atmospheric Administration and the National Institute of Standards and Technology), the Department of Energy, the Department of the Interior (including the Minerals Management Service and the United States Fish and Wildlife Service), the Department of Transportation (including the Maritime Administration and the Pipeline and Hazardous Materials Safety Administration), the Department of Defense (including the Army Corps of Engineers and the Navy), the Department of Homeland Security (including the United States Fire Administration in the Federal Emergency Management Agency), the Environmental Protection Agency, the National Aeronautics and Space Administration, and such other Federal agencies the President may designate. **** October 4, 2006, 120 Stat. 1355 (Public Law 109-295—109th Congress, 2nd session) *Department of Homeland Security Appropriations Act*, 2007. #### **Public Law 109-295** #### AN ACT Making appropriations for the Department of Homeland Security for the fiscal year ending September 30, 2007, and for other purposes. - "(B) The Secretary of Homeland Security and the Secretary of State shall jointly certify to the Committees on Appropriations of the Senate and the House of Representatives that the following criteria have been met prior to implementation of section 7209(b)(1)(A)— - "(i) the National Institute of Standards and Technology certifies that the Departments of Homeland Security and State have selected a card architecture that meets or exceeds International Organization for Standardization (ISO) security standards and meets or exceeds best available practices for protection of personal identification documents: Provided, That the National Institute of Standards and Technology shall also assist the Departments of Homeland Security and State to incorporate into the architecture of the card the best available practices to prevent the unauthorized use of information on the card: Provided further, That to facilitate efficient cross-border travel, the Departments of Homeland Security and State shall, to the maximum extent possible, develop an architecture that is compatible with information technology systems and infrastructure used by United States Customs and Border Protection. - SEC. 555. Not later than 90 days after the date of enactment of this Act, the Director of the Federal Emergency Management Agency in conjunction with the Director of the National Institute of Standards and Technology shall submit a report to the Committees on Appropriations of the Senate and the House of Representatives outlining Federal earthquake response plans for high-risk earthquake regions in the United States as determined by the United States Geological Survey. - "(c) CONTENTS.—The National Emergency Communications Plan shall— - "(1) include recommendations developed in consultation with the Federal Communications Commission and the National Institute of Standards and Technology for a process for expediting national voluntary consensus standards for emergency communications equipment for the purchase and use by public safety agencies of interoperable emergency communications equipment and technologies. - "(2) STANDARDS.—The Secretary, in coordination with the Federal Communications Commission, the National Institute of Standards and Technology, and other Federal departments and agencies with responsibility for standards, shall support the development, promulgation, and updating as necessary of national voluntary consensus standards for interoperable emergency communications. **** October 13, 2006, 120 Stat. 1884 (Public Law
109-347—109th Congress, 2nd session) Security and Accountability for Every Port Act or Safe Port Act. #### **Public Law 109-347** ## AN ACT To improve maritime and cargo security through enhanced layered defenses, and for other purposes. - (f) STANDARDS.—The Secretary, acting through the Director National Institute of Standards and Technology, shall publish technical capability standards and recommended standard operating procedures for the use of nonintrusive imaging and radiation detection equipment in the United States. Such standards and procedures— - (1) should take into account relevant standards and procedures utilized by other Federal departments or agencies as well as those developed by international bodies; and - (2) shall not be designed so as to endorse specific companies or create sovereignty conflicts with participating countries. **** December 22, 2006, 120 Stat. 3403 (Public Law 109-461—109th Congress, 2nd session) *Veterans Benefits, Health Care, and Information Technology Act of 2006.* #### **Public Law 109-461** #### AN ACT To amend title 38, United States Code, to repeal certain limitations on attorney representation of claimants for benefits under laws administered by the Secretary of Veterans Affairs, to expand eligibility for the Survivors' and Dependents' Educational Assistance Program, to otherwise improve veterans' benefits, memorial affairs, and health-care programs, to enhance information security programs of the Department of Veterans Affairs, and for other purposes. "(c) COMPLIANCE WITH CERTAIN REQUIREMENTS.—The Secretary shall comply with the provisions of subchapter III of chapter 35 of title 44 and other related information security requirements promulgated by the National Institute of Standards and Technology and the Office of Management and Budget that define Department information system mandates. **** February 15, 2007, 121 Stat. 8 (Public Law 110-5—110th Congress, 1st session) Full-Year Continuing Appropriations. #### Public Law 110-5 # Joint Resolution Making further continuing appropriations for the fiscal year 2007, and for other purposes. "SEC. 20913. Notwithstanding section 101, the level for the following accounts of the National Institute of Standards and Technology shall be as follows: 'Scientific and Technical Research and Services', \$432,762,000; and 'Construction of Research Facilities', \$58,651,000. "Sec. 21060. Notwithstanding section 101, the level for 'Election Assistance Commission, Salaries and Expenses' shall be \$16,236,000, of which \$4,950,000 shall be transferred to the National Institute of Standards and Technology for election reform activities authorized under the Help America Vote Act of 2002. #### Public Law 110-69 #### AN ACT To invest in innovation through research and development, and to improve the competitiveness of the United States. ## TITLE III—NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY #### SEC. 3001. AUTHORIZATION OF APPROPRIATIONS. - (a) SCIENTIFIC AND TECHNICAL RESEARCH AND SERVICES.— - (1) LABORATORY ACTIVITIES.—There are authorized to be appropriated to the Secretary of Commerce for the scientific and technical research and services laboratory activities of the National Institute of Standards and Technology— - (A) \$502,100,000 for fiscal year 2008; - (B) \$541,900,000 for fiscal year 2009; and - (C) \$584,800,000 for fiscal year 2010. - (2) CONSTRUCTION AND MAINTENANCE.—There are authorized to be appropriated to the Secretary of Commerce for construction and maintenance of facilities of the National Institute of Standards and Technology— - (A) \$150,900,000 for fiscal year 2008; - (B) \$86,400,000 for fiscal year 2009; and - (C) \$49,700,000 for fiscal year 2010. - (b) INDUSTRIAL TECHNOLOGY SERVICES.—There are authorized to be appropriated to the Secretary of Commerce for Industrial Technology Services activities of the National Institute of Standards and Technology— - (1) \$210,000,000 for fiscal year 2008, of which— - (A) \$100,000,000 shall be for the Technology Innovation Program under section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n), of which at least \$40,000,000 shall be for new awards; and - (B) \$110,000,000 shall be for the Manufacturing Extension Partnership program under sections 25 and 26 of the National Institute of Standards and Technology Act (15 U.S.C. 278k and 278l), of which not more than \$1,000,000 shall be for the competitive grant program under section 25(f) of such Act; - (2) \$253,500,000 for fiscal year 2009, of which— - (A) \$131,500,000 shall be for the Technology Innovation Program under section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n), of which at least \$40,000,000 shall be for new awards; and - (B) \$122,000,000 shall be for the Manufacturing Extension Partnership Program under sections 25 and 26 of the National Institute of Standards and Technology Act (15 U.S.C. 278k and 278l), of which not more than \$4,000,000 shall be for the competitive grant program under section 25(f) of such Act; and - (3) \$272,300,000 for fiscal year 2010, of which— - (A) \$140,500,000 shall be for the Technology Innovation Program under section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n), of which at least \$40,000,000 shall be for new awards; and - (B) \$131,800,000 shall be for the Manufacturing Extension Partnership Program under sections 25 and 26 of the National Institute of Standards and Technology Act (15 U.S.C. 278k and 278l), of which not more than \$4,000,000 shall be for the competitive grant program under section 25(f) of such Act. # SEC. 3012. TECHNOLOGY INNOVATION PROGRAM. - (a) Repeal of Advanced Technology Program.—Section 28 of the National Institute of Standards and Technology Act (15 U.S.C. 278n) is repealed. - (b) Establishment of Technology Innovation Program.—The National Institute of Standards and Technology Act (15 U.S.C. 271 et seq.) is amended by inserting after section 27 the following: "SEC. 28. <<NOTE: 15 USC 278n.>> TECHNOLOGY INNOVATION PROGRAM. "(a) Establishment.—There is established within the Institute a program linked to the purpose and functions of the Institute, to be known as the 'Technology Innovation Program' for the purpose of assisting United States businesses and institutions of higher education or other organizations, such as national laboratories and nonprofit research institutions, to support, promote, and accelerate innovation in the United States through high-risk, high-reward research in areas of critical national need. **** September 27, 2007, 121 Stat. 823 (Public Law 110-85—110th Congress, 1st session) Food and Drug Administration Amendments Act of 2007. #### Public Law 110-85 #### AN ACT To amend the Federal Food, Drug, and Cosmetic Act to revise and extend the user-fee programs for prescription drugs and for medical devices, to enhance the postmarket authorities of the Food and Drug Administration with respect to the safety of drugs, and for other purposes. - (c) USE OF FUNDS.—A nonprofit consortium that receives a grant or contract under this section shall facilitate the development, production, and distribution of pediatric medical devices by— - (3) connecting innovators and physicians to existing Federal and non-Federal resources, including resources from the Food and Drug Administration, the National Institutes of Health, the Small Business Administration, the Department of Energy, the Department of Education, the National Science Foundation, the Department of Veterans Affairs, the Agency for Healthcare Research and Quality, and the National Institute of Standards and Technology; **** December 19, 2007, 121 Stat. 1492 (Public Law 110-140—110th Congress, 1st session) *Energy Independence and Security Act of 2007*. #### **Public Law 110-140** ## AN ACT To move the United States toward greater energy independence and security, to increase the production of clean renewable fuels, to protect consumers, to increase the efficiency of products, buildings, and vehicles, to promote research on and deploy greenhouse gas capture and storage options, and to improve the energy performance of the Federal Government, and for other purposes. Subtitle B—Biofuels Research and Development SEC. 221. BIODIESEL. (b) MATERIAL FOR THE ESTABLISHMENT OF STANDARDS.—The Director of the National Institute of Standards and Technology, in consultation with the Secretary, shall make publicly available the physical property data and characterization of biodiesel and other biofuels as appropriate. **** December 21, 2007, 121 Stat. 1809 (Public Law 110-143—110th Congress, 1st session) *Methamphetamine Remediation Research Act of 2007*. ### **Public Law 110-143** ### AN ACT To provide for a research program for remediation of closed methamphetamine production laboratories, and for other purposes. ### SEC. 3. VOLUNTARY GUIDELINES. (a) ESTABLISHMENT OF VOLUNTARY GUIDELINES.—Not later than one year after the date of enactment of this Act, the Administrator of the Environmental Protection Agency (in this Act referred to as the "Administrator"), in consultation with the National Institute of Standards and Technology, shall establish voluntary guidelines, based on the best currently available scientific knowledge, for the remediation of former methamphetamine laboratories, including guidelines regarding preliminary site assessment and the remediation of residual contaminants. ### Sec. 7. METHAMPHETAMINE DETECTION RESEARCH AND DEVELOPMENT PROGRAM. The Director of National Institute of Standards and Technology, in consultation with the Administrator, shall support a research program to develop— - (1) new methamphetamine detection technologies, with emphasis on field test kits and site detection; and - (2) appropriate standard reference materials and validation procedures for methamphetamine detection testing. **** December 26, 2007, 121 Stat. 1844 (Public Law 110-161—110th Congress, 1st
session) *Consolidated Appropriations Act, 2008.* ### **Public Law 110-161** ### AN ACT Making appropriations for the Department of State, foreign operations, and related programs for the fiscal year ending September 30, 2008, and for other purposes. National Institute of Standards and Technology Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$440,517,000, to remain available until expended, of which not to exceed \$6,580,000 may be transferred to the "Working Capital Fund": Provided, That not to exceed \$5,000 shall be for official reception and representation expenses. **Industrial Technology Services** For necessary expenses of the Hollings Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$89,640,000, to remain available until expended. In addition, for necessary expenses of the Technology Innovation Program of the National Institute of Standards and Technology, \$65,200,000, to remain available until expended: Provided, That of the \$70,200,000 provided for in direct obligations under this heading, \$65,200,000 is appropriated from the general fund and \$5,000,000 is derived from recoveries of prior year obligations from the Advanced Technology Program. ### Construction of Research Facilities For construction of new research facilities, including architectural and engineering design, and for renovation and maintenance of existing facilities including agency recreational and welfare facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$160,490,000, to remain available until expended, of which \$30,080,000 is for a competitive construction grant program for research science buildings: Provided, That the Secretary of Commerce shall include in the budget justification materials that the Secretary submits to Congress in support of the Department of Commerce budget (as submitted with the budget of the President under section 1105(a) of title 31, United States Code) an estimate for each National Institute of Standards and Technology construction project having a total multi-year program cost of more than \$5,000,000 and simultaneously the budget justification materials shall include an estimate of the budgetary requirements for each such project for each of the five subsequent fiscal years. **** May 22, 2008, 122 Stat. 923 (Public Law 110-234—110th Congress, 2nd session) Food Conservation and Energy Act of 2008. ### **Public Law 110-234** ### AN ACT To provide for the continuation of agricultural programs through fiscal year 2012, and for other purposes. "SEC. 9002. BIOBASED MARKETS PROGRAM. - "(a) FEDERAL PROCUREMENT OF BIOBASED PRODUCTS.— - "(3) GUIDELINES.— - "(A) IN GENERAL.—The Secretary, after consultation with the Administrator, the Administrator of General Services, and the Secretary of Commerce (acting through the Director of the National Institute of Standards and Technology), shall prepare, and from time to time revise, guidelines for the use of procuring agencies in complying with the requirements of this subsection. **** June 18, 2008, 122 Stat. 1651 (Public Law 110-246—110th Congress, 2nd session) Food Conservation and Energy Act of 2008. ### **Public Law 110-246** ### AN ACT To provide for the continuation of agricultural and other programs of the Department of Agriculture through fiscal year 2012, and for other purposes. "SEC. 9002. BIOBASED MARKETS PROGRAM. ### "(a) FEDERAL PROCUREMENT OF BIOBASED PRODUCTS.— "(3) GUIDELINES.— "(A) IN GENERAL.—The Secretary, after consultation with the Administrator, the Administrator of General Services, and the Secretary of Commerce (acting through the Director of the National Institute of Standards and Technology), shall prepare, and from time to time revise, guidelines for the use of procuring agencies in complying with the requirements of this subsection. **** August 14, 2008, 122 Stat. 3078 (Public Law 110-315—110th Congress, 2nd session) *Higher Education Opportunity Act.* ### **Public Law 110-315** ### AN ACT To amend and extend the Higher Education Act of 1965, and for other purposes. "Sec. 357. EVALUATION AND ACCOUNTABILITY PLAN. - (b) ELIGIBILITY FOR GRANTS.—Section 361 (20 U.S.C. 1067g) is amended— - (C) by striking subparagraph (D) and inserting the following: - "(D) relevant offices of the National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, National Science Foundation, and National Institute of Standards and Technology;" **** February 17, 2009, 123 Stat. 115 (Public Law 111-5—11th Congress, 1st session) *American Recovery and Reinvestment Act of 2009*. ### Public Law 111-5 ### AN ACT Making supplemental appropriations for job preservation and creation, infrastructure investment, energy efficiency and science, assistance to the unemployed, and State and local fiscal stabilization, for the fiscal year ending September 30, 2009, and for other purposes. **Division A-Appropriations Provisions** TITLE II—COMMERCE, JUSTICE, SCIENCE, AND RELATED AGENCIES National Institute of Standards and Technology Scientific and Technical Research and Services For an additional amount for "Scientific and Technical Research and Services", \$220,000,000. Construction of Research Facilities For an additional amount for "Construction of Research Facilities", \$360,000,000, of which \$180,000,000 shall be for a competitive construction grant program for research science buildings. ## TITLE VIII—DEPARTMENTS OF LABOR, HEALTH AND HUMAN SERVICES, AND EDUCATION, AND RELATED AGENCIES Office of the National Coordinator for Health Information Technology (Including Transfer of Funds) "For an additional amount for "Office of the National Coordinator for Health Information Technology", \$2,000,000,000, to carry out title XIII of this Act, to remain available until expended: Provided, That of such amount, the Secretary of Health and Human Services shall transfer \$20,000,000 to the Director of the National Institute of Standards and Technology in the Department of Commerce for continued work on advancing health care information enterprise integration through activities such as technical standards analysis and establishment of conformance testing infrastructure, so long as such activities are coordinated with the Office of the National Coordinator for Health Information Technology..." ### TITLE XXX—HEALTH INFORMATION TECHNOLOGY AND QUALITY Part 2—Application and Use of Adopted Health Information Technology Standards; Reports Subtitle B—Testing of Health Information Technology Sec. 13201. NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY TESTING. - "(a) PILOT TESTING OF STANDARDS AND IMPLEMENTATION SPECIFICATIONS.—In coordination with the HIT Standards Committee established under section 3003 of the Public Health Service Act, as added by section 13101, with respect to the development of standards and implementation specifications under such section, the Director of the National Institute for Standards and Technology shall test such standards and implementation specifications, as appropriate, in order to assure the efficient implementation and use of such standards and implementation specifications. - (b) VOLUNTARY TESTING PROGRAM.—In coordination with the HIT Standards Committee established under section 3003 of the Public Health Service Act, as added by section 13101, with respect to the development of standards and implementation specifications under such section, the Director of the National Institute of Standards and Technology shall support the establishment of a conformance testing infrastructure, including the development of technical test beds. The development of this conformance testing infrastructure may include a program to accredit independent, non-Federal laboratories to perform testing. SEC. 13202. RESEARCH AND DEVELOPMENT PROGRAMS. ### (a) HEALTH CARE INFORMATION ENTERPRISE INTEGRATION RESEARCH CENTERS.— "(1) IN GENERAL.—The Director of the National Institute of Standards and Technology, in consultation with the Director of the National Science Foundation and other appropriate Federal agencies, shall establish a program of assistance to institutions of higher education (or consortia thereof which may include nonprofit entities and Federal Government laboratories) to establish multidisciplinary Centers for Health Care Information Enterprise Integration." **** March 1, 2009, 123 Stat. 524 (Public Law 111-8—11th Congress, 1st session) Omnibus Appropriations Act, 2009 ### Public Law 111-8 ### AN ACT Making omnibus appropriations for the fiscal year ending September 30, 2009, and for other purposes. ### Division B-Commerce, Justice, Science, and Related Agencies ### Appropriations Act, 2009 ### TITLE I—DEPARTMENT OF COMMERCE National Institute of Standards and Technology Scientific and Technical Research and Services For necessary expenses of the National Institute of Standards and Technology, \$472,000,000, to remain available until expended, of which not to exceed \$9,000,000 may be transferred to the "Working Capital Fund": Provided, That not to exceed \$5,000 shall be for official reception and representation expenses: Provided further, That within the amounts appropriated, \$3,000,000 shall be used for the projects, and in the amounts, specified in the explanatory statement described in section 4 (in the matter preceding division A of this consolidated Act). ### **Industrial Technology Services** For necessary expenses of the Hollings Manufacturing Extension Partnership of the National Institute of Standards and Technology, \$110,000,000, to remain available until expended. In addition, for necessary expenses of the Technology Innovation Program of the National Institute of Standards and Technology, \$65,000,000, to remain available until expended. ### Construction of Research Facilities For construction of new research facilities,
including architectural and engineering design, and for renovation and maintenance of existing facilities, not otherwise provided for the National Institute of Standards and Technology, as authorized by 15 U.S.C. 278c-278e, \$172,000,000, to remain available until expended, of which \$30,000,000 is for a competitive construction grant program for research science buildings: Provided, That within the amounts appropriated, \$44,000,000 shall be used for the projects, and in the amounts, specified in the explanatory statement described in section 4 (in the matter preceding division A of this consolidated Act): Provided further, That the Secretary of Commerce shall include in the budget justification materials that the Secretary submits to Congress in support of the Department of Commerce budget (as submitted with the budget of the President under section 1105(a) of title 31, United States Code) an estimate for each National Institute of Standards and Technology construction project having a total multi-year program cost of more than \$5,000,000 and simultaneously the budget justification materials shall include an estimate of the budgetary requirements for each such project for each of the five subsequent fiscal years." **Source:** GPO Access: Public and Private Laws, U.S. Government Printing Office: http://www.gpoaccess.gov/plaws/index.html. Accessed July 13th, 2009. And Lexis-Nexis. ### APPENDIX B ### HISTORIES OF THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY AND NATIONAL BUREAU OF STANDARDS This appendix lists the published histories of the National Bureau of Standards and the National Institute of Standards and Technology. The three official agency histories are listed first, followed by other published historical accounts of NBS/NIST. The three official histories include a detailed contents list, while the other histories include an abstract only. All references include a NIST Research Library call number when available. This listing was compiled from a search of the NIST Research Library catalog and a literature search conducted in February 2010. All the authors of these works were affiliated with NBS/NIST unless otherwise noted. Much has been written about NBS/NIST and its activities over the one hundred plus years of its existence. The publications listed here are those histories we had knowledge of at the time of this publication. ### Official Histories ## Responding to National Needs 1969-1993: The National Bureau of Standards Becomes the National Institute of Standards and Technology James F. Schooley NIST Special Publication 955. November 2000 1006 pp. QC100 .U57 NO.955 2000 ### **Table of Contents** - 1. Unique Institution (150 pp.) - 2. Bright Prospects for NBS (171 pp.) - 3. A Nation in Trouble; An Agency in Change (117 pp.) - 4. A Durable Direction (171 pp.) - 5. The National Bureau of Standards Becomes the National Institute of Standards and Technology: Public Law 100-418, August 23, 1988 (27 pp.) - 6. Metrology Makes Room for Industrial Productivity (147 pp.) ### Appendices - A. Legislation Relating to the Organization, Functions, and Activities of the National Bureau of Standards/ National Institute of Standards and Technology (78 pp.) - B. Histories of the National Bureau of Standards (4 pp.) - C. NBS/NIST in the Federal Administration (4 pp.) - D. Site Information and Maps: Gaithersburg and Boulder (6 pp.) - E. NBS/NIST Staff, 1901-1999 (2 pp.) - F. NBS/NIST Postdoctoral Research Associates, 1968-1993 (12 pp.) - G. Scientific Awards Given by the Department of Commerce and NBS/NIST to Staff Members, 1968-1993 (14 pp.) - H. Members of the Visiting Committee for NBS and the Visiting Committee on Advanced Technology for NIST (6 pp.) - I. NBS/NIST Actual Obligations, 1967-1999 (2 pp.) - J. NBS/NIST Publications (18 pp.) - K. Structure and Leadership of NBS/NIST (52 pp.) Index (17 pp.) ### A Unique Institution: The National Bureau of Standards 1950-1969 Elio Passaglia, with Karma A. Beal NBS Special Publication 925. October 1999 822 pp. QC100 .U57 NO.925 1999 ### Table of Contents - 1. NBS at Mid-Century (70 pp.) - 2. Testing Can Be Troublesome (66 pp.) - 3. Divestiture and Reaffirmation, 1950-1964 (166 pp.) - 4. Technological Triumph: Social Turmoil, 1964-1969 (148 pp.) ### Appendices - A. Tables (2 pp.) - B. Acronyms Dictionary (4 pp.) - C. Legislation Relating to the Organization, Functions, and Activities of NBS (52 pp.) - D. NBS in the Federal Administration (2 pp.) - E. Appropriations and Expenditures Charts (4 pp.) - F. NBS Visiting Committee Membership (4 pp.) - G. NBS Authorized Personnel Chart (2 pp.) - H. NBS/NIST Publications (18 pp.) - I. NBS Organizational Levels (88 pp.) - J. Gaithersburg and Boulder Site Maps (6 pp.) Bibliography (4 pp.) Index (36 pp.) ### Measures for Progress: A History of the National Bureau of Standards Rexmond C. Cochrane NBS Miscellaneous Publication 275. 1966 703 pp. QC100 .U6 C633 1966 ### **Table of Contents** - 1. At the Turn of the Century (48 pp.) - 2. Founding the NBS (1901-1910) (55 pp.) - 3. Electricity, Railroads, and Radio (1911-1916) (56 pp.) - 4. The War Years (1917-1919) (62 pp.) - 5. The Tide of Commerce and Industry (1920-1940) (78 pp.) - 6. The Time of the Great Depression (1931-1940) (66 pp.) - 7. World War II Research (1941-1945) (68 pp.) - 8. The New World of Science (1946-1951) (68 pp.) - 9. The Crucial Decade—An Envoi (20 pp.) ### Appendices - A. Ferdinand Rudolph Hassler, First Superintendent of the Coast Survey and of Weights and Measures (12 pp.) - B. The Metric System in the United States (10 pp) - C. Basic Legislation Relating to the NBS (18 pp.) - D. U.S. Presidents, Department Secretaries, and NBS Directors (2 pp.) - E. Members of the Visiting Committee (2 pp.) - F. NBS Appropriations and Other Supporting Funds, 1902-55 (2 pp.) - G. NBS Special Appropriations, 1910-1935 (2 pp.) - H. NBS Authorized Personnel (2 pp.) - I. Types of Staff Publications (4 pp.) - J. Division and Section Chiefs as of July 1, 1905; Sept. 1, 1910; July 1, 1915; Jan. 1, 1920; Feb. 1, 1925; Apr. 1, 1930; Nov 15, 1934; May 1, 1940; July 1, 1945; March 1, 1950; Oct. 1, 1954; Dec. 1, 1960. (1st WW) Wartime projects as of Sept. 1, 1918 (62 pp.) - K. NBS Publications Representing Research Highlights, 1901-1951 (18 pp.) - L. Land Purchases at Van Ness Site (2 pp.) - M. Samuel Wesley Stratton, Founder and First Director of the National Bureau of Standards (12 pp.) - N. Books by NBS Staff, 1912-1960 (6 pp.) - O. Buildings and Structures of the National Bureau of Standards (4 pp.) Bibliography (10 pp.) Index (21 pp.) Other Histories ### The National Bureau of Standards Comes of Age Under Samuel Stratton James F. Schooley IEEE Instrumentation & Measurement Magazine, Vol. 12, No. 6, pp. 25-29, November 2009 TK7881 .I285 This article highlights the increased expansion and complexity of the National Bureau of Standards (NBS) from 1904-1922. Samuel Stratton led a carefully chosen group of excellent scientists to produce the principal source of science-based measurement standards in the U.S. The list of services to the public, academia and to Federal agencies broadened. They instituted the Standard Reference Materials Service for industry, became part of the Department of Commerce, supported the physical development, production, and testing of materials needed during World War I, studied problems found in the new field of high altitude aeronautics, radio, and the dental industry, and worked in many more areas. After the war, Stratton successfully proposed that industry send their own scientists to work at NBS as guest researchers. These researchers helped to replace the many NBS staff members lost to higher industrial pay scales, thus maintaining the Bureau's progress on industry related projects. ### Stratton Builds a Laboratory James F. Schooley IEEE Instrumentation & Measurement Magazine, Vol. 12, No. 5, pp. 29-33, October 2009 TK7881 .I285 This article is the third in a series of four that describes the establishment of the National Bureau of Standards. In this article, the remarkable success of Samuel Stratton in building an effective and far-reaching standards laboratory is discussed, as well as the outstanding personnel at the NBS and their work from 1901-1904, including the immediate and effective NBS response to the great Baltimore fire of 1904. ### The Creation of the National Bureau of Standards James F. Schooley IEEE Instrumentation & Measurement Magazine, Vol. 12, No. 4, pp. 34-39, August 2009 TK7881 .I285 This article is the second in a series of four that describe the early years of the National Bureau of Standards. A brief description of the convention of the meter, a look at 19th century science and invention in America, and an account of the creation of the National Bureau of Standards appear in this article. ### The Early Years of the National Bureau of Standards: Born to Measure James F. Schooley IEEE Instrumentation & Measurement Magazine, Vol. 12, No. 3, pp. 8-12, June 2009 TK7881 .I285 In this first of 4 articles about the early history of the National Bureau of Standards (NBS), an overview is provided of the state of standards in America during the first decades of the country's existence, some of the origins of the scientific approach to metrology, and the growth of the NBS through the contributions of some of the outstanding people who participated in metrology. ### The History and Resources of the National Institute of Standards and Technology Evelyn Constance Powell (Rensselaer Polytechnic Institute. Troy, NY) Science & Technology Libraries, Vol. 25, No. 3, pp. 5-19, April 2005 Z695 .T3 S3 V.25, NO.3 2005 This paper is a historical account of the agency of the U.S. government charged with setting the nation's physical measurement standards. Originally named the National Bureau of Standards, it is now known as the National Institute of Standards and Technology reflecting its recent additional mandate to increase U.S. competitiveness. The
contributions this agency has made in improving the quality of manufacturing and measurement in the United States are described. ### Significant Papers from the First 50 Years of the Boulder Labs Edited by M. E. DeWeese, M. A. Luebs, H. L. McCullough NISTIR 6618. August 2004 QC100 .U56 NO.6618 2004 The Department of Commerce Boulder Labs were dedicated on September 14, 1954. This volume presents a snapshot of research accomplishments in the half century since then. The papers collected in this publication represent the most significant work of all the agencies of the Boulder Labs. ### Building and Fire Research at NBS/NIST: 1975-2000 Richard N. Wright NIST Building Science Series 179. December 2003 TA435 .U58 NO.179 2003 This history summarizes the technical accomplishments of the NIST building and fire research programs and their impacts, the existential and management challenges faced by the programs, and the visions and efforts of the staff. ### Responding to National Needs: 1994-2001, Supplement to Appendices Diane Cunningham, Paula Deutsch, Julian M. Ives, Sandra Lee Kelley, Keith Martin, and John Norris NIST Special Publication 955 Supplement. July 2002 QC100 .U57 NO.955 2002 JUL SUPP TO APPEN Information contained in this publication updates and expands the data presented in the Appendices of NIST SP 955, Responding to National Needs, The National Bureau of Standards Becomes the National Institute of Standards and Technology 1969-1993, by James F. Schooley, November 2000. ### A Brief History of Gaseous Dielectrics Research at NIST J. K. Olthoff and L. G. Christophorou Proceedings of the Annual Conference on Electrical Insulation and Dielectric Phenomena (Waterloo, Canada, Oct. 14-17, 2001). pp. 281-284. October 2001 Researchers at the National Institute of Standards and Technology (NIST) have investigated gaseous dielectrics for more than 20 years. Significant technical accomplishments in this area include a detailed understanding of the physics and chemistry of corona-induced decomposition of SF6, the determination of important collisional cross sections for dielectric gases, the development of conditional detection techniques for partial discharges, and assessment of potential replacement gases for SF6. These and other research areas will be highlighted in this brief history of gaseous dielectrics research at NIST. ### NIST Centennial Sessions, August 2, 2001 NISTIR 6769. August 2001 QC100 .U56 NO.6769 Contains presentation slides from the National Conference of Standards Laboratories International Symposium to celebrate NIST's Centennial. ### 100 Years of Optical Science and Metrology at NIST William R. Ott Proceedings of the SPIE .Vol. 4450, pp. 1-14. August 2001 The National Bureau of Standards (NBS) was formed by Congress 100 years ago. Five areas of optics have been important elements of the Bureau's research for almost its entire history: atomic and molecular spectroscopy; radiometry; colorimetry; optical properties of materials; and, for the last 40 years, laser science and applications. Research and measurement services have supported national programs ranging from the manufacture of high quality optical glass during two World Wars to the calibration of spectrometers on the Hubble Space Telescope. Pioneers in optical science and metrology at NBS/NIST include many well known scientists, ranging from William Coblentz, who established the field of optical radiometry during his 40 year career from 1905-1945, to William Phillips, who received the Nobel Prize in Physics in 1997 for his research on the laser cooling and trapping of atoms. ### Automating the Future: A History of the Automated Manufacturing Research Facility, 1980-1995 Joan M. Zenzen NIST Special Publication 967. March 2001 QC100 .U57 NO.967 A history of NIST's Automated Manufacturing Research Facility (AMRF) with a focus on the people who conceived the idea for the AMRF and how they made it a reality. ### Celebrating One Hundred Years of Chemistry at the National Institute of Standards and Technology Compiled and Edited by Hratch G. Semerjian, William F. Koch, Ellyn S. Beary, Michael S. Epstein, and Gregory B. Vasquez NISTIR 6388. September 2000 and March 2001 eds. QC100 .U56 NO.6388 2000 Provides an overview of historically important NIST work in chemistry as well as contemporary research performed by the Chemical Science and Engineering Laboratory. ## A Century of Excellence in Measurements, Standards, and Technology: A Chronicle of Selected NBS/NIST Publications, 1901-2000 David R. Lide, Editor NIST Special Publication 958. January 2001 QC100 .U57 NO.958 2001 This book consists of short accounts describing 102 representative publications that had a significant impact during NIST's first century. ### **NIST at 100: Foundations for Progress** Laura Ost, Virginia Covahey, Kelly Talbott, Christina Robinson, Linda Joy, Susan Ford, and Sharon Shaffer NIST Special Publication 956. October 2000 QC100 .U57 NO.956 2000 Highlights of research accomplishments and their impacts from NIST's first 100 years. ## History of NIST's Contributions to the Development of Standard Reference Materials and Reference and Definitive Methods for Clinical-Chemistry R. Schaffer, G. N. Bowers, and R. S. Melville Clinical Chemistry. Vol. 41, No. 9, pp. 1306-1312. September 1995 RB1 .C55 The issuance of cholesterol as a Standard Reference Material (SRM) in 1967, started the National Institute of Standards and Technology (NIST; then named the National Bureau of Standards) on a major effort to help clinical laboratories establish and improve the quality of measurements they make. In working with clinical laboratory scientists to establish Reference Methods (RMs) for measuring the analytes, NIST developed Definitive Methods (DMs) to use for evaluating RM accuracy and then used the DMs for assigning analyte values to its SRMs. The development of SRMs and DMs is discussed. ## NBS/NIST, A Historical Perspective: A Symposium in Celebration of NIST's Ninetieth Anniversary, March 4, 1991 Edited by Karma A. Beal NIST Special Publication 825. April 1992 QC100.U57825 1992 A collection of talks and presentations in celebration of NIST's 90th year. ## Gauging the Nation: Samuel Wesley Stratton and the Invention of the National Bureau of Standards Nelson R Kellogg (Johns Hopkins University, Baltimore, MD) Ph. D. thesis, Johns Hopkins University, 1992. The Bureau of Standards had become a wholly different agency from what was urged before Congress in 1900 and 1901 during the hearings to establish the NBS. One of the principal goals of this essay is to apprehend how this evolution took place, and to set out the dynamics of the interplay among the NBS administration, outside interest groups, and Congressional overseers in the growth and successive redefinitions of the nation's premier physical laboratory. The laboratory culture is also explored, as well as progressive educational initiatives. Finally, administrations and policies are briefly surveyed with an eye toward the precedent of the Stratton years. ### NBS-INA—The Institute for Numerical Analysis—UCLA 1947-1954 Magnus R. Hestenes and John Todd NIST Special Publication 730. August 1991 QC100 .U57 no.730 1991 This report is a history of the Institute for Numerical Analysis (INA) with special emphasis on its research program during the period 1947 to 1956. The Institute for Numerical Analysis was located on the campus of the University of California, Los Angeles. It was a section of the National Applied Mathematics Laboratories, which formed the Applied Mathematics Division of the National Bureau of Standards. ### A Brief History of Near-Field Measurements of Antennas at the National Bureau of Standards R. C. Baird, A. C. Newell, and C. F. Stubenrauch IEEE Transactions on Antennas and Propagation. Vol. 36, No. 6, pp. 727-733. June 1988 TK7800 .I2 The US National Bureau of Standards (NBS) played a pioneering role in the development of practical planar near-field antenna measurement techniques. A brief history is presented of that role, which began with theoretical studies to determine corrections for diffraction in a microwave measurement of the speed of light. NBS contributions to the development of nonplanar near-field measurement theory and practice are also described. ## Achievement in Radio: Seventy Years of Radio Science, Technology, Standards, and Measurement at the National Bureau of Standards Wilbert F. Snyder and Charles L. Bragaw NBS Special Publication 555. October 1986 QC100 .U57 NO.555 1986 V1986 This historical account of NBS' achievements in radio is a semi-popular presentation, yet gives an extensive treatment of the technical features of 70 years of radio science in both Washington and Boulder. ## The National Academy of Sciences—National Research Council's Postdoctoral Research Associateship Program: An Account of its Origin and Early History at the National Bureau of Standards Joseph Hilsenrath NBS Grant Contactor Report 85-500. September 1985 QC100 .U6N25 no.85-500 1985 This report reviews the origins and early history of the National Academy of Sciences-National Research Council's Postdoctoral Research Associateship Program at the National Bureau of Standards. It describes in detail the intra- and interagency discussions and negotiations that led to the program's creation. ### The National Bureau of Standards Office of Recycled Materials, 1976-1982 Edited by Harvey Yakowitz NBS Special Publication 662. September 1983 QC100 .U57 no.662 1983 A report of the activities and accomplishments of the NBS Office of Recycled Materials. ## X-Ray Measurements and Protection, 1913-1964: The Role of the National Bureau of Standards and the National Radiological Organizations Lauriston S. Taylor and W. Reeves Tilley NBS Special Publication 625. December 1981 QC100 .U57 no.625 1981 An account of the initial U.S. concerns with, and subsequent efforts to cope with, the safe use of ionizing radiation is given. National
interest was focused in the National Bureau of Standards, where radiation programs were established. ### A History of Walkway Slip-Resistance Research at the National Bureau of Standards Sanford C. Adler and Brian C. Pierman NBS Special Publication 565. December 1979 QC100 .U57 no.565 1979 This report summarizes NBS research in the area of walkway and shoe slip-resistance measurement from 1924-1979. ### NBS Interagency Transducer Project, 1951-1979: An Overview Paul S. Lederer NBS Technical Note 1110. August 1979 QC100 .U5753 no.1110 1979 Between 1951 and 1979, the National Bureau of Standards was engaged in a continuing project to study the performance of sensory transducers, primarily those used in telemetry. This report provides a brief description of the background and history of the project, its objectives, some of the techniques and specialized facilities developed and used, and of some of the publications that have been issued from the project. ### A Ten Year History of National Bureau of Standards Activities Under the Brooks Act (Public Law 89-306) Edited by Grace Burns and Shirley Radack NBSIR 76-1113. February 1977 QC100 .U56 no.76-1113 1977 This report presents the principal findings of a National Bureau of Standards task force which reviewed the activities and accomplishments of NBS from 1965 to 1975 under Public Law 89-306, the Brooks Act. The Brooks Act is concerned with the effective use of computers by the Federal Govenment and assigns the National Bureau of Standards responsibility for providing scientific and technological advisory services for automatic data processing, developing uniform Federal ADP standards and undertaking necessary research in computer science and technology. Program activities and a history of funding for each of these three major responsibilities are covered. Also included are case studies of individual program initiatives. ### 75 Years of Physics at NBS Ernest Ambler Physics Today, Vol. 29, No. 8, pp. 33-38, August 1976 QC1 .P658 This historical survey describes the contributions made to the field of physics by the National Bureau of Standards since its inception in 1901. Four broad areas are emphasized: nuclear physics, thermal physics (including cryogenics), spectroscopy and fundamental constants. ### Hydrocarbons for Fuel: 75 Years of Materials Research at NBS George T. Armstrong NBS Special Publication 434. May 1976 QC100 .U57 no.434 1976 In this historical review, the NBS work on hydrocarbons is discussed in terms of the three major classes of natural hydrocarbonaceous fuels: natural gas, petroleum, and coal. The work done on the measurement of properties of the pure components has included measurement of the values of the properties themselves and development of practical and accurate measurement procedures and instruments. In addition, combustion energies, densities, viscosities, vapor pressures, refractive indices, elemental compositions and other parameters have been determined for complex fuel mixtures and correlated to find methods of estimating properties. Extensive standard reference data tables have been compiled and a number of standard reference materials have been developed. ### **NBS: An Overview** NBS Special Publication 367. 1966 and 1972 eds. QC100 .U57 no.367 The publication presents an overview of the Bureau's history, programs, and major contributions, along with individual chapters detailing the programs of each of the four NBS Institutes: Institute for Basic Standards; Institute for Materials Research; Institute for Applied Technology; and Institute for Computer Sciences and Technology. ### Activities of the National Bureau of Standards, 1945-1970 Complied by Churchill Eisenhart National Bureau of Standards. March 1971 QC100.U6E35 1971 A chronology of principal administrative and legislative actions affecting the National Bureau of Standards, including some notable operational activities and highlights of the Bureau's activities affecting science and technology. ### **Building Research at the National Bureau of Standards** Paul R. Achenbach NBS Building Science Series 0. October 1970 TA435 .U58 no. 0 The history of building research and technology at the National Bureau of Standards is presented in this volume. The participation of the Bureau in the application of science and engineering to building materials and components played an early and important role in the development of steel and reinforced concrete as structural materials; in the understanding of the physics and chemistry of cement, lime and gypsum; in the evaluation of the fire properties of building components; in safe plumbing practices; in laboratory evaluation of the effects of weather on deterioration of building materials; and in measurement of the heat and sound transmission properties of building materials and constructions. ### U. S. Statutes Relating to the National Bureau of Standards, 1901-1966 Compiled by Walter W. Weinstein and Margaret Brandenbourger National Bureau of Standards. 1968 QC100 .U528 1968 A legislative history of the National Bureau of Standards to 1966. ### Early History of Optics at National Bureau of Standards Irvine C. Gardner Applied Optics, Vol. 6. No. 1, pp.1-8. January 1967 QC350 .O62 The early history of the establishment of the National Bureau of Standards and of its work in optics is surveyed, as evidenced by its publications appearing in the period 1901-1925. ### A History of Vertical-Incidence Ionsphere Sounding at the National Bureau of Standards Sanford C. Gladden National Bureau of Standards Technical Note 28. September 1959 QC100 .U5753 no.28 1959 A chronological history of the development of vertical incidence ionosphere sounding at the National Bureau of Standards through 1957. ### The Story of Standards John Perry (Management Consultant, Freelance Writer) Funk & Wagnalls, New York, 1955 QC100 .P42 1955 A popular narrative on the Bureau of Standards and the history of standardization. ### National Bureau of Standards: A Semicentennial Lyman J. Briggs and Edward U. Condon The Scientific Monthly, Vol. 73, No.3, pp. 166-182. September 1951 QC100 .U6 N31 1951 This paper discusses the early work and contemporary programs of the National Bureau of Standards. ## Visitors' Manual of the National Bureau of Standards: A Brief Synopsis of its History, Functions, and Laboratory Facilities Hugh G. Boutell NBS Miscellaneous Publication 160. 1929, 1932, 1935, and 1937 eds. QC100 .U57 no.160 A brief guide to the history, functions, and facilities of the Bureau. ### The Bureau of Standards: Its History, Activities, and Organization Gustavus A. Weber (Institute for Government Research. Washington D.C.) Johns Hopkins Press, 1925 QC100 .U58 W4 1925 An Institute for Government Research monograph on the history, activities, and organization of the National Bureau of Standards. ### War Work of the Bureau of Standards NBS Miscellaneous Publication 46. April 1921 QC100 .U57 NO.46 1921 An account of the Bureau's work during World War I. ### The Story of the Establishment of the National Bureau of Standards Henry S. Pritchett (President, Massachusetts Institute of Technology. Cambridge, MA) Science, Vol. 15, No. 373, pp. 281-284. February 21, 1902 Q1 .S35 The passage of a bill in Congress providing for the establishment of a National Bureau of Standards came as a surprise to many. As the work of this bureau ought in the future to have a large bearing upon science and industry it may not be without interest to record the circumstances under which this legislation was effected, and to bring to the attention of those who in the future may be interested in the matter the names of a few men who, though not men of science, gave their time and labor heartily in the interest of this work. Source: NIST Research Library Online Catalog and literature search performed in February 2010. ## APPENDIX C ### NIST IN THE FEDERAL ADMINISTRATION This appendix lists Executive departmental officials who exercised supervisory authority over NIST, during the terms of NIST Directors from 1993-2009. | UNITED STATES
PRESIDENTS | DEPARTMENT
OFFICIALS | | NIST
DIRECTORS | |---------------------------------|--|---|---| | | Ronald H. Brown Secretary of Commerce 1993-1996 Mary L. Good Under Secretary of Commerce for Technology 1993-1997 Michael Kantor Secretary of Commerce 1996-1997 Mary L. Good Under Secretary of Commerce for Technology 1993-1997 | | Arati Prabhakar
1993-1997 | | William J. Clinton
1993-2001 | William M. Daley Secretary of Commerce 1997-2000 Cheryl L. Shavers Under Secretary of Commerce for Technology 1999-2001 Norman A. Mineta Secretary of Commerce 2000-2001 Cheryl L. Shavers Under Secretary of Commerce for Technology 1999-2001 | | Raymond G. Kammer
1997-2001 | | | Karen H. Brown
Acting Under Secretary of
Commerce for Technology
2001 | } | Karen H. Brown
Acting Director
2001 | | UNITED STATES
PRESIDENTS | | DEPARTMENT
OFFICIALS | | NIST
DIRECTORS | |-----------------------------|-------------------|--|---|---| | | | Donald L. Evans
Secretary of Commerce
2002-2004 |] | Dr. Arden Bement, Jr.
2002-2004 | | | | Phillip J. Bond
Under Secretary of
Commerce for Technology
2002-2005 | | Hratch Semerjian
Acting Director
2004-2005 | | George W. Bush | | Carlos M. Gutierrez
Secretary of Commerce
2005-2009
(Vacant)
Under Secretary of
Commerce for Technology | | Hratch Semerjian
Acting Director
2004-2005 | | 2001-2009 | | Carlos M.
Gutierrez
Secretary of Commerce
2005-2009
Robert Cresanti
Under Secretary of
Commerce for Technology
2006-2007 | | William A. Jeffrey
2005-2007 | | | | Carlos M. Gutierrez
Secretary of Commerce
2005-2009
Under Secretary of | } | James Turner
Acting Director
2007-2008 | | | l | Commerce for Technology
(Position Eliminated
December 2007) | J | (Vacant) | | Barack H. Obama
2009- | $\left\{ \right.$ | Gary F. Locke
Secretary of Commerce
2009- | } | Patrick D. Gallagher
Director of NIST
2009- | Source: Agency Web Sites ### APPENDIX D ### SITE INFORMATION AND MAPS: GAITHERSBURG AND BOULDER This appendix contains site construction information and maps for the Gaithersburg, MD and Boulder, CO campuses. These tables include information for years prior to 1994. We include the pre-1994 data in this supplement because the information became available after the publication of *Responding to National Needs: The National Bureau of Standards Becomes the National Institute of Standards and Technology 1969-1993*. ### **NIST Gaithersburg Site Construction 1990-2008** | Building
number | Building name | Date completed | Area
(Gross sq ft) | Area
(Gross sq meters) | |--------------------|--|--------------------|-----------------------|---------------------------| | 311 | Grounds Storage Shed | 9/30/1990 | 2,511 | 233 | | NN | NIST North (Leased Office Bldg.) | 10/1/1995 | 122,120 | 11,345 | | 313 | Site Effluent Neutralization | 6/30/1996 | 245 | 22 | | 312 | Materials Processing Facility | 9/30/1996 | 3,877 | 360 | | 227 | Advanced Chemical Sciences Laboratory (ACSL) | 8/1/1998 | 200,000 | 18,580 | | 314 | Backflow Preventer Building East | 10/31/1998 | 663 | 61 | | 315 | Backflow Preventer Building West | 10/31/1998 | 663 | 61 | | 215-219 | Advanced Measurements Laboratory (AML) | 1/30/2004 | 536,538 | 49,846 | | 222 | Gutted and renovated | 6/30/2006 | 166,101 | 15,431 | | NN | NIST North (Leased Office Bldg.) | Vacated 12/31/2006 | 122,120 | 11,345 | | 103 | Visitor Center | 4/1/2009 | 2,000 | 185 | | 104 | Gate House | 4/1/2009 | 200 | 18 | Source: Joan Stanley, NIST Office of the Chief Facilities Management Officer Because of security regulations, maps will be provided to NIST staff only, upon appropriate request. NIST Gaithersburg campus map Because of security regulations, maps will be provided to NIST staff only, upon appropriate request. NIST Boulder campus map ### CONSTRUCTION SCHEDULE FOR ADVANCED MEASUREMENT LABORATORY | Activity | Start Date | End Date | |-----------------------------------|---------------|-----------------| | Bldg 215 (Clean Room) | | | | Excavate Bldg 215 and Tunnel | Dec. 26, 2000 | Jan. 23, 2001 | | Utility Tunnel Construction | Jan. 22, 2001 | April 5. 2001 | | Install Tower Crane 1 | Jan. 8, 2001 | Jan. 19, 2001 | | Bldg 215 Remaining Work | Feb 12, 2001 | April 3, 2003 | | Bldg 216 (Instrument East) | | | | Excavate Bldg 216 | Jan 10, 2001 | Feb 6, 2001 | | Install Tower Crane 2 | Feb 7, 2001 | Feb 22, 2001 | | Bldg 216 Remaining Work | March 1, 2001 | Nov 25, 2002 | | Bldg 217 (Instrument West) | Feb 25, 2002 | Aug 29, 2003 | | Bldg 219 (Metrology West) | Dec 18, 2000 | Oct 2, 2003 | | Relocation Completion | | June 15, 2004 | Date ### AML WING COMPLETION SCHEDULE | wing | Date | |-----------------------|-----------------| | Instrument East (216) | Nov 25, 2002 | | Cleanroom (215) | April 3, 2003 | | Metrology East (218) | April 14, 2003 | | Instrument West (217) | August 29, 2003 | | Metrology West (219) | October 2, 2003 | Cost: \$235.2 million Completion date: June 21, 2004 ### SUPPLEMENTAL CONSTRUCTION INFORMATION FOR AML ### **Project Size:** Wing ### **Building Area:** 47,480 gross square meters (511,070 gross square feet) 19,537 net assignable square meters (210,295 net square feet) ### **Net to Gross Ratio:** 41.6 % ### Gross Building Area Breakdown: 8,520 m² – Cleanroom Wing 9,529 m² - Instrument Lab (East) 11,858 m² – Instrument Lab (West) 8,470 m² – Dynamic Metrology Lab (East) 9,103 m² – Quiet Metrology Lab (West) ### **Net Building Area Breakdown:** $2,407 \text{ m}^2 - \text{Offices}$ 9,808 m² – Laboratories $4,086 \text{ m}^2 - \text{Laboratory Support}$ $3,236 \text{ m}^2 - \text{Building Support}$ ### Lab Types: 187 Instrument Lab Modules 151 Metrology Lab Modules ### **Specialty Areas:** - 48 Precision Temperature Control Laboratories (±0.01 °C or ±0.1 °C) - 27 Low Vibration Laboratories (active and passive isolation systems) - 8,520 gsm Cleanroom Facility (Class 100 upgradable to Class 10) ### Lab General Areas: Laboratories building-wide feature each of the critical environmental categories listed for the overall building, including: ### **Air Cleanliness:** HEPA filtration at the supply-side of all laboratory air handlers ### **Temperature Control:** ±0.25 °C is the baseline for all laboratories, all digital system ### Vibration Isolation: All laboratories are on-grade or below-grade, with a minimum level of "Criterion-A", isolated slab on-grade. Mechanical, electrical, and structural systems are designed to minimize vibration. ### **Power Quality:** Laboratories feature a building-wide, conditioned power supply system meeting IEEE Std. 1100-1992 for critical electronic loads. ### **Acoustical Design:** Considered in the design of all mechanical, architectural, structural, and electrical systems so as not to affect scientific programs. (Based on NC-45 (Labs), NC-55 (Cleanroom) & NC-30 (Special Metrology)) ### **Service Galleys:** Mechanical services (piping, ventilation, & electrical) as well as "dirty" laboratory support equipment and gas bottles are located in a service corridor located between laboratory modules, maximizing flexibility and cleanliness. ### Metric Design: The building is laid out on a hard-metric module and features the use of the metric system wherever economically feasible. ### **Green Building:** Natural daylighting, energy conservation and recycling are incorporated into the building design and planned operation. **NIST Boulder Site Construction 1951-2008** | Project | Construction began | Construction complete | Gross sq ft of project | Total gross
sq ft | Total gross sq meters | |---|--------------------|-----------------------|------------------------|----------------------|-----------------------| | B5 Heavy Equipment | 1951 | 1951 | 2,850 | 2,850 | 264 | | B4 Camco | 1951 | 1951 | 15,403 | 18,253 | 1,693 | | B2 Cryogenics South & North half | 1951 | 1951 | 45,702 | 63,955 | 5,933 | | B3 Liquefier | 1951 | 1951 | 20,024 | 83,979 | 7,790 | | B1 Radio Building Library, Aud., Center
Spine, Wing 1, Wing 2, Wing 3 & Wing 4 | 1952 | 1954 | 200,257 | 286,636 | 26,590 | | B8 Mesa Test Site | 1953 | 1953 | 2,400 | 86,379 | 8,013 | | B1 Wing 6 | 1956 | 1959 | 26,200 | 313,834 | 29,113 | | B14 Field Strength Calibration | 1958 | 1958 | 278 | 286,914 | 26,615 | | B11 Vertical Incidence | 1958 | 1958 | 408 | 287,322 | 26,653 | | B9 Gas Meter | 1958 | 1958 | 312 | 287,634 | 26,682 | | B1 Wing 5 | 1960 | 1962 | 77,928 | 401,562 | 37,251 | | B2 Wing "B" Addition | 1962 | 1964 | 9,800 | 323,634 | 30,022 | | B21 Maintenance Garage | 1962 | 1963 | 3,968 | 405,530 | 37,619 | | B22 Warehouse | 1962 | 1964 | 17,280 | 422,810 | 39,222 | | B25 North Shop | 1965 | 1966 | 3,200 | 426,010 | 39,519 | | B24 Plasma Physics | 1965 | 1967 | 27,328 | 453,338 | 42,054 | | B25 Offices & South Shop | 1973 | 1975 | 5,000 | 458,338 | 42,517 | | B24 High Bay Addition | 1984 | 1985 | 2,682 | 461,020 | 42,766 | | B2 High Bay Addition | 1986 | 1986 | 3,320 | 464,340 | 43,074 | | B1 Annex B | 1987 | 1987 | 3,800 | 468,140 | 43,427 | | B1 Annex A | 1987 | 1987 | 4,200 | 472,340 | 43,816 | | B24 Annex A | 1988 | 1988 | 4,200 | 476,540 | 44,206 | | B2 Annex A | 1989 | 1989 | 1,800 | 478,340 | 44,373 | | B2 Annex A | 1989 | 1989 | 2,400 | 480,740 | 44,596 | | B1 Annex C | 1989 | 1989 | 4,200 | 484,940 | 44,985 | | B26 Day Care Facility | 1989 | 1989 | 4,230 | 489,170 | 45,378 | | B23 Hazardous Materials Building | 1989 | 1990 | 1,435 | 490,605 | 45,511 | | B27 High Frequency | 1991 | 1991 | 480 | 491,085 | 45,555 | | B1 Annex D | 1992 | 1992 | 4,200 | 495,285 | 45,945 | | B4 Addition | 1994 | 1994 | 1,020 | 496,305 | 46,039 | | B26 Addition | 1995 | 1995 | 4,370 | 500,675 | 46,445 | | B2 Addition | 1995 | 1995 | 5,440 | 506,115 | 46,949 | | B41 High Speed Switch | 2004 | 2004 | 460 | 506,575 | 47,061 | | B42 Central Utility Plant | 2004 | 2005 | 24,000 | 530,575 | 49,290 | | B51 Visitors Center | 2004 | 2005 | 1,450 | 532,025 | 49,425 | | B12 Hydrogen Research Facility | 2008 | 2008 | 720 | 532,745 | 49,492 | Source: James McConnell, Engineering, Maintenance, Safety, and Support Division, NIST Boulder ### **APPENDIX E** ### **NIST STAFF, 1996-2007** The data in these tables below show NIST staff, grouped by major categories, for fiscal years (FYs) 1996-2007. This was the most recent data available at the time of publication. Data for 1994-1995 was not available. Full Time Permanent Employees FYs 1996-2007 (in pay band) | Fiscal Year | Professional (ZP) | Technical/Wage Grade (ZT/WG) | Admin/Clerical (ZA/ZS) | Total | |-------------|-------------------|------------------------------|------------------------|-------| | 1996 | 1510 | 695 | 598 | 2803 | | 1997 | 1529 | 727 | 589 | 2845 | | 1998 | 1545 | 732 | 584 | 2861 | | 1999 | 1520 | 712 | 611 | 2843 | | 2000 | 1465 | 687 | 588 | 2740 | | 2001 | 1456 | 653 | 577 | 2686 | | 2002 | 1481 | 663 | 598 | 2742 | | 2003 | 1470 | 643 | 569 | 2682 | | 2004 | 1424 | 582 | 505 | 2511 | | 2005 | 1403 | 545 | 524 | 2472 | | 2006 | 1,386 | 565 | 493 | 2444 | | 2007 | 1,405 | 558 | 509 | 2474 | Full Time Permanent Employees FYs 1996-2007 (Professional) Pay Band (ZP) | Fiscal Year | Physicists | Chemists | Engineers | Comp Sci/
Programmers |
Mathematicians | Other | Total | |-------------|------------|----------|-----------|--------------------------|----------------|-------|-------| | 1996 | 329 | 180 | 408 | 274 | 62 | 257 | 1510 | | 1997 | 333 | 176 | 411 | 292 | 67 | 250 | 1529 | | 1998 | 336 | 179 | 409 | 310 | 68 | 243 | 1545 | | 1999 | 329 | 175 | 398 | 315 | 62 | 241 | 1520 | | 2000 | 321 | 169 | 377 | 307 | 56 | 235 | 1465 | | 2001 | 310 | 173 | 372 | 309 | 56 | 236 | 1456 | | 2002 | 309 | 178 | 377 | 319 | 58 | 240 | 1481 | | 2003 | 302 | 168 | 363 | 329 | 62 | 246 | 1470 | | 2004 | 290 | 162 | 355 | 316 | 64 | 237 | 1424 | | 2005 | 283 | 163 | 350 | 313 | 63 | 231 | 1403 | | 2006 | 277 | 160 | 344 | 318 | 64 | 223 | 1386 | | 2007 | 271 | 162 | 353 | 324 | 61 | 234 | 1405 | Full Time Permanent Employees FYs 1996-2007 (by degree) (Professional) Pay Band (ZP) | Fiscal Year | PhD | Masters | Bachelors | No Degree | Total | |-------------|-----|---------|-----------|-----------|-------| | 1996 | 742 | 316 | 386 | 66 | 1510 | | 1997 | 765 | 326 | 366 | 72 | 1529 | | 1998 | 778 | 343 | 354 | 70 | 1545 | | 1999 | 761 | 353 | 336 | 70 | 1520 | | 2000 | 745 | 336 | 318 | 66 | 1465 | | 2001 | 740 | 327 | 314 | 75 | 1456 | | 2002 | 745 | 337 | 324 | 75 | 1481 | | 2003 | 737 | 330 | 326 | 77 | 1470 | | 2004 | 724 | 319 | 316 | 65 | 1424 | | 2005 | 706 | 318 | 317 | 62 | 1403 | | 2006 | 700 | 307 | 321 | 58 | 1386 | | 2007 | 695 | 316 | 334 | 60 | 1405 | Full Time Permanent Employees FYs 1996-2007 (by location) | Fiscal Year | Gaithersburg | Boulder | Total | |-------------|--------------|---------|-------| | 1996 | 2438 | 365 | 2803 | | 1997 | 2468 | 377 | 2845 | | 1998 | 2475 | 386 | 2861 | | 1999 | 2477 | 366 | 2843 | | 2000 | 2403 | 337 | 2740 | | 2001 | 2350 | 336 | 2686 | | 2002 | 2399 | 343 | 2742 | | 2003 | 2349 | 333 | 2682 | | 2004 | 2197 | 314 | 2511 | | 2005 | 2174 | 298 | 2472 | | 2006 | 2160 | 284 | 2444 | | 2007 | 2189 | 283 | 2472 | Full Time Equivalent Employees FYs 1996-2007 (by location) | Fiscal Year | Gaithersburg | Boulder | Total | |-------------|--------------|---------|-------| | 1996 | 2739 | 398 | 3137 | | 1997 | 2720 | 405 | 3125 | | 1998 | 2757 | 417 | 3174 | | 1999 | 2765 | 416 | 3181 | | 2000 | 2698 | 384 | 3082 | | 2001 | 2606 | 365 | 2971 | | 2002 | 2629 | 370 | 2999 | | 2003 | 2645 | 374 | 3019 | | 2004 | 2557 | 353 | 2910 | | 2005 | 2412 | 341 | 2753 | | 2006 | 2414 | 324 | 2738 | | 2007 | 2429 | 324 | 2753 | Postdoctoral Research Associates 1996-2008* | Fiscal Year | Number of PostDocs | |-------------|--------------------| | 1996 | 83 | | 1997 | 87 | | 1998 | 76 | | 1999 | 81 | | 2000 | 78 | | 2001 | 83 | | 2002 | 70 | | 2003 | 90 | | 2004 | 86 | | 2005 | 93 | | 2006 | 98 | | 2007 | 81 | | 2008 | 86 | ^{*} Postdoctoral Research Associate counts from 1996-2008 represent the number of Postdoctoral Research Associates actively employed by NIST on the last day of the fiscal year, regardless of their length of employment during the year. The numbers do not represent the total number of Postdoctoral Associates employed over the course of the entire fiscal year. NIST Scientific Guest Researchers | Fiscal Year | Estimate of Guest Researchers | |-------------|-------------------------------| | 1996 | 1250 | | 1997 | 1260 | | 1998 | 1240 | | 1999 | 1500 | | 2000 | 1600 | | 2001 | 1600 | | 2002 | 1600 | | 2003 | 1600 | | 2004 | 1600 | | 2005 | 1600 | | 2006 | 1600 | | 2007 | 1700 | Source: NIST Budget Division ### **APPENDIX F** ### **NIST POSTDOCTORAL RESEARCH ASSOCIATES, 1994-2009** NIST's Postdoctoral Program supports a nationwide competitive postdoctoral program administered in cooperation with the National Academy of Sciences/National Research Council. The postdoctoral program brings research scientists and engineers of unusual promise and ability to perform advanced research related to the NIST mission, introduces the latest university research results and techniques to NIST scientific programs, strengthens mutual communication with university researchers, shares NIST unique research facilities with the U.S. scientific and engineering communities, and provides a valuable mechanism for the transfer of research results from NIST to the scientific and engineering communities. The National Research Council began a joint NIST/NIH Postdoctoral Program in 2003. The goal was to cultivate a scientific work force competent in both the biological and the physical sciences. Each NIH/NIST Postdoctoral Associate spent time at the laboratories of both NIST and NIH's National Institute of Biomedical Imaging and Bioengineering. The Associates also had two advisers, one at NIST and one at the NIH. From the year 2000-2007 the NIST Office of Academic Affairs ceased collecting university attended and PhD field information. The university attended became available again starting in 2008. Due to differences in record keeping, data in this appendix may differ from the previous edition of *Responding to National Needs*, *Supplement to Appendices*. We believe this list is the most accurate data available. | Name | University | PhD Field | NISTAdvisor | Laboratory | Division | |--|---|---|---
---|---| | 1994 | | | | | | | Daniel M. Anderson James W. Brown John H. Burnett Theodore A. Carruss Angel Castellaros Matthew A. Davies Frank Dimeo Jr. Ronald Gi Dixon Robert P. Dobrow Michael J. Donahue John W. Dykes David A. Everest Bradford J. Factor Michael A. Gatzke Constance L. Gettinger Gloria M. Gusler Angela R. Hight Walker Peter F. Hopkins Zeina J. Jabbour Stephen F. Kawalko Gerard J. Kim Jody J. Klaassen Kutt W. Kolasinski Kermeth S. Macturk Mattin G Manley Dawn M. Meekhof William E. Mell John D. Miller Brigite L. Ramos Sæven. J. Ritchie William J. Rose Robin L. Schinger Jeffrey W. Sharp Barbara A. Siles Thomas J. Silva | Northwestern University/IL. Stanford University/RA Harvard University/RA Benard Baruch College, CUNY Cornell University/RY Northwestern University/IL Yale University/RY Northwestern University/IL Yale University/RY Northwestern University/MD Oluo State University/MD Oluo State University/RJ University of California-Davis University of California-Los Angeles Wesleyan University/RA Princeton University/RA Univ of California-Los Angeles Wesleyan University/RA Lehigh University/RA Lehigh University/RA Lehigh University/RA Lehigh University/PA University of Netlinois-Chicago University of Washington University of Washington University of Washington University of Washington University of Cincinnat/OH Pern State University/PA Enn State University/PA Enn State University/PA Fern State University/PA University of Cincinnati/OH Pern State University/PA University of Cincinnati/OH | Applied Mathematics Chemistry Solid State Physics Computer Science Physics Aerorautics and Engr Mech Material Science Physics Statistics Welding Engineering Physics Fluid Dynamics Applied Physics Physics and Astronomy Material Science Petroleum and Chem Engr Chemical Physics Physics Electrical Engineering Computer Science Chemistry Mechanical Engineering English Physics Solid State Physics Analytical Chemistry Electrical Engineering Electrical Engineering | Geoffiey B. McFadden Frederick P. Schwarz Paul M. Amintharaj Martin Herman Craig J. Sansonetti Mehmet A. Domnez Stephen Semancik Theodore V. Vorburger James A. Lechner J. A. Simmons Rorald B. Goldfarb Kermit C. Smyth Charles C. Han Seven L. Rolston Charles C. Han Seven L. Rolston Charles C. Han Seven L. Rolston Charles C. Han Seven M. Morchard Charles C. Han Seven B. McKerma Richard D. Suemam John M. Moreland Jabez J. McClelland David A. Hill Howard M. Bloom Stephen R. Leone Richard R. Leone Richard R. Baum John J. Bollinger Seven J. Choquette Taksabi Kashiwagi David S. Pallett Robb M. Thomson Paul M. Amintharaj Stephen A. Wise Rorald B. Goldfarb Rorald B. Goldfarb | Computing and Applied Mathematics I aboratory Chemical Science and Technology Laboratory Bectronics and Electrical Engineering Laboratory Manufactuming Engineering Laboratory Physics Laboratory Manufactuming Engineering Laboratory Manufactuming Engineering Laboratory Manufactuming Engineering Laboratory Materials Science and Technology Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Physics Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Physics Laboratory Materials Science and Engineering Laboratory Physics Laboratory Materials Science and Engineering Laboratory Physics Laboratory Electronics and Electrical Engineering Laboratory Physics Laboratory Electronics and Electrical Engineering Laboratory Manufactuming Engineering Laboratory Manufactuming Engineering Laboratory Physics Laboratory Manufactuming Engineering Laboratory Physics Laboratory Building and Fire Research Laboratory Chemical Science and Technology Laboratory Building and Fire Research Laboratory Chemical Science and Engineering Laboratory Materials Science and Engineering Laboratory Stateman Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Building and Fire Research Laboratory Materials Science and Engineering Laboratory Stateman Laboratory Materials Science and Engineering Laboratory National Institute of Standards and Technology Electronics and Electrical Engineering Laboratory Bectronics and Electrical Engineering Laboratory Bectronics and Electrical Engineering Laboratory | Applied/Computati Math Div (MD) Biotechnology Division Semiconductor Electronics Division Intelligent Systems Division Automated Production Technology Division Process Measurements Division Precision Engineering Division (MD) Precision Engineering Division (MD) Precision Engineering Division Statistical Engineering Division Statistical Engineering Division Fire Science Division Adomic Physics Division Polymers Division Polymers Division Polymers Division Polymers Division Radio Frequency Technology Division Electromagnetic Technology Division Electromagnetic Technology Division Radio Frequency Technology Division Electromagnetic Technology Division Surface and Microanalysis Science Division Ouanium Physics Division Surface and Microanalysis Science Division Time and Frequency Division Time and Frequency Division Time and Frequency Division Time and Frequency Division Giganic Analytical Research Division Fire Safety Engineering Division Advanced Systems Division Organic Analytical Research Division Advanced Systems Division National Institute of Standards and Technology Electromagnetic Technology Division | | Karen L. Williams
1995
Nora C. Beck Tan
Christine M. Bell | University of Hawaii at Manoa University of Maryland University of Texas-Austin | Chemistry Materials Engineering Chemistry | Lane C. Sander
Wen-Li Wu
Lane C. Sander | Chemical Science and Technology Laboratory Materials Science and Engineering Laboratory Chemical Science and Technology Laboratory | Analytical Chemistry Division Polymers Division Analytical Chemistry Division | | Name | University | PhD Field | NIST Advisor | Laboratory | Division | |---|--|--|---|---|---| | 1995 (cont.) | | | | | | | DinaM. Colucci
Mark W. Keller
Kristen L. Steffens
Aephraim M. Steinberg
Fred E. Wietfeldt | Purdue University/IN
Yale University/CT
Skanford University/CA
University of California-Berkeley
University of California-Berkeley | Chemical Engineering Applied Physics Physical Chemistry Optical Sciences Physics | Gregory B. McKenna
John M. Martinis
Michael R. Zachariah
William D. Phillips
Geoffrey L. Greene | Materials Science and Engineering Laboratory Electronics and Electrical
Engineering Laboratory Chemical Science and Technology Laboratory Physics Laboratory Physics Laboratory | Polymers Division Crycelectronic Metrology Group Process Measurements Division (MD) Atomic Physics Division konizing Radiation Division | | 1996 | | | | | | | Eric R. Abraham
William R. Anderson | Rice University/TX University of Virginia | Physics
Physics
Described | Eric Comell Jabez J. McClelland | Physics Laboratory Physics Laboratory Discrete | Quantum Physics Division
Electron and Optical Physics Division | | Gregory A. Balchin | University of Cincinnati-Unknown | Solid State Physics | Paul M. Amirtharaj | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Lonn Benedict
Scott D. Bergeson | University of Wisconsin-Madison | rnysics
Physics | raju v. Daua
Thomas B. Lucatorto | rnysics Laboratory
Physics Laboratory | Optical rectinology Division Time and Frequency Division | | Steven R.F. Biegalski
James C. Broth | U of Illinois-Urbana-Champaign
University of Maryland | Nuclear Engineering
Physics | Lloyd A. Currie
David A. Rudman | Chemical Science and Technology Laboratory Hechmics and Electrical Enomeering Laboratory | Surface and Microanalysis Science Division
Flectromagnetic Technology Division | | Curtis C. Bradley | Portland State University/OR | Science Education | Robert J. Celotta | Physics Laboratory | Electron and Optical Physics Division | | Daryl G Clerc
Mark W. Covington | Washington State University
U of Illinois-Urbana-Champaign | Material Science
Solid State Physics | Hassel Ledbetter
John M. Martinis | Materials Science and Engineering Laboratory Electronics and Electrical Engineering Laboratory | Materials Reliability Division
Electromagnetic Technology Division | | Joseph J. Dalluge | University of Utah | Biochemistry | Michael J. Welch | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Benjamin J. Davies
Paul C. DeRose | University of Virginia University of Pennsylvania | Physical Chemistry | John C. Stephenson | Physics Laboratory
Physics Laboratory | Atomic Physics Division
Molecular Physics Division | | Barbara A. DiCamillo | Univ of California-Los Angeles | Chemistry | Joseph G Pellegrino | Electronics and Electrical Engineering Laboratory | Seniconductor Electronics Division | | Shellee D. Dyer
Emile E. Ettedeui | University of Utah
University of Rochester/NY | Electrical Engineering Physics | Kent B. Rochford
GT. Davis | Electronics and Electrical Engineering Laboratory Materials Science and Engineering Laboratory | Electromagnetic Technology Division
Polymers Division | | Eva S. Ferre | University of Colorado | Electrical Engineering | Robert E. Drullinger | Physics Laboratory | Time and Frequency Division | | Ronald E. Giachetti | North Carolina State U-Raleigh | Industrial Engineering | Ram D. Snram | Manufacturing Engineering Laboratory | Factory Automation Systems Division | | Jerome E. Gormley
Todd A. Heimer | University of Michigan-Ann Arbor Johns Honkins University/MD | Nuclear Engineering
Chemistry | Dale E. Newbury
Edwin J. Heilweil | Chemical Science and Technology Laboratory Physics I aboratory | Surface and Microanalysis Science Division
Molecular Physics Division | | Jay H. Hendricks | Johns Hopkins University/MD | Chemistry | Michael R. Zachariah | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | David G. Holmberg | Virginia Polytech Inst and State U | Mechanical Engineering | William L. Grosshandler | Building and Fire Research Laboratory | Fire Science Division | | I-Ping Hsu
Vimi Iiiri | University of California-Irvine | Aeronautics and Engr Mech | Cary Presser | Chemical Science and Technology Laboratory Materials Science and Engineering Laboratory | Process Measurements Division (MLD) Center for Neutron Research | | Robert W. Ivester | U of Massachusetts-Amherst | Mechanical Engineering | Steven R. Ray | Manufacturing Engineering Laboratory | Factory Automation Systems Division | | David L. Jacobson | University of Missouri-Columbia | Optics | Muhammad Arif | Physics Laboratory | Ionizing Radiation Division | | Christine E. Kalnas
Christian F. Kendrick | University of Michigan-Ann Arbor Princeton University/NI | Material Science
Flectrical Fnomeering | David T. Read
Richard F. Cavicchi | Materials Science and Engineering Laboratory Chemical Science and Technology Laboratory | Matenals Reliability Division
Proces Measurements Division (MD) | | William M. Klipstein | University of Washington | Physics | Steven L. Rolston | Physics Laboratory | Atomic Physics Division | | Benjamin P. Lee | Univ of California-Santa Barbara | Physics | Jack F. Douglas | Materials Science and Engineering Laboratory | Polymers Division | | Rasusiav Levicky
Richard A. Loomis | University of Pennsylvania | Chemical Engineering
Physical chemistry | Stephen R. Leone | Chemical science and redinology Laboratory Physics Laboratory | Process investalienten Division (MD) Quantum Physics Division | | | | | | | | | Name | University | PhD Field | NISTAdvisor | Laboratory | Division | |--|--|---|--|--|---| | 1996 (cont.) | | | | | | | Robert Lutwak
David J. Macon
Carl C. Miller
Transio D. Mitchell | Massachusetts Inst of Technology U of Massachusetts-Amherst Confluiversity/NY Livingerity of Compliance Of the Confluiversity of Compliance Of the Confluiversity of Compliance Compl | Physics Polymer Science and Engr Physical Chemistry Dhysics | William D. Phillips
Wen-Li Wu
Michael P. Casassa
John T. Bollimon | Physics Laboratory Materials Science and Engineering Laboratory Physics Laboratory Diverse 1 aboratory | Atomic Physics Division Polymers Division Molecular Physics Division Timo and Economy Division | | Michael J. Munroe Christopher J. Myatt | University of Oregon University of Colorado University of Colorado | Physics Physics | John J. Bollinger
Robert K. Hickernell
Wayne M. Itano | Physics Latoratory Electronics and Electrical Engineering Laboratory Physics Laboratory | Inne and
Frequency Division Electromagnetic Technology Division Time and Frequency Division Year. | | Kalph E. Napolitano
Bryant C. Nelson
James M. Nystrom | Georgia Institute of Technology U of Massachusetts-Amherst Northwestern University/IL | Metallurgical Engr
Analytical Chemistry
Material Science | Kobert J. Schaefer
Stephen A. Wise
Stephen Semancik | Materials Science and Engineering Laboratory Chemical Science and Technology Laboratory Chemical Science and Technology Laboratory | Metalungy Division Organic Analytical Research Division Process Measurements Division (MD) | | George Papadopoulos
Teresa P. Petralli-Mallow
Donald G. Porter | Polytechnic University/NY
Georgetown University/DC
Washington University/MO | Aero/Astro Engineering Biophysical Chemistry Electrical Engineering | William M. Pitts
Anne L. Plant
James L. Blue | Building and Fire Research Laboratory Chemical Science and Technology Laboratory Computing and Applied Mathematics Laboratory | Fire Science Division
Biotechnology Division
Applied/Computatt Math Division (MD) | | Ty J. Prosa
Nicholas D. Rizzo
Kathleen A. Romanik | University of Wisconsin-Madison
Yale University/CT
University of Maryland | Physics
Applied Physics
Computer Science | John D. Barnes
Ronald B. Goldfarb
James S. Albus | Materials Science and Engineering Laboratory Electronics and Electrical Engineering Laboratory Manufacturing Engineering Laboratory | Polymers Division
Electromagnetic Technology Division
Intelligent Systems Division | | Marc D. Runnninger
Todd G.Ruskell
Mark A. Schwabacher
Joseph T. Slusher | University of California-Berkeley University of Arizona Rutgers State U-Branch Unknown University of Ternessee-Knoxyille | Mechanical Engineering Optical Sciences Computer Science Chemical Engineering | Gregory T. Lintens
John M. Moreland
Ram D. Suram
R. D. Mountain | Building and Fire Research Laboratory Electronics and Electrical Engineering Laboratory Manufactuming Engineering Laboratory Chemical Science and Technology Laboratory | Fire Science Division Electromagnetic Technology Division Factory Automation Systems Division Phys (Them Proverties Division (MD) | | Chad R. Snyder Adam B. Steel David A. Tulchinsky Christopher S. Wood Brenton C. Young | Virginia Polytech Inst and State U
University of Maryland
Univ of California-Santa Barbara
University of Colorado
Stanford University/CA | Physical Chemistry Analytical Chemistry Physics Physics Physics Physics | Frederick I. Mopsik
Gregory E. Poirier
Michael H. Kelley
David J. Wineland
James C. Bergquist | Materials Science and Engineering Laboratory Chemical Science and Technology Laboratory Physics Laboratory Physics Laboratory Physics Laboratory | Polymers Division Process Measurements Division (MD) Electron and Optical Physics Division Time and Frequency Division Time and Frequency Division | | 1997 | | | | | | | Michael Allen
Scott R. Angster
Kathleen A. Bames
Francine Battagila
Dale J. Brugh
Rodney A. Bryant
Daniel L. Burden
Carelyn E. Campbell
Thomas M. Crawford
Bruce R. Fabijonas
Jonathan E. Guyer
Margaret A. Hubbard
Jeescong Hwang
Robert Ikkov | Arizona State University Washington State University Michigan Technological University University of Pernsylvania University of Utah University of Michigan-Ann Arbor Indiana University-Bloomington Northwestern University/IL University of Colorado University of Illinois-Chicago Northwestern University/IL University of Illinois-Chicago Northwestern University/IL U of Illinois-Urbana-Champaign Michigan State University University of Manyland | Physical Chemistry Mechanical Engineering Petroleum and Chem Engr Mechanical Engineering Physical Chemistry Aerospace Engineering Analytical Chemistry Material Science Solid State Physics Applied Mathematics Material Science Solid State Physics Physics Physics Physics Physical Chemistry | Kenneth M. Evenson
Ram D. Siram
Alan I. Nakatani
Rorald G. Rehm
Richard D. Suemam
William M. Pitts
Anne L. Plant
William J. Boettinger
Ronald B. Goldfarb
Daniel W. Lozier
Joseph G. Pellegrino
Sarah L. Gilbert
Lori S. Goldner
Eric J. Amis | Physics Laboratory Manufacturing Engineering Laboratory Materials Science and Engineering Laboratory Computing and Applied Mathematics Laboratory Physics Laboratory Building and Fire Research Laboratory Chemical Science and Technology Laboratory Materials Science and Engineering Laboratory Computing and Applied Mathematics Laboratory Electronics and Electrical Engineering Laboratory Electronics and Electrical Engineering Laboratory Electronics and Electrical Engineering Laboratory Physics Laboratory Materials Science and Engineering Laboratory Physics Laboratory | Time and Frequency Division Manufacturing Syst Integration Division Polymers Division Applied/Computati Math Division (MD) Optical Technology Division Fire Science Division Biotechnology Division Metallurgy Division Metallurgy Division Applied/Computati Math Division (MD) Semiconductor Electronics Division Optoclectronics Division Optoclectronics Division Polymers Division Polymers Division | | Name | University | PhD Field | NISTAdvisor | Laboratory | Division | |------------------------------------|---|-----------------------------------|--|---|---| | 1997 (cont.) | | | | | | | Claire E. Jordan | University of Wisconsin-Madison | Analytical Chemistry | Lee J. Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Stephen T. Kreger | University of Rochester/NY | Ontics | Kent B. Rochford | Clientical Science and Technology Laboratory Electronics and Electrical Engineering Laboratory | Filys Citem Properties Division (ML) Onfoelectronics Division | | Terence P. Lerch | Iowa State University | Engineering Mechanics | Christopher M. Fortunko | Materials Science and Engineering Laboratory | Materials Reliability Division | | David M. Lorenzetti | Massachusetts Inst of Technology | Building Research | Andrew K. Persily | Building and Fire Research Laboratory | Building Environment Division | | LeoLue | Massachusetts Inst of Technology | Chemical and Paper Engr | Daniel G Friend | Chemical Science and Technology Laboratory | Phys/Chem Properties Division (CO) | | Scott R. Messenger | Washington University/MO | Physics and Astronomy | David S. Simons | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Chris A. Michaels | Columbia University/NY | Chemistry | Richard R. Cavanagh | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Ronaldo Minniti | University of Tennessee-Knoxville | Physics | John D. Gillaspy | Physics Laboratory | Atomic Physics Division | | Krista L. Mullman | University of Wisconsin-Madison | Physics | Kristian Helmerson | Physics Laboratory | Atomic Physics Division | | Tanya L. Myers | University of Chicago/IL | Physical Chemistry | David J. Nesbitt | Physics Laboratory | Quantum Physics Division | | Alline F. Myers | North Carolina State U-Raleigh | Material Science | Eric B. Steel | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Walter W. Nederbragt | University of California-Davis | Mechanical Engineering | Ram D. Sriram | Manufacturing Engineering Laboratory | Manufacturing Syst Integration Division | | David L. Osbom | University of California-Berkeley | Chemical Physics | Stephen R. Leone | Physics Laboratory | Quantum Physics Division | | Scott M. Owens | State Univ of New York at Albany | Physics | R. D. Deslattes | Physics Laboratory | Atomic Physics Division | | Darrin J. Pochan | U of Massachusetts-Amherst | Polymer Science | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | Jon R. Pratt | Virginia Polytech Inst and State U | Engineering Mechanics | Mehmet A. Donmez | Manufacturing Engineering Laboratory | Automated Production Technology Division | | Robert J. Rafac | University of Notre Dame/IN | Physics | Wayne M. Itano | Physics Laboratory | Time and Frequency Division | | Bruce D. Ravel | University of Washington | Physics | Charles E. Bouldin | Materials Science and Engineering Laboratory | Ceramics Division | | Andrea M. Reiff | University of Houston/TX | Mathematics | Frederick R. Phelan, Jr. | Materials Science and Engineering Laboratory | Polymers Division | | John Henry J. Scott | Camegie Mellon University/PA | Applied Physics | Dale E. Newbury | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | John R. Seidensticker | Penn State University Park | Symbolic Systems | S. M. Wiederhom | Materials Science and Engineering Laboratory | Ceramics Division | | Quentin A. Turchette | _ | Physics | Christopher R. Monroe | Physics Laboratory | Time and Frequency Division | | Mark R. Van Landingham | _ | Material Science | Jonathan W. Martin | Building and Fire Research Laboratory | Building Materials Division | | Robin M. Walton | University of Michigan-Ann Arbor | Chemical Engineering | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | Christopher C. White | University of Wisconsin-Madison | Chemistry | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | John F. Widmann | University of Washington | Chemical Engineering | Cary Presser | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | 1998 | | | | | | | Bertha M. Allen | U of Maryland-Baltimore County | Physical Chemistry | Anne L. Plant | Chemical Science and Technology Laboratory |
Biotechnology Division | | Timothy A. Barckholtz | Ohio State University | Physical Chemistry | Stephen R. Leone | Physics Laboratory | Quantum Physics Division | | George Becker | State Univ of New York at Albany | Computer Science | Paul E. Black | Information Technology Laboratory | Software Diagnostics and Conformance Testing Div | | Michael L. Branham | University of Florida | Medicinal Chemistry | Kenneth D. Cole | Chemical Science and Technology Laboratory | Biotechnology Division | | David A. Branning | University of Rochester/NY | Physics | Alan L. Migdall | Physics Laboratory | Optical Technology Division | | William W. Brubaker | Indiana University-Bloomington | Analytical Chemistry | Michele M. Schantz | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Mattrick F. Bundy
Inlia V. Chan | washington state Oniversity I hivereity of California Davis | Medianica Engineding
Chemistry | Antitionly Hamilins Terrell A Vanderah | Duliding and Fire Research Laboratory Materials Science and Fingineering Laboratory | File Science Division | | Pin Chen | California Institute Technology | Chemical Physics | Leo W. Hollberg | Physics Laboratory | Time and Frequency Division | | Herek L. Clark | University of California-Berkeley | Mechanical Engineering | Cary Presser | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | | | | | | | | Name University PhD Field 1998 (cont.) Eie J. Cockayne Cornell University/NY Physics Ogal. Cockayne Georgia Institute of Technology Chemical Physics Aleff M. Crockine Georgia Institute of Technology Physics Seven W. Delicer University Of Wisconsin-Madican Taskii Demis Rice University/TX Bectrical Engineering Scott A. Diddams University of Wisconsin-Madican Techtik K. Fatemi University of Wignina Melanter Enhant Melanter Enhanter University of Wignina Melanter Enhanter University of Colorado Stroot of Mines State University of Colorado Stroot of Mines Melanter Enhanter University of Colorado Stroot of Menins State University of Colorado Melanter Engineering Melanter K. Auno Messachusets Inst of Technology Physics David J. Lones Messachusets Inst of Technology Physics Material Science Gary GLesk Thurther Messachusets Inst of Technology Physics Material Science Gary GLesk State University Park Architectural Engineering Anny B. Missac Physics Park Anny B. Missac Physics Park Architectural Engineering Anny B. Missac Physics Ocheracle Benginmin E. Nordmel University Of New York - State Physics Park Physics Order Physics Order Physics Order Physics Order Physics Park Physics Order Physics Park Physics Physics Physics Physics Physics Physics Physics Physics Physic | | | | | | | |--|--|-------------------|--|--|--|--| | Cornell University/NY Ulah State University Georgia Institute of Technology University of Wisconsin-Madison Rice University of Wisconsin-Madison Rice University of New Mexico U of Maryland-Baltimore County Colorado School of Mines University of Virginia Michigan-Aun Arbor Massachusetts Inst of Technology University of Michigan-Aun Arbor Massachusetts Inst of Technology University of Michigan-Aun Arbor Massachusetts Inst of Technology Northwestern University/IL Tuffis University/A Sate U of New York-Story Brook Northwestern University/IL University of Virginia Penn State University Park University of Technology Northwestery of Tecknology Northwestery of South Canolinia Penn State University Park Columbia University/NY Starford University/NY Starford University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Starford University/NY Cornell Universit | University | | PhD Field | NISTAdvisor | Laboratory | Division | | Cornell University/NY Ulah State University/NY Ulah State University Georgia Institute of Technology University of Wisconsin-Madison Rice University of Wisconsin-Madison Rice University of New Mexico U of Maryland-Baltimore County Colorado School of Mines University of Virginia Kanesa University of Kanesa University of Minesota-Twin Cit Duke University/NC Massachusetts Inst of Technology Massachusetts Inst of Technology University of Michigan-Aun Arbor Massachusetts Inst of Technology Northwestern University/IL Tuffis University/MA State U of New York-Story Brook Northwestern University/IL University of Wisconsin-Madison Penn State University Park University of Technology State University Park Columbia University/PA State University of Parkburgh/PA University of Pintsburgh/PA | | | | | | | | University of Wisconsin-Wadison Rice University TX University of New Mexico U of Maryland-Baltimore County Colorado School of Mines University of Virginia University of Kentucky Michigan State University Massachusetts Inst of Technology Northwesten University/IL Tufts University of Wisconsin-Madison Penn State University Park University of Texas-Austin University of Texas-Austin University of Colorado-Boulder University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign Sare University of New York at Albany Sare University of New York at Albany | Comell University/NY Utah State University Georgia Institute of Tech | mology | Physics
Mathematical Sciences
Chemical Physics | Benjamin P. Burton
David L. Banks
Jeffrey W. Hudgens | Materials Science and Engineering Laboratory Computing and Applied Mathematics Laboratory Chemical Science and Technology Laboratory | Ceramics Division Statistical Engineering Division (MD) Phys/Chem Properties Division (MD) | | University of New Mexico Unf Maryland-Baltimore County Colorado School of Mines University of Virginia University of Virginia University of Virginia University of Virginia University of Kentucky Michigan State University Machigan State University Machigan State University Massachusetts Inst of Technology Massachusetts Inst of Technology University of Minnesota-Twin Cit Duke University of Minnesota-Twin Cit Duke University of Minnesota-Twin Cit Duke University of Michigan-Ann Arbor Massachusetts Inst of Technology University of Michigan-Ann Arbor Massachusetts Inst of Technology Northwesten University/IL Tufts University/MA State U of New York-Stony Brook Northwesten University/IL University of Wisconsin-Madison Penn State University Park University of South Carolina Penn State University Park University of Colorado-Boulder University of Colorado-Boulder University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign State Iniv of New York at Albany | University of Wisconsin Rice University/TX | -Madison | Physics
Electrical Engineering | John M. Martinis
Sarah L. Gilbert | Electronics and Electrical Engineering Laboratory Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division Optoelectronics Division | | Colorado School of Mines University of Vinginia University of Kentucky Michigan State University State University State University State University Massachusetts Inst of Technology University of Minnesona-Twin Cit Duke University of Michigan-Ann Arbor Massachusetts Inst of Technology University of Michigan-Ann Arbor Massachusetts Inst of Technology Northwesten University/IL Tuths University/IL Tuths University of Wisconsin-Madison Penn State University Park University of Texas-Austin University of Pittsbungh/PA University of Rochester/NY Cornell University/NY Cornell University/NY U of Illinois-Urbana-Champaign State Iniv of New York at Albany | University of New Mex | ico
re Countv |
Physics
Biochemistry | John L. Hall
James T. Srivers | Physics Laboratory Chemical Science and Technology Laboratory | Quantum Physics Division
Biotechnolosy Division | | ski University of Vurginia ski Univ of California-San Diego schmidt Drexel University PA dd University of Yurginia pper University of Yurginia pper University of Yurginia pper University of Kentucky Michigan State University State University of Colorado University of Kanasa pper University of Minnesota-Twin Cit an Massachusetts Inst of Technology University of Minnesota-Twin Cit an Massachusetts Inst of Technology University of Michigan-Ann/Arbor no Massachusetts Inst of Technology University of Michigan-Ann/Arbor no Massachusetts Inst of Technology Northwestern University/IL Tuths University of Wisconsin-Madison s Northwestern University/IL University of Technology Northwestern University/IL State University of Wisconsin-Madison Sate University of South Carolina Penn State University Park University of South Carolina Penn State University Park Cohrunbia University/NY Starford University/NY Starford University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY State University Park University of Platsburgh/PA University of Platsburgh/PA State University Park University of Platsburgh/PA State University/NY Cornell University/NY Cornell University/NY State University/NY Cornell University/NY State University Park University of Platsburgh/PA State University Park University of Platsburgh/PA State University Park University of Platsburgh/PA | Colorado School of Mir | les
Secondaria | Math and Applied Math | John W. Cahn | Materials Science and Engineering Laboratory | Metallurgy Division | | skat Univ of Calidonia-San Diego Derkel University/PA University of Vinginia University of Vinginia University of Vinginia University of Vinginia University of Chorado Bate University of Chorado University of Chorado University of Minnesota-Twin Cit Duke University of Minnesota-Twin Cit Duke University of Minnesota-Twin Cit Duke University of Michigan-Ann Arbor Duke University of Wisconsin-Madison Sate U of New York-Story Brook Northwestern University/IL Tutils University of Wisconsin-Madison Sate University of South Carolina Penn State University Park University of Texas-Austin University of Colorado-Boulder University of Phitsbugh/PA Sanford University/PA Gornell University/NY Sanford University/NY Cornell University/NY Cornell University/NY Cornell University/NY Sanford University/NY Cornell University/NY Cornell University/NY Sanford University/NY Cornell Univ | University of Virginia | į | Molecular Physics | Paul D. Lett | Physics Laboratory | Atomic Physics Division | | d University of Virginia per University of Kentucky Intran Michigan State University Michigan State University Michigan State University University of Kansas University of Kansas University of Minnesota-Twin Cit Duke University of Minnesota-Twin Cit Massachusetts Inst of Technology Massachusetts Inst of Technology University of Michigan-Amn-Arbor Northwestern University/IL Tuffs University/MA State Uof New York-Stony Brook Northwestern University/IL University of Wisconsin-Madison Sale Uof New York-Stony Brook Northwestern University/IL University of Texas-Austin University of Texas-Austin Vorgan University of Colonado-Boulder University of Pintsburgh/PA Iniversity of Pintsburgh/PA University of Rochester/NY Cornell University/NY Cornell University/NY Cornell University/NY State University of Rochester/NY Cornell University/NY State University/NY Cornell University/NY State University of Rochester/NY Cornell University/NY State University/NY Cornell University/NY State University/NY State University/NY Cornell University/NY Cornell University/NY State University/NY Cornell University/NY State University/NY State University/NY Cornell University/NY Cornell University/NY State University/NY State University/NY State University/NY State University/NY Cornell University/NY State University Of Nochester/NY Cornell University/NY State University/NY State University Of Nochester/NY Cornell University/NY State University Of Nochester/NY State University Of Noche | Univ or California-San I
Drexel University/PA | Olego | Solid State Physics
Analytical Chemistry | Joseph G Pellegrino
Charles M. Guttman | Electronics and Electrical Engineering Laboratory Materials Science and Engineering Laboratory | Semiconductor Electronics Division Polymers Division | | threan University of Kentucky Michigan State University State University of New York-Buffalo University of Colorado University of Kansus University of Minnesota-Twin Cit an Massachusetts Inst of Technology Massachusetts Inst of Technology University of Michigan-AmnArbor Massachusetts Inst of Technology University of Michigan-AmnArbor Massachusetts Inst of Technology University of Michigan-AmnArbor Massachusetts Inst of Technology Northwesten University/IL Tuths University/IL University of Wisconsin-Madison Sate University Park Cohumbia University Park Iniversity of Scuth Carolina Penn State University Park Iniversity of Colorado-Boulder University of PittsburghPA University of PittsburghPA University of PittsburghPA University of PittsburghPA University of Rochester/NY Cornell University/NY Satel University/NY Satel University of Rochester/NY Cornell University/NY Satel University of Rochester/NY Cornell University/NY Satel Inivo of New York at Allbany Statel Iniv of New York at Allbany | University of Virginia | | Mechanical Engineering | Gerald T. Fraser | Physics Laboratory | Optical Technology Division | | innan Michigan State University gan State University State University of Colorado University of Kaness University of Minnesota-Twin Cit an Duke University of Michigan-Amn Arbor Duke University of Michigan-Amn Arbor Massachusetts Inst of Technology University of Michigan-Amn Arbor Massachusetts Inst of Technology University of Michigan-Amn Arbor Massachusetts Inst of Technology University of Michigan-Amn Arbor Northwestem University IL. Tuffs University MA State U of New York-Story Brook Northwestem University Park Astate University Park Columbia University Park achumi Columbia University Park Iniversity of South Carolina Pern State University Park Jowa State University University of Pittsburgh PA State University North at Allbary State I Iniv of New York at Allbary State I Iniv of New York at Allbary | University of Kentucky | | Chemical Physics | David J. Nesbitt | Physics Laboratory | Quantum Physics Division | | where University of Colorado Buth Assachusetts Inst of Technology Massachusetts Inst of Technology Massachusetts Inst of Technology Massachusetts Inst of Technology University of Michigan-Ann Arbor Massachusetts Inst of Technology University of Michigan-Ann Arbor Massachusetts Inst of Technology Northwesten University IL Tuffs University of Wisconsin-Madison State Uof New York-Stony Brook Northwesten University IL University of Technology Sate University of Wisconsin-Madison Pern State University Park University of Technology Sanford University Park Columbia University Park Iniversity of South Carolina Penn State University Park Jowa State University Park Columbia University Park University of Pintsburgh/PA Sanford University (Colorado-Boulder University of Pintsburgh/PA University of Pintsburgh/PA Sanford University Nort Colorado-Boulder University of Pintsburgh/PA Sanford University Nort Colorado-Boulder University of Pintsburgh/PA Sanford University Nort Colorado-Boulder University of Rochester/Ny Cornell University Nort Aniversity Sanford A | Michigan State Universi | lfy
Buffalo | Chemistry Flootring Commuter Soi | Frederick P. Schwarz Wirmin V. Wong Mg | Chemical Science and Technology Laboratory Materials Science and Engineering Laboratory | Biotechnology Division | | ber University of Kansus University of Minnesota-Twin Cit Buke University NC Massachusetts Inst of Technology Massachusetts Inst of Technology University of Michigan-Aun-Arbor Northwesten University/IL Tuffs University/IL Tuffs University/IL State U of New York-Story Brook Northwesten University/IL University of Wisconsin-Madison S Penn State University Park University of Visconsin-Madison S Columbia University Park Columbia University Park Saarford University Park Iniversity of Colorado-Boulder University of Pittsburgh/PA Saarford University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Saarford University/NY Cornell | University of Colorado | Communication | Physics | Steven R. Jefferts | Physics Laboratory | Time and Frequency Division | | ber University of Minnesota-Twin Cit an Duke University/NC Massachusetts Inst of Technology Ilian Massachusetts Inst of Technology University of Michigan-Ann Arbor no Massachusetts Inst of Technology Ee Turik University/MA State U of New York-Story Brook a Northwesten University/IL Iufts University/MA State U of New York-Story Brook a Northwesten University/IL Is University of Wisconsin-Madison s Penn State University Park University of South Carolina Penn State University Park Columbia University Park I Saarford University/PA Saarford University/NY Saarford University/NY Cornell University/NY Saarford Cornell University/NY Saarford University/NY Cornell University/NY Saarford University/NY Saarford University/NY Saarford University/NY Cornell University/NY Saarford University/NY Saarford University/NY Cornell University/NY Saarford University/NY Cornell University/NY Saarford University/NY Saarford University/NY Cornell University/NY Saarford University/NY Saarford University/NY Cornell University/NY Saarford University/NY Saarford University/NY Cornell University/NY Saarford | University of Kansas | | Analytical Chemistry | Michael J. Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | an Duke University/NC Massachusetts Inst of Technology
University of Michigan-Ann Arbor no Massachusetts Inst of Technology University of Michigan-Ann Arbor no Massachusetts Inst of Technology Sare University/MA Sare U of New York-Story Brook a Northwestern University/IL Iuffs University of Wisconsin-Maclison s Penn State University Park University of Tecas-Ausin University of South Carolina Penn State University Park Columbia University Park Sarford University/NY Sarford University/NY Sarford University/NY Cornell University/NY Sarford Ornell University/NY Sarford University/NY Sarford University/NY Cornell University/NY Sarford University/NY Sarford University/NY Sarford University/NY Sarford University/NY Cornell University/NY Sarford | University of Minnesota | -Twin Cit | Physics | Neil M. Zimmerman | Electronics and Electrical Engineering Laboratory | Electricity Division | | Massachusetts Inst of Technology Massachusetts Inst of Technology University of Michigan-Ann Arbor no Massachusetts Inst of Technology E Turit University of Michigan-Ann Arbor Northwestern University/IL Turit University/IL State U of New York-Story Brook Northwestern University/IL Inversity of Wisconsin-Maclison S Perm State University Park University of Texas-Ausin Vorgan University of South Carolina Perm State University Park Columbia University Park I Columbia University/NY Starford University/NY Starford University/NY Cornell University/NY Starford University/NY Cornell University/NY Cornell University/NY Starford University/NY Starford University/NY Starford University/NY Cornell University/NY Cornell University/NY Starford University/NY Starford University/NY Cornell University/NY Starford University/NY Cornell University/NY Starford University/NY Starford University/NY Cornell University/NY Starford University/NY Starford University/NY Cornell University/NY Cornell University/NY Starford University/NY Cornell University/NY Starford University/NY Cornell University/NY Cornell University/NY Starford University/NY Cornell | Dake University/NC | | Physics | Muhammad Arif | Physics Laboratory | Ionizing Radiation Division | | Ilian Massachuseds inst of technology University of Michigan-Ann Arbor no Massachusetts Inst of Technology Northwesten University/IL Tuffs University/MA State U of New York-Story Brook Northwesten University/IL University of Wisconsin-Madison s Penn State University Park Adith University of Texas-Ausin University of South Carolina Penn State University Park Columbia University Park I olymbia University/NY Starford University/NY Starford University/NY Starford University/NY Cornell University/NY Starford University/NY Starford University/NY Starford University/NY Starford University/NY Starford University/NY Ornell University/NY Starford University/NY Starford University/NY Starford University/NY Cornell University/NY Starford University/NY Starford University/NY Starford University/NY Cornell University/NY Starford Cornell University/NY Starford University Of Nochester/NY Cornell University of Nochester/NY Cornell University of Nochester/NY Starford University Of Nochester/NY Cornell University Of Nochester/NY Starford University Nochester/NY Cornell University Nochester/NY Starford University Nochester/NY Starford University Nochester/NY Cornell University Nochester/NY Starford University Nochester/NY Cornell University Nochester/NY Starford Noc | Massachusetts Inst of Te | chnology | Electrical Engineering | Tracy S. Clement | Physics Laboratory | Quantum Physics Division | | no Massachusetts Inst of Technology Massachusetts Inst of Technology Northwestern University/IL Tuffs University/MA State U of New York-Story Brook Northwestern University/IL University of Wisconsin-Madison Se Penn State University Park Adith University of Texas-Ausin University of South Carolina Penn State University Park Columbia University Park In Nowa State University Park Sanford University/NY Sanford University/NY Sanford University University of Rochester/NY Cornell University/NY Seaf-University of Rochester/NY Cornell University/NY Seaf-University/NY State University/NY Sanford University/NY Sanford University/NY Sanford University of Rochester/NY Cornell University/NY Seaf-University of Rochester/NY Cornell University/NY Seaf-University of Rochester/NY Rochest | Massachusetts Inst of 1e | chnology | Physics | Steven L. Kolston | Physics Laboratory | Atomic Physics Division | | Northwestern University/IL Tuths University/MA State U of New York-Story Brook Northwestern University/IL University of Wisconsin-Madison Sen State University Park Adith University of Texas-Austin University of South Carolina Pern State University Park Sardout University Park I columbia University Park Sardout University Park I lowa State University Sardout University/NY Sardout University/NY Sardout University/NY Cornell University/NY Cornell University/NY Cornell University/NY Sardout University/NY Cornell University/NY Sardout University/NY Sardout University/NY Sardout University/NY Cornell University/NY Sardout University/NY Cornell University/NY Sardout University/NY Cornell University of PutsburghPA Sardout Sar | Massachusetts Inst of Te | Ann Aroor | Aerospace Engineering
Chemistry | John J. Bouinger
David I Næhitt | Finysics Laboratory
Physics I aboratory | Organism Physics Division | | Tuffs University/MA State U of New York-Stony Brook Northwestern University/IL University of Wisconsin-Madison Sen Bern State University Park Adith University of Texas-Austin University of South Carolina Pern State University Park adhumi Columbia University Park achumi Columbia University Park I ocolumbia University Park Asarford University/NY Saraford University/NY Saraford University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY State University/NY Cornell University/NY Cornell University/NY State University/NY Cornell University/NY Cornell University/NY Cornell University/NY State University/NY Cornell University/NY State University of RochesterNY Cornell University/NY State University of New York at Allbary | Northwestem University | | Material Science | Terrence J. Jach | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | State U of New York-Stony Brook Northwestern University/IL University of Wisconsin-Madison Pern State University Park University of Texas-Austin University of Texas-Austin Columbia University Park Columbia University/NY Stanford University/CA Iowa State University University of Colorado-Boulder University of Pitsburgh/PA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign State I Iniv of New York at Albany | Tufts University/MA | | Mechanical Engineering | Nelson N. Hsu | Manufacturing Engineering Laboratory | Automated Production Technology Division | | Northwestern University/IL University of Wisconsin-Madison Pern State University Park University of Texas-Austin University of Texas-Austin Pern State University Park Columbia University/NY Stanford University/NY Stanford University/NY Stanford University/NY Connell University of Pitsburgh/PA University of Pitsburgh/PA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign State I Iniv of New York at Albany | State U of New York-St | ony Brook | Geochemistry | Robert D. Vocke, Jr. | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | University of Wisconsin-Madison Penn State University Park University of Texas-Austin University of Texas-Austin University of South Carolina Penn State University Park Columbia University/CA Iowa State University/CA Iowa State University University of Colorado-Boulder University of Pittsburgh/PA University of Pittsburgh/PA Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University/NY Cornell University of Rochester/NY State I Inivo of No.vy. Vorl. at All Pany | Northwestem University | //IL | Physical Chemistry | Lee J. Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Penn State University Park University of Texas-Austin University of South Carolina Penn State University Park Columbia University/NY Stanford University/CA Iowa State University University of Colorado-Boulder University of Pittsburgh/PA University of Pittsburgh/PA Cornell University/NY Cornell University/NY Cornell University/NY V of Illinois-Urbana-Champaign State I Iniv of New York at Albany | University of Wisconsin | -Madison | Physical Chemistry | Michael K. Gilson | Chemical Science and Technology Laboratory | Biotechnology Division | | an University of lexas-Ausun University of South Carolina Penn State University Park Stanford University/CA Iowa State University/CA Iowa State University University of Colorado-Boulder University of PittsburghPA University of PittsburghPA Cornell University/NY Cornell University/NY U of Illinois-Urbana-Champaign State I Inivo of New York at Albany | Penn State University Pa | 설 : | Mechanical Engineering | Stephen D. Ridder | Materials Science and Engineering Laboratory | Metallugy Division | | an University of South Carolina Penn State University Park Columbia University/NY Stanford University/CA Iowa State University University of Colorado-Boulder University of Pitsburgh/PA University of Pitsburgh/PA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign State I Iniv of Now York at Albany | University of Texas-Aus | <u> </u> | Chemical Engineering | Enc.J. Amis | Materials Science and Engineering Laboratory | Folymers Division | | mi Columbia University Pank Columbia University/NY Stanford University/CA Iowa State University University of Colorado-Boulder University of Pitsburgh/PA University of Rochester/NY Comell University/NY U of Illinois-Urbana-Champaign Sate I Iniv of New York at Albany | University of South Can | olina | Chemistry | Jeffrey W. Gilman | Building and Fire Research Laboratory | Fire
Science Division | | Stanford University/CA Iowa State University University of Colorado-Boulder University of PitsburghPA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign Sate I Iniv of New York at Albany | Penn State University Pa | ¥ 5 | Architectural Engr | Andrew K. Persily | Building and Fire Research Laboratory | Building Environment Livision | | Santour University.C.A. Iowa State University University of Colorado-Boulder University of PitsburghPA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign Sate I Iniv of New York at Albany | Columbia University/IN | ¥ | Fhysics | Alions weber | Physics Laboratory | Optical Technology Division | | University of PittsburghPA University of PittsburghPA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Champaign Sate I Iniv of New York at Albany | Stanford University CA
Towns State I Iniversity | | Physics
Material Science | George A. Alers | Electronics and Electrical Engineering Laboratory Materials Science and Financering Laboratory | Electromagnetic Technology Division
Materials Reliability Division | | University of PittsburghPA University of Rochester/NY Cornell University/NY U of Illinois-Urbana-Chranpaign Sate I Iniv of New York at Albany | University of Colorado- | Boulder | Atomic Physics | James F. Faller | Physics I aboratory | Orantum Physics Division | | University of Rochester/NY Comell University/NY U of Illinois-Urbana-Champaign Sate I miy of New York at Albany | University of Pittsburgh | /PA | Physical Chemistry | R. D. Deslattes | Physics Laboratory | Atomic Physics Division | | Cornell University/NY U of Illinois-Urbana-Champaign State I hiv of New York at Albany | University of Rochester | NY | Optics | Norman A. Sanford | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | U of Illinois-Urbana-Champaign
State I hiv of New York at Albany | Cornell University/NY | | Physics | John D. Gillaspy | Physics Laboratory | Atomic Physics Division | | Visit I have of New York at Albano | U of Illinois-Urbana-Ch | ampaign | Physics | John M. Martinis | Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division | | | State Unity of Inew York | ar Albany | Physics | Enc B. Sieel | Chemical Science and Technology Laboratory | Sufface and iviicroanalysis science Division | | Name | University | PhD Field | NISTAdvisor | Laboratory | Division | |------------------------|-----------------------------------|---------------------------------|----------------------|---|--| | 1998 (cont.) | | | | | | | Charles A. Sackett | Rice University/TX | Physics | David J. Wineland | Physics Laboratory | Time and Frequency Division | | Geoffrey B. Saupe | University of Texas-Austin | Chemistry | Michael J. Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | Joshua P. Schwarz | University of Colorado | Physics | Edwin R. Williams | Electronics and Electrical Engineering Laboratory | Electricity Division | | John E. Simsarian | State U of New York-Stony Brook | Physics | William D. Phillips | Physics Laboratory | Molecular Physics Division | | Christopher L. Soles | University of Michigan-Ann Arbor | Material Science | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | Elizabeth A. Sornsin | University of Alabama-Huntsville | Physics | Kent B. Rochford | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Joseph R. Swinder | University of Maryland | Chemistry | Dale E. Newbury | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Jason Sydow | Cornell University/NY | Physics | Ronald H. Ono | Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division | | Lois A. Tully | U of Maryland School of Medicine | Genetics | Barbara C. Levin | Chemical Science and Technology Laboratory | Biotechnology Division | | Brent D. Viers | University of Cincinnati/OH | Chemistry | Barry J. Bauer | Materials Science and Engineering Laboratory | Polymers Division | | Kurt R. Vogel | University of Colorado | Physics | Leo W. Hollberg | Physics Laboratory | Time and Frequency Division | | Kenneth D. Weston | Univ of California-Santa Barbara | Physical Chemistry | Lori S. Goldner | Physics Laboratory | Optical Technology Division | | John T. Woodward | Univ of California-Santa Barbara | Physics | Anne L. Plant | Chemical Science and Technology Laboratory | Biotechnology Division | | 1999 | | | | | | | Brian P. Anderson | Stanford University/CA | Applied Physics | Eric Comell | Physics Laboratory | Quantum Physics Division | | William E. Bailey | Stanford University/CA | Material Science | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division | | James P. Burke | University of Colorado | Atomic and Molecular Physics | Paul S. Julienne | Physics Laboratory | Atomic Physics Division | | Derrick T. Carpenter | Lehigh University/PA | Material Science | Robert Keller | Materials Science and Engineering Laboratory | Materials Reliability Division | | Scott R. Davis | University of Colorado | Chemical Physics | David F. Plusquellic | Physics Laboratory | Optical Technology Division | | John T. Elliott | State U of New York-Stony Brook | Biophysics Phys Biochem | Anne L. Plant | Chemical Science and Technology Laboratory | Biotechnology Division | | Julie Epelboim | University of Maryland | Psychology | David Coombs | Manufacturing Engineering Laboratory | Intelligent Systems Division | | Michael J. Fasolka | Massachusetts Inst of Technology | Polymer Science and Engr | Lori S. Goldner | Physics Laboratory | Optical Technology Division | | Richard A. Fry | George Washington University/DC | Material Science | Robert D. Shull | Materials Science and Engineering Laboratory | Metallurgy Division | | Stephen P. Fuss | University of Texas-Austin | Thermal Engineering | Anthony Hamins | Building and Fire Research Laboratory | Fire Science Division | | Amanda N. Goyette | University of Wisconsin-Madison | Physics | James K. Olthoff | Electronics and Electrical Engineering Laboratory | Electricity Division | | Maury E. Howard | University of Texas-Austin | Analytical Chemistry | John D. Fassett | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Enc W. Hudson | University of California-Berkeley | Solid State Physics | Joseph A. Stroscio | Physics Laboratory | Electron and Optical Physics Division | | Lawrence K. Iwaki | U of Illinois-Urbana-Champaign | Chemical Physics | Edwin J. Heilweil | Physics Laboratory | Optical Technology Division | | Albrecht Jander | Washington University/MO | Engineering and Applied Physics | Ronald B. Goldtarb | Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division | | Kevin J. Knopp | University of Colorado | Optical Sciences | David H. Christensen | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Donald E. Kramer | University of Minnesota-Twin Cit | Material Science | Richard J. Fields | Materials Science and Engineering Laboratory | Metallurgy Division | | Young S. Lee | Massachusetts Inst of Technology | Solid State Physics | Jeffrey W. Lynn | Materials Science and Engineering Laboratory | Center for Neutron Research | | Michael J. Y. Lim | University of Michigan-Ann Arbor | Atomic Physics | Steven L. Rolston | Physics Laboratory | Atomic Physics Division | | Laura J. Lising | University of California-Berkeley | Physics | William D. Phillips | Physics Laboratory | Atomic Physics Division | | Alexander E. Lobkovsky | University of Chicago/IL | Theoretical Physics | James A. Warren | Materials Science and Engineering Laboratory | Metallurgy Division | | Mark R. Locatelli | University of California-Berkeley | Material Science | Edwin R. Fuller, Jr | Materials Science and Engineering Laboratory | Ceramics Division | | Richard B. Mindek | University of Connecticut | Mechanical Engineering | Christopher J. Evans | Manufacturing Engineering Laboratory | Precision Engineering Division | | Erik J. Nelson | Stanford University/CA | Solid State Physics | Joseph C. Woicik | Materials Science and Engineering Laboratory | Ceramics Division | | Kevin V. O'Donovan | U of Illinois-Urbana-Champaign | Solid State Physics | Julie A. Borchers | Materials Science and Engineering Laboratory | Center for Neutron Research | | | | | | | | | 1999 (cont.) Steven E. Peil Harvard | -farvard University/MA | | | | | |-------------------------------------|----------------------------------|-------------------------|-------------------------------------|--|--| | | d University/MA | | | | | | David I Ross | Iniversity of California-Irvine | Physics
Physics | Steven L. Rolston
M. R. Moldover | Physics Laboratory
Chemical Science and Technoloov Laboratory | Atomic Physics Division Physic Division (MD) | | (C) | niversity of California-Berkeley | Atomic Physics | Christopher R. Monroe | Physics Laboratory | Time and Frequency Division | | j | | Mechanical Engineering | Matthew A. Davies | Manufacturing Engineering Laboratory | Intelligent Systems Division | | | Boston University/MA | Physics | Sharon C. Glotzer | Materials Science and Engineering Laboratory | Polymers Division | | David G. Sterling Univers | Jinversity of Colorado | Applied Mathematics | Timothy J. Bums | Information Technology Laboratory | Mathematical & Computational Sciences Div (MD) | | Peter M. Vallone Univers | niversity of Illinois-Chicago | Biophysical Chemistry | Dennis J. Reeder | Chemical Science and Technology Laboratory | Biotechnology Division | | Emanuel A. Waddell Louisian |
ouisiana State U and A&M College | Analytical Chemistry | Steven J. Choquette | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Marshall C. Wheeler Univers | Jniversity of Texas-Austin | Chemical and Paper Engr | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division (MD) | | Name | NIST Advisor | Laboratory | Division | |---------------------------------|---------------------|--|--| | 2000 NIST-NRC | | | | | Tammy Amos | Brian Toby | Materials Science and Engineering Laboratory | Center for Neutron Research | | Wendy Andersen | Timothy Ecolo | Chemical Science and Technology Laboratory Metaniele Science and European Lebenders | Physical and Chemical Properties Division | | Stephen Banovic
Kathyn Beers | Charles Han | Materials Science and Engineering Latonatory | Medings Division
Polymers Division | | Anthony Birdwell | Joseph Pelleorino | Flectronics and Flectrical Engineering Laboratory | Semiconductor Electronics Division | | Eric Bolda | Paul Julienne | Physics Laboratory | Electron and Optical Physics Division | | Eric Chang | Eric Shirley | Physics Laboratory | Optical Technology Division | | Alfred Crosby | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Ryan DaBell | Pamela Chu | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Rick Davis | Jeffrey Gilman | Building and Fire Research Laboratory | Fire Science Division | | William DeGraffenreid | Craig Sansonetti | Physics Laboratory | Atomic Physics Division | | Eric DeJong | John Marino | Chemical Science and Technology Laboratory | Biotechnology Division | | Jason Floyd | Kevin McGrattan | Building and Fire Research Laboratory | Fire Safety Engineering Division | | Stephen Fox | Michael Postek | Manufacturing Engineering Laboratory | Precision Engineering Division | | Stephen Gensemer | Paul Lett | Physics Laboratory | Atomic Physics Division | | John Goodpaster | Bruce Benner | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Katherine Gurski | Geoffrey McFadden | Information Technology Laboratory | Mathematical and Computational Sciences Division | | John Harkless | Karl Irikura | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Ronald Hedden | Barry Bauer | Materials Science and Engineering Laboratory | Polymers Division | | William Heinz | Lori Goldner | Physics Laboratory | Optical Technology Division | | Shannon Hill | Jabez McClelland | Physics Laboratory | Electron and Optical Physics Division | | John Jakupciak | Catherine O'Connell | Chemical Science and Technology Laboratory | Biotechnology Division | | Timothy Johnson | Laurie Locascio | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Sharon Kennedy | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Chulsoo Kim | Norman Sanford | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Alexander Komives | Maynard Dewey | Physics Laboratory | Ionizing Radiation Division | | Jason Kriesel | William Bollinger | Physics Laboratory | Time and Frequency Division | | Ronald Kumon | Donna Hurley | Materials Science and Engineering Laboratory | Materials Reliability Division | | Andrew Kunz | Robert McMichael | Materials Science and Engineering Laboratory | Metallurgy Division | | Deborah Kuzmanovic | Catherine O'Connell | Chemical Science and Technology Laboratory | Biotechnology Division | | Gary Leisk | Nelson Hsu | Manufacturing Engineering Laboratory | Manufacturing Metrology Division | | Joseph Lehnart | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | Daniel Lewis | William Boettinger | Materials Science and Engineering Laboratory | Metallurgy Division | | Frederick Mancoff | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division | | Samuel Manzello | Jiann Yang | Building and Fire Research Laboratory | Fire Research Division | | Keith Miller | Thomas Bruno | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Chad Nelson | Michael Welch | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Ursula Perez Salas | Susan Krueger | Materials Science and Engineering Laboratory | Center for Neutron Research | | Adam Pivovar | Dan Neumann | Materials Science and Engineering Laboratory | Center for Neutron Research | | David Pugmire | Gregory Poirer | Chemical Science and Technology Laboratory | Process Measurements Division | | Randall Rainey | Catherine Jackson | Materials Science and Engineering Laboratory | Polymers Division | | | | | | | Name | NIST Advisor | Laboratory | Division | |-----------------------|------------------|---|--| | 2000 NIST-NRC (cont.) | | | | | Christopher Rasmussen | David Coombs | Manufacturing Engineering Laboratory | Intelligent Systems Division | | Dennis Rich | Alan Thompson | Physics Laboratory | Ionizing Radiation Division | | William Rippard | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetic Technology Division | | Jason Sanabia | Laura Radiff | Physics Laboratory | Atomic Physics Division | | Mary Satterfield | Michael Welch | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Michael Savage | Lyle Levine | Materials Science and Engineering Laboratory | Metallurgy Division | | Nancy Savage | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | FLiang Siu | William Egelhoff | Materials Science and Engineering Laboratory | Metallurgy Division | | Julia Slutsker | Richard Fields | Materials Science and Engineering Laboratory | Metallurgy Division | | Hans Stauffer | Stephen Leone | Physics Laboratory | Quantum Physics Division | | Charles Taylor | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Douglas Twisselmann | Robert Shull | Materials Science and Engineering Laboratory | Metallurgy Division | | Newell Washburn | Alamgir Karim | Materials Science and Engineering Laboratory | Polymers Division | | Michael Weir | Francis Wang | Materials Science and Engineering Laboratory | Polymers Division | | Philip Wilson | Lee Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Suo-Che Yang | Lee Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | 2001 NIST-NRC | | | | | Jose Aumentado | Mark Keller | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Brett Baker | Thomas Moffat | Materials Science and Engineering Laboratory | Metallurgy Division | | Joseph Berry | Norman Sanford | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Jason Bochinski | James Faller | Physics Laboratory | Quantum Physics Division | | Helen Byrd | Charles Guttman | Materials Science and Engineering Laboratory | Polymers Division | | Michele Chabot | John Moreland | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | John Cormier | Joseph Hodges | Chemical Science and Technology Laboratory | Process Measurements Division | | Kristan Corwin | Sara Gilbert | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Brian DeMarco | David Wineland | Physics Laboratory | Time and Frequency Division | | Taffetha Dobbins | Andrew Allen | Materials Science and Engineering Laboratory | Ceramics Division | | Scott Goldie | Edwin Heilweil | Physics Laboratory | Optical Technology Division | | Alyssa Henry | Laurie Locascio | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Camille Jones | Brian Toby | Materials Science and Engineering Laboratory | Center for Neutron Research | | Ronald Jones | Jan Hall | Physics Laboratory | Quantum Physics Division | | Scott Kennedy | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | John Keske | Stephen Leone | Physics Laboratory | Quantum Physics Division | | Lany Kneller | Charles Majkrzak | Materials Science and Engineering Laboratory | Center for Neutron Research | | Forrest Landis | Charles Han | Materials Science and Engineering Laboratory | Polymers Division | | Sheng Lin-Gibson | Wen-lin Wu | Materials Science and Engineering Laboratory | Polymers Division | | Thomas Loftus | Debbie Jin | Physics Laboratory | Quantum Physics Division | | Jeffery McGuirk | Eric Cornell | Physics Laboratory | Quantum Physics Division | | Aaron Miller | John Martinis | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | | | | | | 1 | | | | |-------------------------|--------------------|---|--| | Name | MSTAdvisor | Laboratory | Division | | 2001 NIST-NRC (cont.) | | | | | Vivek Prabhu | Wen-Lin Wu | Materials Science and Engineering Laboratory | Polymers Division | | Tanya Ramond | Leo Hollberg | Physics Laboratory | Time and Frequency Division | | Catherine Rimmer | Lane Sander | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Jacob Roberts | William Phillips | Physics Laboratory | Atomic Physics Division | | David Saylor | Edwin Fuller | Materials Science and Engineering Laboratory | Ceramics Division | | Michelle Silva | Jun Ye | Physics Laboratory | Quantum Physics Division | | Chad Sosolik | Joseph Stroscio | Physics Laboratory | Electron and Optical Physics Division | | Gloria Thomas | Richard Cavicchi | Chemical Science
and Technology Laboratory | Process Measurements Division | | Jonathan Weinstein | Paul Lett | Physics Laboratory | Atomic Physics Division | | James Williams | Charles Clark | Physics Laboratory | Electron and Optical Physics Division | | Jacob Yeston | John Stephenson | Physics Laboratory | Optical Technology Division | | Christopher Zangmeister | Roger VanZee | Chemical Science and Technology Laboratory | Process Measurements Division | | Rebecca Zangmeister | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | 2002 NIST-NRC | | | | | Karin Balss | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | Angela Bardo | Lori Goldner | Physics Laboratory | Optical Technology Division | | Matthew Beard | Edwub Heilweil | Physics Laboratory | Optical Technology Division | | Robert Bousquet | Pamela Chu | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Son Hoang Bui | Ted Vorburger | Manufacturing Engineering Laboratory | Precision Engineering Division | | Mauricio Cafiero | Stephen Russek | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Phil Cage | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | James Cooper | Francis Wang | Materials Science and Engineering Laboratory | Polymers Division | | William Doriese | Kent Irwin | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Zachary Dutton | Charles Clark | Physics Laboratory | Electron and Optical Physics Division | | Aaron Forster | Nicholas Dagalakis | Materials Science and Engineering Laboratory | Polymers Division | | Jason Gorman | Nicholas Dagalakis | Manufacturing Engineering Laboratory | Intelligent Systems Division | | Christina Hacker | Curt Richter | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Christopher Harrison | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Bryan Huey | John Blendell | Materials Science and Engineering Laboratory | Ceramics Division | | Erin Jablonski | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | Ronald Jones | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | Scott Kukuck | Kuldeep Prasad | Building and Fire Research Laboratory | Fire Safety Engineering Division | | Heather Lewandowski | William Phillips | Physics Laboratory | Atomic Physics Division | | Katrice Lippa | Karen Phinney | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Michael Lufaso | Terrell Vanderah | Materials Science and Engineering Laboratory | Ceramics Division | | Christine Mahoney | Greg Gillen | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | David Matheu | Carlos Gonzalez | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | William McGivem | Wing Tsang | Physics Laboratory | Optical Technology Division | | Douglas Meier | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | | | | | | Ivallic | NIST Advisor | Laboratory | Division | |-----------------------|--------------------|--|--| | 2002 NIST-NRC (cont.) | | | | | Luis Melara | Anthony Kearsley | Information Technolosy Laboratory | Mathematical and Compitational Sciences Division | | Hvenng-Sik Min | Albert Iones | Mamifachino Fnomerino I aboratory | Manufacturing Systems Integration Division | | Flizabeth Mimwski | Iohn Moreland | Flectronics and Flectrical Fnoineerino I aboratory | Flectromagnetics Division | | Lora Nugent-Glandorf | Thomas Perkins | Physics Laboratory | Ouantum Physics Division | | Kenneth O'Hara | Paul Lett | Physics Laboratory | Atomic Physics Division | | Wendell Oskay | James Bergquist | Physics Laboratory | Time and Frequency Division | | Brian Polk | Michael Gaitan | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Darwin Reyes | Michael Gaitan | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Peter Roos | Steven Cundiff | Physics Laboratory | Quantum Physics Division | | Adam Scotch | John Blendell | Materials Science and Engineering Laboratory | Ceramics Division | | Vincent Shen | Raymond Mountain | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Karen Siegrist | Gerald Fraser | Physics Laboratory | Atomic Physics Division | | Raymond Simmonds | John Martinis | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | David Song | Ronald Boisvert | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Chirstopher Stafford | Alamgir Karim | Materials Science and Engineering Laboratory | Polymers Division | | Kevin Van Workum | Jack Douglas | Materials Science and Engineering Laboratory | Polymers Division | | Bryan Vogt | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | Wyatt Vreeland | Laurie Locascio | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | John Vrettos | Curtis Meuse | Chemical Science and Technology Laboratory | Biotechnology Division | | Matthew Wagner | Greg Gillen | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Joward Walls | Charles Han | Materials Science and Engineering Laboratory | Polymers Division | | Stephanie Wetzel | Charles Guttman | Materials Science and Engineering Laboratory | Polymers Division | | Donald Windover | James Cline | Materials Science and Engineering Laboratory | Ceramics Division | | Gary Wojcik | David Nesbitt | Building and Fire Research Laboratory | Building Materials Division | | Frank Woodward | Jeffrey Lynn | Materials Science and Engineering Laboratory | Center for Neutron Research | | Derek Yoder | Daniel Fischer | Materials Science and Engineering Laboratory | Ceramics Division | | Barry Zink | Gene Hilton | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | 2003 NIST-NRC | | | | | Neil Anderson | John Stephenson | Physics Laboratory | Optical Technology Division | | Mark Amould | William Wallace | Materials Science and Engineering Laboratory | Polymers Division | | John Ball | Laurie Locascio | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Matt Becker | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Mary Bedner | William MacCreahan | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Joshua Bienfang | Charles Clark | Physics Laboratory | Electron and Optical Physics Division | | Stephen Bullock | Isabel Beichl | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Neil Claussen | Leo Hollberg | Physics Laboratory | Time and Frequency Division | | Michael Coble | John Butler | Chemical Science and Technology Laboratory | Biotechnology Division | | David Cotrell | David Cotrell | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Amanda Cox | James Randa | Electronics and Electrical Engineering Laboratory | Flectromagnetics Division | | Name | NIST Advisor | Laboratory | Division | |--------------------------|--------------------|---|--| | 2003 NIST-NRC (cont.) | | | | | Jason Crain | Daniel Pierce | Physics Laboratory | Electron and Optical Physics Division | | Joseph Curtis | Dan Neumann | Materials Science and Engineering Laboratory | Center for Neutron Research | | Zuzanna Cygan | Alamgir Karim | Materials Science and Engineering Laboratory | Polymers Division | | William Davis | Paul Becker | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Dean Delongchamp | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | Peter DeSanto | Winnie Wong-Ng | Materials Science and Engineering Laboratory | Ceramics Division | | Nathan Dodder | Michele Schantz | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Michael Donovan | Wing Tsang | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Samuel Forry | Laurie Locascio | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | William Fritz | Emil Simin | Building and Fire Research Laboratory | Materials and Construction Research Division | | Dan Fry | Erik Hobbie | Materials Science and Engineering Laboratory | Atomic Physics Division | | Jayne Gamo | James Batteas | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Richard Holbrook | Dale Newbury | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Samuel Howerton | Stephen Wise | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Daniel Hussey | Muhammad Arif | Physics Laboratory | Ionizing Radiation Division | | Mark Iadicola | Richard Fields | Materials Science and Engineering Laboratory | Metallurgy Division | | Frank Johnson | Robert Shull | Materials Science and Engineering Laboratory | Metallurgy Division | | Jennifer Keller | Paul Becker | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Eric Langlois | John Moreland | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Li Anne Liew | John Moreland | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Bogdan Lita | Alexana Roshko | Electronics and Electrical Engineering Laboratory |
Optoelectronics Division | | Brian Maranville | Robert McMichael | Materials Science and Engineering Laboratory | Metallurgy Division | | Carlos Martinez | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Robert McDermott | John Martinis | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Hans Mumm | Maynard Dewey | Physics Laboratory | Ionizing Radiation Division | | Babak Nikoobakht | Stephan Stranick | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Kristen O'Brien (Wilson) | Joseph Antonucci | Materials Science and Engineering Laboratory | Polymers Division | | Aric Opdahl | Michael Tralov | Chemical Science and Technology Laboratory | Process Measurements Division | | James Rantschler | Robert McMichael | Materials Science and Engineering Laboratory | Metallurgy Division | | William Ratcliff | Seung-hun Lee | Materials Science and Engineering Laboratory | Center for Neutron Research | | Joseph Reiner | Kristian Helmerson | Physics Laboratory | Atomic Physics Division | | Danna Rosenburg | Robert Schwall | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Michael Schneider | Thomas Silva | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Richard Seugling | Jon Pratt | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Chad Sheng | Cary Presser | Chemical Science and Technology Laboratory | Process Measurements Division | | Sanjiv Shresta | Carl Williams | Physics Laboratory | Atomic Physics Division | | Heather Stapleton | Michele Schantz | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Jean Stephens | Joy Dunkers | Materials Science and Engineering Laboratory | Polymers Division | | Willard Uhlig | Manius Ungaris | Electronics and Electrical Engineering Laboratory | Electron and Optical Physics Division | | Owen Vajk | Jeffrey Lynn | Materials Science and Engineering Laboratory | Center for Neutron Research | | Richard Wagner | Benjamin Burton | Materials Science and Engineering Laboratory | Ceramics Division | | | | | | | Name | NIST Advisor | Laboratory | Division | |-----------------------|----------------------|---|--| | 2003 NIST-NRC (cont.) | | | | | IThomas Wallis | Davel Kabos | Electronics and Electrical Engineering Laboratory | Flectromagnetics Division | | Kendall Waters | Andrew Slifka | Materials Science and Engineering Laboratory | Materials Reliability Division | | Jason Widegren | Joseph Magee | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Elizabeth Wilder | Joseph Antonucci | Materials Science and Engineering Laboratory | Polymers Division | | 2003 NIST-NIH | | | | | Joonyeong Kim | James Batteas | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Jeffrey Krogmeier | Jeeseong Hwang | Physics Laboratory | Optical Technology Division | | Juan Taboas | Steven Hudson | Materials Science and Engineering Laboratory | Polymers Division | | James White | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | Gary Zabow | John Moreland | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | 2004 NIST-NRC | | | | | Nicholas Barbosa | Robert Keller | Materials Science and Engineering Laboratory | Materials Reliability Division | | Joy Barker | Norman Sanford | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Jeremy Beebe | Roger Van Zee | Chemical Science and Technology Laboratory | Process Measurements Division | | Johanna Camara | Michael Welch | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Samuel Carter | Steven Cundiff | Physics Laboratory | Quantum Physics Division | | Alice Crawford | Kristian Helmerson | Physics Laboratory | Atomic Physics Division | | Cindi Dennis | William Egelhoff | Materials Science and Engineering Laboratory | Metallurgy Division | | Tithi Dutta Roy | Francis Wang | Materials Science and Engineering Laboratory | Polymers Division | | Thomas Epps | Michael Fasolka | Materials Science and Engineering Laboratory | Polymers Division | | Nathan Gallant | Newell Washburn | Materials Science and Engineering Laboratory | Polymers Division | | Simon Garcia | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Emily Gibson | Ralph Jimenez | Physics Laboratory | Quantum Physics Division | | Scott Glancy | Emanuel Knill | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Marc Gurau | Lee Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Michael Hartman | John Rush | Materials Science and Engineering Laboratory | Center for Neutron Research | | Rebecca Heltsley | William MacCrehan | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Chad Hoyt | Leo Hollberg | Physics Laboratory | Time and Frequency Division | | John Hutchinson | Laurie Locascio | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Emily Jarvis | Anne Chaka | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Philip Johnson | Carl Williams | Physics Laboratory | Atomic Physics Division | | Gavin King | Thomas Perkins | Physics Laboratory | Quantum Physics Division | | Christopher Kinsinger | Karl Irikura | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Aaron Leanhardt | Eric Comell | Physics Laboratory | Quantum Physics Division | | David Lenhert | Anthony Hamins | Building and Fire Research Laboratory | Fire Research Division | | Nancy Lin | Francis Wang | Materials Science and Engineering Laboratory | Polymers Division | | Derik Love | Christopher Holloway | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Michaelman Mayed High Walker Dennis Bailding and Fine Research Laboratory McGamei Angeb High Walker Dennis Stence and Technology Laboratory McGamei Angeb High Walker Dennis Stence and Technology Laboratory McGamei Ander Guiam Bailding and Fine Research Laboratory McGamei Ander Guiam Bailding and Fine Research Laboratory McGamei Made Guiam Bailding Bertrial Engineering Laboratory Obsom Mark Keller Bestronis and Bertrial Engineering Laboratory David Pedra Market Medica Commission Bertrial Engineering Laboratory Research Roger Van Certrial Stence and Technology Laboratory Robert Market Medica Commission Bertrial Engineering Laboratory Robert Market Medical Winerbester Commissi Science and Technology Laboratory Robert Market Medical Science and Engineering Laboratory Market Medical Medical Market Market Medical Medical Market Medical Medical Market Medical Medical Medical Medical Market Medical Medi | NI | TSHV | 1-1 | | |--|-------------------------|---------------------|---|---| | Emil Simiu Angela Hight Walker Anne Buiking and Fine Research Laboratory Anne Butter Anne Butter Chemical Science and Technology Laboratory Michael Griann Bectronis: and Bectrial Engineering Laboratory Boxel Papes Loh Kucklek Chemical Science and Technology Laboratory Boxel Norsester Moduse Workesser Chemical Science and Technology Laboratory Paul Let Moduse Moderne Physics Laboratory William Philips Working Worki | Name | NIS1 Advisor | Laboratory | Livision | | Emil Simiu Building and Fine Research Laboratory Augels Hight Walker Physics Laboratory | 2004 NIST-NRC (cont.) | | | | | Angels Hight Walker Orleanies Ischerous and Technology
Laboratory Ton Siva Heart Chemical Science and Technology Laboratory Mortae Gaina Heartonis and Bectrical Engineering Laboratory Mortae Gaina Heartonis and Heartied Engineering Laboratory Mortae Wank Kedler Heartonis and Heartied Engineering Laboratory John Kocklock Chemical Science and Technology Laboratory Mortaed Windressia Chemical Science and Technology Laboratory Heart Robinson Physics Laboratory Heart Robinson Physics Laboratory Heart Robinson Physics Laboratory William Phillips Physics Laboratory Mortael Worker Monogeni Physics Laboratory William Robinson Physics Laboratory Heart Levin Mortael Physics Laboratory Mortael Worker Physics Laboratory Heart Levin Mortael Physics Laboratory Mortael Science and Engineering Laboratory Heart Levin Mortael Physics Laboratory Mortael Science and Engineering Laboratory Materials Mater | Joseph Main | Emil Simiu | Building and Fire Research Laboratory | Materials and Construction Research Division | | Anne Plant Chemical Science and Technology Laboratory Torn Silva Bettories and Bettrical Engineering Laboratory Mark Celer Bettories and Bettrical Engineering Laboratory Mark Carlot Bettories and Bettrical Engineering Laboratory David Pappas Germical Science and Technology Laboratory Roger Van Varchser Chemical Science and Technology Laboratory Manad Winderbeat Physics Laboratory Roger Van Mark Robinson Physics Laboratory Hagis Robinson Physics Laboratory Natal Let Manad William Philips Awdinan Philips Mysics Laboratory Markad William Philips Physics Laboratory Markad William Philips Awdinan Philips Mysics Laboratory Markad William Philips Mysics Laboratory Harack Wang Markad Science and Engineering Laboratory Harack Wang Mysics Laboratory Markad Wideh Chemical Science and Engineering Laboratory Harack Wang Mysics Laboratory Markad William Philips Mysics Laboratory Markad William Philips Mysics Laboratory Markad William Physics Laboratory Markad William Physics Laboratory Markad Science and Engineering Sc | Idan Mandelbaum | Angela Hight Walker | Physics Laboratory | Optical Technology Division | | Ten Silva Bestronis and Bestriola Engineering Laboratory Michael Gairan Bestronis and Bestriola Engineering Laboratory Marked Gairan Bestronis and Bestriola Engineering Laboratory Marked Michael Chairan Bestronis and Bestriola Engineering Laboratory Mortan Kotekiek Chemical Science and Technology Laboratory Mortan | Dennis McDaniel | Anne Plant | Chemical Science and Technology Laboratory | Biotechnology Division | | Michael Gaian Betroris and Betriois and Betrioid Pagineering Laboratory Mark Keller Betriois and Betrioid Engineering Laboratory Roger Van Zee Chemical Science and Technology Laboratory Roger Van Zee Chemical Science and Technology Laboratory Muchael Winderster Physics Laboratory Hagle Robinson Philips Philips Physics Laboratory Natal Lett Physics Laboratory Milliam Philips Philip | James McGuire | Tom Silva | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Mark Keller Beletronis and Betrital Engineering Laboratory Rowl Papass Generous and Betrital Engineering Laboratory Rows Van Zee Chemical Science and Technology Laboratory Michael Winchester Chemical Science and Technology Laboratory Michael Winchester Chemical Science and Technology Laboratory Michael Winchester Chemical Science and Technology Laboratory Physics Laboratory Mark Mongrat Nall Lett Rising Martials Science and Engineering Laboratory Millam Phylips Information Technology Laboratory Millam Phylips Michael William Physics Laboratory Millam Phylips Michael William Physics Laboratory Millam Phylips Michael William Phylips Michael William Phylips Michael William Phylips Michael William Phylips Miderials Science and Engineering Laboratory Materials Engin | Brian Nablo | Michael Gaitan | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | David Papase Betronis and Betrinal Engineering Laboratory Rogar Van's Ro | Kevin Osborn | Mark Keller | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Admit Admi | Robert Owings | David Pappas | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Mersel Winchester Chemical Science and Technology Laboratory Medael Winchester Chemical Science and Technology Laboratory David Neshit Physics Laboratory Hugh Robinson Physics Laboratory Physics Laboratory And Lett Manufacturne Eigeneratic Laboratory Norder Moyeri Physics Laboratory Norder Moyeri Physics Laboratory William Philips P | Aaron Peck | John Kucklick | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Michael Winchester Chemical Science and Technology Laboratory Payal Lett Andready Physics Laboratory Hugh Robinson Physics Laboratory Physics Laboratory Natar Motori Natural Membrinia Brainfact Susan Krueger Makratia Science and Engineering Laboratory Militam Phillips Makratia Science and Engineering Laboratory Michael Welch Chemical Science and Engineering Laboratory Fire Lin Jun Ye Physics Laboratory Makratia Science and Engineering Laboratory Francis Wang Makratia Science and Engineering Laboratory Matria Creen Makratia Science and Engineering Laboratory Matria Creen Makratia Science and Engineering Laboratory Matria Creen Makratia Science and Engineering Laboratory Matria Esphori Makratia Science and Engineering Laboratory Matria Engineerin | Laura Picraux | Roger Van Zee | Chemical Science and Technology Laboratory | Process Measurements Division | | Marschn Hugh Robinson Physics Laboratory Hugh Robinson Physics Laboratory Anal Lett Physics Laboratory Natural Mountain Physics Laboratory Natural Mouses Natural Mouser Socience and Engineering Laboratory En | Savelas Rabb | Michael Winchester | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Hugh Robinson Physics Laboratory I Anal Left Montacturing Engineering Laboratory I Anal Left Montacturing Engineering Laboratory Nader Moneyeri Montacturing Engineering Laboratory Nilam Philips Materials Science and Engineering Laboratory I Eric Lin Materials Science and Engineering Laboratory Bric Lin Materials Science and Engineering Laboratory Jun'Sc State State State and Engineering Laboratory Jun'sc Lovin Materials Science and Engineering Laboratory Paul Let Materials Science and Engineering Laboratory Paul Let Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Paul Let Materials Science and Engineering Laboratory Physics Laboratory Materials Science and Engineering S | Chandra Savage-Marsden | David Nesbitt | Physics Laboratory | Quantum Physics Division | | rabley Paul Lett Physics Laboratory Nanufacuning Engineering Laboratory Nadra Moneyeri Information Technology Laboratory Nadra Moneyeri Physics Laboratory Naterials Science and Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Annufacuning Engineering Laboratory Materials Science and | Peter Schwindt | Hugh Robinson | Physics Laboratory | Time and Frequency Division | | Natural Engineering Laboratory Natural More Milliam Philips Natural Science and Engineering Laboratory Natural Science and Engineering Laboratory Elite Trissinga Michael Welch Michael Welch Frie Lin Michael Welch Frie Lin Michael Welch Materials Science and Engineering Laboratory Hysics Laboratory Jun Ye Jun Ye Jun Ye Jun Ye John More land Materials Science and Engineering Laboratory Naturin Grean Natural Science and Engineering Laboratory Naturin Grean Natural Science and Engineering Laboratory Naturin Grean Natural Science and Engineering Laboratory John Kassanowicz Natural Science and Engineering Laboratory N | Jennifer Sebby-Strabley | Paul Lett | Physics Laboratory | Atomic Physics Division | | Nadar Mocayeri Nifem Philips Physics Laboratory William Philips Meterials Science and Engineering Laboratory Brise Tier Lin Physics Laboratory Michael Welch Chemical Science and Engineering Laboratory Fire Lin Physics Laboratory Materials Science and Engineering Laboratory Jun Ye Marerials Science and Engineering Laboratory Francis Wang Materials Science and Engineering Laboratory Francis Wang Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Richard Silver Materials Science and Engineering Laboratory Richard Silver Materials Science and Engineering Laboratory John Kasianowicz Physics Laboratory Materials Science and Engineering Material | Gordon Shaw III | Jon Pratt | Manufacturing Engineering Laboratory | Manufacturing Metrology Division | | William Phillips Raterials Science and Engineering Laboratory Hysics Laboratory Jun Ye Hysics Laboratory Materials Science and Engineering Laboratory Hancis Wan Francis Wan Stephanie Hooker Waterials Science and Engineering Laboratory Materials Chemical Science and Technology Laboratory Physics Laboratory Physics Laboratory Hohn Kasanowicz Materials Science and Engineering Materials Science and Engineering Laboratory Hohn Kasanowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Hohn Kasanowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Hohn Kasanowicz Materials Science and Engineering Laboratory Materials Science | Michael Souryal | Nadar Moayeri | Information Technology Laboratory | Advanced Network Technologies Division | | Susan Kneger Susan Kneger Eite Tiesinga Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Faric Lin Jun Ye Jun Ye John Moreland John Moreland John Moreland Sephanie Hooker Materials Science and Engineering Laboratory John Kasanowicz Materials Science and Engineering Laboratory S | Ian Spielman | William Phillips | Physics Laboratory | Atomic Physics Division | | Fire Tiesinga Hysics Laboratory Michael Welch Chemical Science and Technology Laboratory Fire Lin Materials Science and Technology Laboratory Jun Ye Hysics
Laboratory Jun Ye Materials Science and Engineering Laboratory Francis Wang Materials Science and Engineering Laboratory Francis Wang Materials Science and Engineering Laboratory Francis Wang Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Richard Silver Materials Science and Engineering Laboratory John Kasanowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory John Kasanowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory John Kasanowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory John Kasanowicz Materials Science and Engineering Laboratory | Christopher Stanley | Susan Krueger | Materials Science and Engineering Laboratory | Center for Neutron Research | | Michael Weich Chemical Science and Technology Laboratory Fric Lin Jun Ye Jun Ye Jun Ye John More land John More land Francis Wang Waterials Science and Engineering Laboratory Materials Science and Engineering Laboratory Francis Materials Science and Engineering Laboratory Francis Wang Franc | Frederick Strauch | Eite Tiesinga | Physics Laboratory | Atomic Physics Division | | Fric Lin Materials Science and Engineering Laboratory John Moreland Francis Wang Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Richard Silver Materials Science and Engineering Laboratory Martin Green Materials Science and Engineering Laboratory Chemical Science and Engineering Laboratory Francis Materials Science and Engineering Laboratory John Kassanowicz Materials Science and Engineering Laboratory John Kassanowicz Materials Science and Engineering Laboratory Materials Science an | Matthew Vergne | Michael Welch | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Jun Ye Physics Laboratory Igor Levin John Moreland Francis Wang Timothy Quinn Sheldon Wiederhom Stephanie Hooker Materials Science and Engineering Laboratory Holm Kasinowicz Materials Science and Engineering Laboratory Britsian Egelhoff Enctronics and Engineering Laboratory John Kasinowicz Materials Science and Engineering Laboratory Holm Kasinowicz Materials Science and Engineering Laboratory John Kasinowicz Materials Science and Engineering Laboratory Britsian Engineering Laboratory Materials Science and Engineering Laboratory John Kasinowicz Materials Science and Engineering Laboratory John Kasinowicz Materials Science and Engineering Laboratory Engineer | Brandon Vogel | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | lohn Moreland Bectronics and Electrical Engineering Laboratory Francis Wang Waterials Science and Engineering Laboratory Martin Green Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Faul Let Francis Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Francis Materials Materials Science and Engineering Laboratory Francis Materials Materials Science and Engineering Laboratory Francis Materials Ma | Tanya Zelevinsky | Jun Ye | Physics Laboratory | Quantum Physics Division | | John Moreland Electronics and Electrical Engineering Laboratory Francis Wang Timothy Quinn Sheldon Wiederhorn Stephanie Hooker Richard Silver Materials Science and Engineering Laboratory Manufacturing Engineering Laboratory Manufacturing Engineering Laboratory Manufacturing Engineering Laboratory Manufacturing Engineering Laboratory Materials Science and Engineering Laboratory Physics Laboratory William Egelhoff Birch Materials Science and Engineering Laboratory Physics Laboratory John Kasianowicz Materials Science and Engineering Laboratory Sci | Mark Zurbuchen | Igor Levin | Materials Science and Engineering Laboratory | Ceramics Division | | John Moreland Electronics and Electrical Engineering Laboratory Francis Wang Materials Science and Engineering Laboratory Timothy Quinn Materials Science and Engineering Laboratory Shedran Wiederhom Materials Science and Engineering Laboratory Richard Silver Manufactuning Engineering Laboratory Mattin Green Mattin Green Mattin Green Mattin Circen Materials Science and Engineering Laboratory Alamgir Karim Chemical Science and Technology Laboratory Paul Lett Physics Laboratory William Egelhoff Electronics and Electrical Engineering Laboratory John Kasianowicz Materials Science and Engineering Laboratory John Kasianowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Stephan Stranick Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Stephan Stranick Materials Science and Engineering Laboratory Stephan Stranick Materials | 2004 NIST-NIH | | | | | Francis Wang Timothy Quinn Sheldon Wiederhom Sheldon Wiederhom Skephanie Hooker Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Manufacturing Engineering Laboratory Materials Science and Technology Laboratory Physics Laboratory William Egelhoff John Kasianowicz Materials Science and Engineering Laboratory Bhysics Laboratory Materials Science and Engineering Laboratory | Richard Conrov | John Moreland | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Timothy Quinn Sheldon Wiederhorn Sheldon Wederhorn Stephanie Hooker Siephanie Hooker Materials Science and Engineering Laboratory Richard Silver Materials Science and Engineering Laboratory Materials Science and Technology Laboratory Physics Laboratory William Egelhoff Bectronics and Electrical Engineering Laboratory John Kasianowicz Materials Science and Engineering Laboratory Sohn Kasianowicz Materials Science and Engineering Laboratory Sohn Kasianowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Sohn Kasianowicz Engin | Matthew Kipper | Francis Wang | Materials Science and Engineering Laboratory | Polymers Division | | Sheldon Wiederhom Stephanie Hooker Stephanie Hooker Richard Silver Materials Science and Engineering Laboratory Richard Silver Materials Science and Engineering Laboratory Chemical Science and Technology Laboratory Physics Laboratory William Egelhoff John Kasianowicz Materials Science and Engineering Laboratory | Brian O'Neill | Timothy Quinn | Materials Science and Engineering Laboratory | Materials Reliability Division | | Stephanie Hooker Materials Science and Engineering Laboratory Richard Silver Manufacturing Engineering Laboratory Mattin Green Materials Science and Engineering Laboratory Alamgir Karim Materials Science and Engineering Laboratory Stephan Stranick Materials Science and Technology Laboratory Paul Lett Physics Laboratory William Egelhoff Bectronics and Electrical Engineering Laboratory John Kasianowicz Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Mysics Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory | Vinoy Thomas | Sheldon Wiederhorn | Materials Science and Engineering Laboratory | Materials Science and Engineering Laboratory Office | | Stephanie Hooker Richard Silver Manufacturing Engineering Laboratory Richard Silver Mattin Green Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Alampir Karim Stephan Stranick Paul Let Paul Let Physics Laboratory William Egelhoff Ich Rasianowicz Materials Science and Technology Laboratory Physics Laboratory Physics Laboratory Materials Science and Engineering Laboratory | 2005 NIST-NRC | | | | | Richard Silver Martin Green Alamgir Karim Stephan Stranick Paul Let William Egelhoff John Kasianowicz Bric Amis Martin Green Materials Science and Engineering Laboratory Materials Science and Technology Laboratory Physics Laboratory Physics Laboratory Physics Laboratory Physics Laboratory Physics Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory | Jennifer Anton | Stephanie Hooker | Materials Science and Engineering Laboratory | Materials Reliability Division | | Martin Green Materials Science and Engineering Laboratory Alamgir Karim Materials Science and Engineering Laboratory Stephan Stranick Chemical Science and Technology Laboratory Paul Let Physics Laboratory William Egelhoff Physics Laboratory John Kasianowicz Rectronics and Electrical Engineering Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory | Bryan Barnes | Richard Silver | Manufacturing Engineering Laboratory | Precision Engineering Division | | Alamgir Karim Materials Science and Engineering Laboratory Stephan Stranick Chemical Science and Technology Laboratory Paul Let Physics Laboratory William Egelhoff Physics Laboratory John Kasianowicz Rectronics and Electrical Engineering Laboratory Eric Amis Materials Science and Engineering Laboratory | Nabil Bassim | Martin Green | Materials Science and Engineering Laboratory | Ceramics Division | | Stephan Stranick Chemical Science and Technology Laboratory Paul Let Physics Laboratory William Egelhoff Physics Laboratory John Kasianowicz Electronics and Electrical Engineering Laboratory Eric Amis Materials Science and Engineering Laboratory | Jason Benkoski | Alamgir Karim | Materials Science and Engineering Laboratory | Polymers Division | | Paul Lett Physics Laboratory William Egelhoff Physics Laboratory John Kasianowicz Electronics and Electrical Engineering Laboratory Eric Amis Materials Science and Engineering Laboratory | Michael Beversluis | Stephan Stranick | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | William Egelhoff Physics Laboratory John Kasianowicz Blectronics and
Electrical Engineering Laboratory Eric Amis Materials Science and Engineering Laboratory | Adam Black | Paul Lett | Physics Laboratory | Atomic Physics Division | | John Kasianowicz Bectronics and Electrical Engineering Laboratory Fric Amis Materials Science and Engineering Laboratory | Benjamin Brown | William Egelhoff | Physics Laboratory | Atomic Physics Division | | Eric Amis Materials Science and Engineering Laboratory | Elaine Chan | John Kasianowicz | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | | Thomas Chastek | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Name | NIST Advisor | Laboratory | Division | |------------------------|---------------------|---|--| | 2005 NIST-NRC (cont.) | | | | | Elizabeth Dakin-Rogers | Jabez McClelland | Physics Laboratory | Electron and Optical Physics Division | | Wendy Davis | Yoshihiro Ohno | Physics Laboratory | Optical Technology Division | | Kristin DeWitt | Edwin Heilweil | Physics Laboratory | Optical Technology Division | | Ryan Epstein | James Bergquist | Physics Laboratory | Time and Frequency Division | | Jeffrey Fagan | Erik Hobbie | Materials Science and Engineering Laboratory | Polymers Division | | Rene Gabbai | Emil Simiu | Building and Fire Research Laboratory | Materials and Construction Research Division | | Eric Gansen | Robert Hickernell | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Kirsten Genson | Michael Fasolka | Materials Science and Engineering Laboratory | Polymers Division | | Mark Greene | Keith Lykke | Physics Laboratory | Optical Technology Division | | Michael Halter | John Elliott | Chemical Science and Technology Laboratory | Biotechnology Division | | Mark Hoefer | Tom Silva | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Atif Imtiaz | Pavel Kabos | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Kavita Jeerage | Andrew Slifka | Materials Science and Engineering Laboratory | Materials Reliability Division | | Barbara Jones | Karen Phinney | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Jeffrey Kline | David Pappas | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Regis Kline | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | June Lau | Robert McMichael | Materials Science and Engineering Laboratory | Metallurgy Division | | Patricia Lee | James Porto | Physics Laboratory | Atomic Physics Division | | Benjamin Lev | Jun Ye | Physics Laboratory | Quantum Physics Division | | Dustin Levy | Kimberly Briggman | Physics Laboratory | Optical Technology Division | | Veichung Liang | Ram Sriram | Manufacturing Engineering Laboratory | Manufacturing Systems Integration Division | | Geoffrey Lowman | Lori Goldner | Physics Laboratory | Optical Technology Division | | Jacqueline Mann | Robert Vocke | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | John Merle | Karl Irikura | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Shawn Moylan | Alkan Donmez | Manufacturing Engineering Laboratory | Manufacturing Metrology Division | | Casey Mungle | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Matthew Munson | Laurie Locascio | Chemical Science and Technology Laboratory | Biotechnology Division | | Ofer Naaman | Mark Keller | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Hirsh Nanda | Susan Krueger | NIST Center for Neutron Research | Center For Neutron Research | | Michael Nosonovsky | Grady White | Materials Science and Engineering Laboratory | Ceramics Division | | Brian Okerberg | Christopher Soles | Materials Science and Engineering Laboratory | Polymers Division | | Kirt Page | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Lisa Pakstis | Joy Dunkers | Materials Science and Engineering Laboratory | Polymers Division | | Joseph Robertson | John Kasianowicz | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Zachary Schultz | Lee Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Jonathan Shackman | David Ross | Chemical Science and Technology Laboratory | Process Measurements Division | | Justin Shaw | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Jeffrey Simpson | Angela Hight Walker | Physics Laboratory | Optical Technology Division | | Jackson Smith | Marcus Cicerone | Materials Science and Engineering Laboratory | Polymers Division | | Lafe Spietz | Robert Schwall | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Jason Stalnaker | Leo Hollberg | Physics Laboratory | Time and Frequency Division | | | | | | | Name | NIST Advisor | Laboratory | Division | |--|--|---|--| | 2005 NIST-NRC (cont.) | | | | | Martin Stevens
Evi Struble
Lucile Teague | Richard Mirin
Frederick Schwarz
James Kushmerick | Electronics and Electrical Engineering Laboratory Chemical Science and Technology Laboratory Chemical Science and Technology Laboratory | Optoelectronics Division
Biotechnology Division
Surface and Microanalysis Science Division | | Bryan Tomlin
Jared Wahlstrand | Richard Lindstrom
Steven Dundiff | Chemical Science and Technology Laboratory Physics Laboratory | Analytical Chemistry Division
Quantum Physics Division | | Richard Walters
Shannon Watson | David Nesbitt
Julie Borchers | Physics Laboratory NIST Center for Neutron Research | Quantum Physics Division
Center For Neutron Research | | Lauren Wolf
Lam Yu | Kimberly Briggman
Steven Robey | Physics Laboratory
Chemical Science and Technology Laboratory | Optical Technology Division
Surface and Microanalysis Science Division | | 2005 NIST-NIH | | | | | Robert Brinson
Martin Hohmann-Marriott | John Marino
John Henry Scott | Chemical Science and Technology Laboratory
Chemical Science and Technology Laboratory | Biotechnology Division
Surface and Microanalysis Science Division | | Mary Kamande
Baranidharan Raman | Karen Phinney
Stephen Semancik | Chemical Science and Technology Laboratory Chemical Science and Technology Laboratory | Analytical Chemistry Division Process Measurements Division | | Erica Takai | Steven Hudson | Materials Science and Engineering Laboratory | Polymers Division | | 2006 NIST-NRC | | | | | Kyle Alvine | Christopher Soles | Materials Science and Engineering Laboratory | Polymers Division | | Jason Amini | David Wineland | Physics Laboratory | Time and Frequency Division | | Chandler Becker | Jonathan Guyer | Materials Science and Engineering Laboratory | Metallurgy Division | | Denis Bergeron | Jeffrey Hudgens | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Andrew Berglund
Brian Berry | Jabez McClelland
Romald Iones | Center for Nanoscale Science and Technology Materials Science and Engineering Laboratory | Center For Nanoscale Science and Technology Polymere Division | | Duan Deny
Timothy Brewer | Greg Gillen | Chemical Science and Technology Laboratory | Surface and Micmanalysis Science Division | | Gretchen Campbell | Jun Ye | Physics Laboratory | Quantum Physics Division | | Jason Campbell | John Suehle | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Akobuije Chijioke | John Lawall | Physics Laboratory | Atomic Physics Division | | Matthew Clarke | Jeeseong Hwang | Physics Laboratory | Optical Technology Division | | Ian Coddington | Nathan Newbury | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Catherine Cooksey | Edwin Heilweil | Physics Laboratory | Optical Technology Division | | Joseph Davies | Robert Shull | Materials Science and Engineering Laboratory | Metallurgy Division | | Daniel Dougherty | Steven Robey | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Kevin Douglass | David Plusquellic | Physics Laboratory | Optical Technology Division | | Nadia Edwin | Vivek Prabhu | Materials Science and Engineering Laboratory | Polymers Division | | Patrick Egan | Jack Stone | Manufacturing Engineering Laboratory | Precision Engineering Division | | Matthew Eisaman | Alan Migdall | Physics Laboratory | Optical Technology Division | | Susie Eustis | Stephan Stranick | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | James Falabella | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | | | | | | Name | NIST Advisor | Laboratory | Division | |---------------------------|----------------------|---|---| | 2006 NIST-NRC (cont.) | | | | | Brian Gable | Timothy Foecke | Materials Science and Engineering Laboratory | Metallurev Division | | Daniel Genin | Kevin Mills | Information Technology Laboratory | Advanced Network Technologies Division | | Nadine Gergel-Hackett | Curt Richter | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Nathan Guisinger | Joseph Stroscio | Center for Nanoscale Science and Technology | Center for Nanoscale
Science and Technology | | Behrang Hamadani | Curt Richter | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Ranko Heindl | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Joshua Hertz | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Angelique Lasseigne | Thomas Siewert | Materials Science and Engineering Laboratory | Materials Reliability Division | | Kristopher Lavery | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | Dale Li | Robert Schwall | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Andrew Lock | Anthony Hamins | Building and Fire Research Laboratory | Fire Research Division | | Nathan Lundblad | William Phillips | Physics Laboratory | Atomic Physics Division | | Sara Mason | Anne Chaka | Chemical Science and Technology Laboratory/Physics Laboratory | Optical Technology Division | | Marvi Matos | Marcus Cicerone | Materials Science and Engineering Laboratory | Polymers Division | | Randall McDermott | William Mel | Building and Fire Research Laboratory | Fire Research Division | | Craig McGray | Michael Gaitan | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | John Meacham | David Ross | Chemical Science and Technology Laboratory | Biotechnology Division | | Andrew Moad | Lee Richter | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Abby Morgan | Carl Simon | Materials Science and Engineering Laboratory | Polymers Division | | Janelle Newman | William MacCrehan | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Adam Nolte | Christopher Stafford | Materials Science and Engineering Laboratory | Polymers Division | | Lisa Ott (Starkey) | Thomas Bruno | Chemical Science and Technology Laboratory | Physical and Chemical Properties Division | | Daniel Paik | Thomas Perkins | Physics Laboratory | Quantum Physics Division | | Jae Park | Raymond Simmonds | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Derek Patton | Kathryn Beers | Materials Science and Engineering Laboratory | Polymers Division | | Leonard Pease | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | Rachel Popelka-Filcoff | Robert Greenberg | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Jennifer Recknor | Timothy Quinn | Materials Science and Engineering Laboratory | Materials Reliability Division | | Marc Roy | Eric Amis | Materials Science and Engineering Laboratory | Polymers Division | | Jennifer Ruglovsky(Klamo) | Martin Green | Materials Science and Engineering Laboratory | Ceramics Division | | Neal Scruggs | Migler Kalman | Materials Science and Engineering Laboratory | Polymers Division | | David Serrell | Andrew Slifka | Materials Science and Engineering Laboratory | Materials Reliability Division | | Scott Stanley | Wen-Li Wu | Materials Science and Engineering Laboratory | Polymers Division | | Evan Thomas | Winnie Wong Ng | Materials Science and Engineering Laboratory | Ceramics Division | | Benjamin Ueland | Jeffrey Lynn | NIST Center for Neutron Research | Center for Neutron Research | | Jay Vaishnav | Charles Clark | Physics Laboratory | Electron and Optical Physics Division | | Gregory Vogl | Jon Pratt | Manufacturing Engineering Laboratory | Manufacturing Metrology Division | | Kiwon Yoon | Kent Irwin | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | | | | | | Name | NIST Advisor | Laboratory | Division | |--|--|---|--| | 2006 NIST-NIH | | | | | Yun Chen
Ilija Draganic
Yonglin Liu
Minhua Zhao | John Moreland
John Gillaspy
Angela Hight Walker
Tinh Nguyen | Electronics and Electrical Engineering Laboratory Physics Laboratory Physics Laboratory Building and Fire Research Laboratory | Electromagnetics Division Atomic Physics Division Optical Technology Division Materials and Construction Research Division | | 2007 NIST-NRC | | | | | Blakely Adair | Steven Christopher | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Christopher Bass | Jeffrey Nico | Physics Laboratory | Ionizing Radiation Division | | August Bosse
Danielle Cleveland | Jack Douglas
Stenhen I ong | Materials Science and Engineering Laboratory Chemical Science and Technology I aboratory | Polymers Division
Analytical Chemistry Division | | Valerie Coffman | Stephen Langer | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Robert Compton | James Porto | Physics Laboratory | Atomic Physics Division | | Greg Cooksey | John Elliott | Chemical Science and Technology Laboratory | Biotechnology Division | | Adam Creuziger | Timothy Foecke | Materials Science and Engineering Laboratory | Metallurgy Division | | John Douglas | Loren Goodrich | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Gregory Dutton | Steven Robey | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Bryan Eastin | Emanuel Knill | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Brian Fisher | Jeff Nico | Physics Laboratory | Ionizing Radiation Division | | Amanda Fond | Michael Winchester | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Nathaniel Fredin | Ronald Jones | Materials Science and Engineering Laboratory | Polymers Division | | Andrew Geraci | John Kitching | Physics Laboratory | Time and Frequency Division | | David Germack | Christopher Soles | Materials Science and Engineering Laboratory | Polymers Division | | William Griffith | John Kitching | Physics Laboratory | Time and Frequency Division | | Paul Haney | Mark Stiles | Center for Nanoscale Science and Technology | Center for Nanoscale Science and Technology | | Andrea Hamill | Paul Butler | NIST Center for Neutron Research | Center for Neutron Research | | David Hanneke | David Wineland | Physics Laboratory | Time and Frequency Division | | Don Harris | Edwin Heilweil | Physics Laboratory | Optical Technology Division | | Jason Hattrick-Simpers | Leonid Bendersky | Materials Science and Engineering Laboratory | Metallurgy Division | | Carrigan Hayes | Donald Burgess | Chemical Science and Technology Laboratory | Chemical and Biochemical Reference Data Division | | Andrew Herzing | Ian Anderson | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Albert Hilton | Theodore Vorburger | Manufacturing Engineering Laboratory | Precision Engineering Division | | Peter Johnson | Chirstopher Stafford | Materials Science and Engineering Laboratory | Polymers Division | | Alexander Kieckhafer | John Curry | Physics Laboratory | Atomic Physics Division | | Kathryn Krycka | Julie Borchers | NIST Center for Neutron Research | Center for Neutron Research | | David Lahr | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Andrew Ludlow | Christopher Oates | Physics Laboratory | Time and Frequency Division | | Joie Marhefka | Kalman Migler | Materials Science and Engineering Laboratory | Polymers Division | | Jeffrey Martin | Steven Hudson | Materials Science and Engineering Laboratory | Polymers Division | | Stephen Maxwell | William Phillips | Physics Laboratory | Atomic Physics Division | | Elizabeth McGaw | Benner Bruce | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | | | | | | | NISI Advisor | Laboratory | Division | |-------------------------|--------------------|---|--| | 2007 NIST-NRC (cont.) | | | | | | | | | | Ariel Michelman-Ribeiro | John Kasianowicz | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Abigail Miller | Lori Goldner | Physics Laboratory | Optical Technology Division | | Jasmine Millican | Judith Stalick | NIST Center for Neutron Research | Center for Neutron Research | | Todd Momis | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | Jayne Monow | Kenneth Cole | Chemical Science and Technology Laboratory | Biotechnology Division | | Ryan Murphy | Vivek Prabhu | Materials Science and Engineering Laboratory | Polymers Division | | Ryan Nieuwendaal | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | John Perreault | Deborah Jin | Physics Laboratory | Quantum Physics Division | | Jeffrey Peterson | David Nesbitt | Physics Laboratory | Quantum Physics Division | | Daniel Phelan | Peter Gehring | NIST Center for Neutron Research | Center for Neutron Research | | Mark Richards | Thomas Siewert | Materials Science and Engineering Laboratory | Materials Reliability Division | | Mickey Richardson | Gail Holmes | Materials Science and Engineering Laboratory | Polymers Division | | Daniel Roe | Anne Chaka | Physics Laboratory | Optical Technology Division | | Claudette Rosado-Reyes | Jeffrey Manion | Chemical Science and Technology Laboratory | Chemical and Biochemical Reference Data Division | | Aric Sanders | Norman Sanford | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Jayna Shah | Michael Gaitan | Electronics and Electrical Engineering Laboratory | Semiconductor
Electronics Division | | Erin Sharp | David Nesbitt | Physics Laboratory | Quantum Physics Division | | Clayton Simien | Craig Sansonetti | Physics Laboratory | Atomic Physics Division | | Jason Simmons | Taner Yildinim | NIST Center for Neutron Research | Center for Neutron Research | | Derek Smith | Michael Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | Brent Sperling | James Maslar | Chemical Science and Technology Laboratory | Process Measurements Division | | Tighe Spurlin | Anne Plant | Chemical Science and Technology Laboratory | Biotechnology Division | | Samuel Stavis | Michael Gaitan | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Gila Stein | James Liddle | Center for Nanoscale Science and Technology | Center for Nanoscale Science and Technology | | Jack Surek | James Baker-Jarvis | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Todd Taylor | Ram Sriram | Manufacturing Engineering Laboratory | Manufacturing Systems Integration Division | | Aaron Urbas | Steven Choquette | Chemical Science and Technology Laboratory | Biotechnology Division | | Robert Usselman | Ron Goldfarb | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Aaron Van Devender | Dietrich Leibfried | Physics Laboratory | Time and Frequency Division | | 2007 NIST-NIH | | | | | Kaushik Chatterjee | Carl Simon | Materials Science and Engineering Laboratory | Polymers Division | | Georgeta Crivat | Jeeseong Hwang | Physics Laboratory | Optical Technology Division | | Shubhadeep Purkayashta | Maral Dizdar | Chemical Science and Technology Laboratory | Biotechnology Division | | Murugan Ramalingam | Mark Cicerone | Materials Science and Engineering Laboratory | Polymers Division | | Name | University | NISTAdvisor | Laboratory | Division | |------------------------|---|---------------------|---|--| | 2008 NIST-NRC | | | | | | Richard Bindel | University of Maryland | Elizabeth Mackey | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Irene Calizo | University of California-Riverside | Hight Walker Angela | Physics Laboratory | Optical Technology Division | | Thomas Cecil | University of Virginia | Stephen Russek | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Calvin Chan | Princeton University | David Gundlach | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Shin (Grace) Chou | Massachusetts Institute of Technology | Jeeseong Hwang | Physics Laboratory | Optical Technology Division | | Gordon Christopher | Camegie Mellon University | Kalman Migler | Materials Science and Engineering Laboratory | Polymers Division | | April Cooke | University of North Carolina | Robert Ivester | Manufacturing Engineering Laboratory | Manufacturing Metrology Division | | Christopher Forrey | University of Massachusetts | Alangir Karim | Materials Science and Engineering Laboratory | Polymers Division | | Keith Gilmore | Montana State University | Eric Shirley | Physics Laboratory | Optical Technology Division | | Daniel Havey | University of Colorado | Joseph Hodges | Chemical Science and Technology Laboratory | Process Measurements Division | | Layla Homozi | Florida State University | Carl Williams | Physics Laboratory | Atomic Physics Division | | Patrick Hughes | University of Maryland-College Park | Alan Thompson | Physics Laboratory | Ionizing Radiation Division | | Todd Johnson | University of Wisconsin | Scott Diddams | Physics Laboratory | Time And Frequency Division | | Jason Killgore | University of Washington, Seattle | Donna Hurley | Materials Science and Engineering Laboratory | Materials Reliability Division | | Paulina Kuo | Stanford University | Glenn Solomon | Physics Laboratory | Atomic Physics Division | | Catherine Lo | Yale University | Laurie Locascio | Chemical Science and Technology Laboratory | Biochemical Science Division | | Paul Lott | University of Maryland | Geoffrey McFadden | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Elisabeth Mansfield | University of Arizona | Stephanie Hooker | Materials Science and Engineering Laboratory | Materials Reliability Division | | Joshua Martin | University of South Florida | Martin Green | Materials Science and Engineering Laboratory | Ceramics Division | | Ludwig Mathey | Harvard University | Charles Clark | Physics Laboratory | Electron and Optical Physics Division | | Rebecca Montange | University of Colorado/Boulder | Thomas Perkins | Physics Laboratory | Quantum Physics Division | | Nicole Moore | Washington University | Carl Simon | Materials Science and Engineering Laboratory | Polymers Division | | Paul Morrow | Rensselaer Polytechnic Institute | John Bonevich | Materials Science and Engineering Laboratory | Metallurgy Division | | Michael Niemack | Princeton University | Kent Irwin | Electronics and Electrical Engineering Laboratory | Quantum Electrical Metrology Division | | Sapun Parekh | University of California | Marcus Cicerone | Materials Science and Engineering Laboratory | Polymers Division | | David Rampulla | Camegie Mellon | James Kushmerick | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | John Read | Cornell University | William Egelhoff | Materials Science and Engineering Laboratory | Metallurgy Division | | Efrain Rodriquez | University of California, Santa Barbara | Taner Yildirim | NIST Center for Neutron Research | NIST Center For Neutron Research | | Joseph Roscioli | Yale University | David Nesbitt | Physics Laboratory | Quantum Physics Division | | Gregory Rutter | Georgia Institute of Technology | Joseph Stroscio | Center for Nanoscale Science and Technology | Center for Nanoscale Science and Technology | | Andrea Szakal | Penn State University Park | John Marino | Chemical Science and Technology Laboratory | Biochemical Science Division | | Michael Thorpe | University of Colorado/Boulder | David Wineland | Physics Laboratory | Time and Frequency Division | | Nathan Tomlin (Miller) | University of Colorado | John Lehman | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Kristina Verdal | University of Rochester/NY | Terrence Udovic | NIST Center for Neutron Research | NIST Center For Neutron Research | | Russell Watson | University of South Carolina, Columbia | Robert Downing | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Michael Weiger | North Carolina State University | Matthew Becker | Materials Science and Engineering Laboratory | Polymers Division | | Justin Zook | Memphis University | Wyatt Vreeland | Chemical Science and Technology Laboratory | Biochemical Science Division | | | | | | | | Name | University | NISTAdvisor | Laboratory | Division | |--------------------|---|--------------------------|---|---| | 2008 NIST-NIH | | | | | | Zeeshan Ahmed | University of Pittsburgh | David Plusquellic | Physics Laboratory | Optical Technology Division | | Jyotsnendu Gin | California Institute of Technology | Marcus Cicerone | Materials Science and Engineering Laboratory | Polymers Division | | Jonathan Leftman | Ourveasity of Circuitati
New York University | Marcus Cicerone | Materials Societies and Engineering Laboratory Chemical Science and Technology Laboratory | Formers Division Surface and Microanalysis Science Division | | 2009 NIST-NRC | | | | | | Shaffique Adam | Cornell Unity, NY | Mark Stiles | Center for Nanoscale Science and Technology | Center For Nanoscale Science And Technology | | Thomas Allison | Univ of Calif-Berkeley | Jun Ye | Physics Laboratory | Quantum Physics Division | | Ashley Beasley | Johns Hopkins Univ, MD | David Bunk | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | James Benson | Univ of Missouri-Columbia | Anthony Kearsley | Information Technology Laboratory | Mathematical and Computational Sciences Division | | Adam Berro | Univ of Texas-Austin | James Liddle | Center for Nanoscale Science and Technology | Center for Nanoscale Science and Technology | | Sarah Bickman | Yale University, CT | James Berquist | Physics Laboratory | Time and Frequency Division | | Ryan Brennan | George Washington Univ, DC | Michael Ralph Winchester | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Jacob Burress | Univ of Missouri-Columbia | Taner Yildinim | NIST Center for Neutron Research | NIST Center for Neutron Research | | Amy Cassidy | Univ of So Calif-LA | Charles Clark | Physics Laboratory | Electron And Optical Physics Division | | Edwin Chan | Univ of Mass-Amherst | Kathryn Beers | Materials Science and Engineering Laboratory | Polymers Division | | Robert Chang | Drexel Univ-PA | Jeeseong Hwang | Physics Laboratory | Optical Technology Division | | Antony Chen | Univ of Penn | Anne Plant | Chemical Science and Technology Laboratory | Biochemical Science Division | | Arman Cingoz | Univ of Calif-Berkeley | Jun Ye | Physics Laboratory | Quantum Physics Division | | Brad Conrad | Univ of Maryland-College Park | David Gundlach | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Steve DeCaluwe | Univ of Maryland-College Park | Joseph A. Dura | NIST Center for Neutron Research | NIST Center For Neutron Research | | Scott Eastman | Univ of Mass-Amherst | Christopher L. Soles | Materials Science and Engineering Laboratory | Polymers Division | | Larry Fiegland | VA Polytech Inst & State U | David Nesbitt | Physics
Laboratory | Quantum Physics Division | | Anna Fox | Drexel Univ-PA | Richard Mirin | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Natalie Frey Huls | University of South Florida | Cindi Dennis | Materials Science and Engineering Laboratory | Metallurgy Division | | Andrew Funk | Univ of Oregon | Steven T. Cundiff | Physics Laboratory | Quantum Physics Division | | Joshua Gordon | University of Arizona, Tucson | Christopher Holloway | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Justin Gorham | John Hopkins University/MD | John Henry Scott | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | Lauren Greenlee | The University of Texas-Austin | Stephanie Hooker | Materials Science and Engineering Laboratory | Materials Reliability Division | | Matthew Hammond | Univ of Calif-Santa Barbara | Dean DeLongchamp | Materials Science and Engineering Laboratory | Polymers Division | | Carlos Hangarter | Univ of Calif-Riverside | Thomas Moffat | Materials Science and Engineering Laboratory | Metallurgy Division | | Joel Helton | Massachusetts Inst of Tech | Jeffrey W. Lynn | NIST Center for Neutron Research | NIST Center for Neutron Research | | John Howarter | Purdue Univ | Christopher M. Stafford | Materials Science and Engineering Laboratory | Polymers Division | | Michael Huber | Tulane Univ of Louisiana | Muhammad Arif | Physics Laboratory | Ionizing Radiation Division | | Matthew Hummon | Harvard Univ | Debbie Jin | Physics Laboratory | Quantum Physics Division | | Candice Jongsma | Texas A&M University | John Kucklick | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Kenneth Kearns | Univ of Wisconsin-Madison | Christopher Soles | Materials Science and Engineering Laboratory | Polymers Division | | Kate Klein | Univ of Tennessee-Knoxville | Ian M. Anderson | Chemical Science and Technology Laboratory | Surface and Microanalysis Science Division | | William Krekelberg | Univ of Texas-Austin | Karl Irikura | Chemical Science and Technology Laboratory | Chemical and Biochemical Reference Data Division | | Eric Lass | Univ of Virginia | William J. Boettinger | Materials Science and Engineering Laboratory | Metallurgy Division | | | | | | | | Name | University | NISTAdvisor | Laboratory | Division | |--------------------------|--|-----------------------|---|--| | 2009 NIST-NRC (cont.) | | | | | | James Lee | University of Maryland | Dylan Moms | Materials Science and Engineering Laboratory | Ceramics Division | | David Leibrandt | Mass Inst of Tech | James Bergquist | Physics Laboratory | Time and Frequency Division | | Kristen Lewis | Univ of Washington | Peter M. Vallone | Chemical Science and Technology Laboratory | Biochemical Science Division | | Tara Liebisch | University of Michigan-Ann Arbor | John Kitching | Physics Laboratory | Time and Frequency Division | | Tara Lovestead | Univ of Colorado-Boulder | Daniel Friend | Chemical Science and Technology Laboratory | Thermophysical Properties Division | | Marla McConnell | Univ of Pennsylvania | Eric Lin | Materials Science and Engineering Laboratory | Polymers Division | | Erica McJimpsey | Univ of Calif-Davis | David Bunk | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Karl Nelson | Pennsylvania State University | James Porto | Physics Laboratory | Atomic Physics Division | | Brendan O'Connor | Univ of Michigan-Ann Arbor | Dean M. DeLongchamp | Materials Science and Engineering Laboratory | Polymers Division | | Justin Olamit | Univ of Calif-Davis | Robert Shull | Materials Science and Engineering Laboratory | Metallurgy Division | | Steven Olmschenk | Univ of Michigan-Ann Arbor | James Porto | Physics Laboratory | Atomic Physics Division | | William Osborn | Univ of Connecticut | Robert F. Cook | Materials Science and Engineering Laboratory | Ceramics Division | | Elijah Petersen | Univ of Michigan-Ann Arbor | Bryant C. Nelson | Chemical Science and Technology Laboratory | Biochemical Science Division | | John Pettibone | Univ of Iowa | Jeffrey W. Hudgens | Chemical Science and Technology Laboratory | Chemical and Biochemical Reference Data Division | | Ryan Pirkl | Georgia Inst of Tech | Kate Remley | Electronics and Electrical Engineering Laboratory | Electromagnetics Division | | Wendy Queen | Clemson Univ | Craig Brown | NIST Center for Neutron Research | NIST Center for Neutron Research | | Franklyn Quinlan | Univ of Central Florida | Scott A. Diddams | Physics Laboratory | Time and Frequency Division | | Phillip Rogers | State Univ of NY-Albany | Stephen Semancik | Chemical Science and Technology Laboratory | Process Measurements Division | | Mark Roll | Univ of Michigan-Ann Arbor | Vivek Prabhu | Materials Science and Engineering Laboratory | Polymers Division | | Jason Ryan | Penn State Univ | John Suehle | Electronics and Electrical Engineering Laboratory | Semiconductor Electronics Division | | Germarie Sanchez-Pomales | Univ of Puerto Rico | Michael J. Tarlov | Chemical Science and Technology Laboratory | Process Measurements Division | | Karl Sebby | Montana State Univ | Timothy Quinn | Materials Science and Engineering Laboratory | Materials Reliability Division | | Daniel Siderius | Purdue Univ | Vincent K. Shen | Chemical Science and Technology Laboratory | Chemical and Biochemical Reference Data Division | | Mark Siemens | Univ of Colorado | Steven Cundiff | Physics Laboratory | Quantum Physics Division | | David Simmons | Univ of Texas-Austin | Jack F. Douglas | Materials Science and Engineering Laboratory | Polymers Division | | Daniel Sisan | Univ of Maryland-College Park | Anne Plant | Chemical Science and Technology Laboratory | Biochemical Science Division | | Jeffrey Sowards | Ohio State Univ | Thomas A. Siewert | Materials Science and Engineering Laboratory | Materials Reliability Division | | Mark Strus | Purdue Univ | Robert Keller | Materials Science and Engineering Laboratory | Materials Reliability Division | | Elizabeth Strychalski | Cornell Unix, NY | Laurie E. Locascio | Chemical Science and Technology Laboratory | Biochemical Science Division | | Christopher Tison | Georgia Institute of Technology | Carl Simon | Materials Science and Engineering Laboratory | Polymers Division | | Jessica Torrey | Univ of Wash | Stephanie Hooker | Materials Science and Engineering Laboratory | Materials Reliability Division | | Nasir Uddin | Drexel Univ | Marc Nyden | Building and Fire Research Laboratory | Fire Research Division | | Varun Verna | Univ of Illinois-Urbana | Richard Mirin | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | Joshua Wayment | Univ of Utah | Rebecca Zangmeister | Chemical Science and Technology Laboratory | Process Measurements Division | | Paul Wilkinson | Univ of Calif-Los Angeles | Jon Pratt | Manufacturing Engineering Laboratory | Manufacturing Metrology Division | | Bret Windom | Univ of Florida | Thomas Joseph Bruno | Chemical Science and Technology Laboratory | Thermophysical Properties Division | | Kevin Wright | Univ of Rochester-NY | Kristian P. Helmerson | Physics Laboratory | Atomic Physics Division | | Jonathan Wrubel | Cornell Unix, NY | Kristian P. Helmerson | Physics Laboratory | Atomic Physics Division | | Jennifer Yordy | Medical University South Carolina | Michele Schantz | Chemical Science and Technology Laboratory | Analytical Chemistry Division | | Diana Zeiger | University of California-San Francisco | Sheng Lin-Gibson | Materials Science and Engineering Laboratory | Polymers Division | | Jessica Zimberlin | Univ of Mass-Amherst | Marcus Cicerone | Materials Science and Engineering Laboratory | Polymers Division | | Alexander Zolot | Univ of Colorado-Boulder | Nathan Newbury | Electronics and Electrical Engineering Laboratory | Optoelectronics Division | | | | | | | | Name | University | NISTAdvisor | Laboratory | Division | |---|---|--|---|--| | 2009 NIST-NIH | | | | | | Amit Dutta
Ji Youn Lee
Sang-Min Lee
Seulki Lee | Rensselaer Polytechnic Institute
Seoul Natl Univ
Northwesten University/IL
Gwangju Institute of Science & Tech | Michael Tarlov
Jeescong Hwang
Robert Cook
Marcus Cicerone | Chemical Science and Technology Laboratory Physics Laboratory Materials Science and Engineering Laboratory Materials Science and Engineering Laboratory | Process Measurements Division
Optical Technology Division
Ceramics Division
Polymers Division | Source: NIST Office of Academic Affairs ### APPENDIX G ### SCIENTIFIC AWARDS GIVEN BY THE DEPARTMENT OF COMMERCE AND NIST TO STAFF MEMBERS, 1994-2009 The Gold Medal, established in 1949, is the highest honorary award granted by the Secretary for distinguished performance characterized by extraordinary, notable, or prestigious contributions that impact the mission of the Department and/or one operating unit, and that reflects favorably on the Department. The Allen V. Astin Measurement Science Award, first presented in 1984, is granted for outstanding achievement in the advancement of measurement science or in the delivery of measurement services developed within NIST, in cooperation with other Government agencies or private groups, or in cooperation with international metrology organizations. The Edward Uhler
Condon Award, first presented in 1974, is granted for distinguished achievement in effective written exposition in science or technology. The paper, or series of papers, must represent substantial scientific, technical, or technological merit. The award recognizes the organization and clarity of style that achieve unusually effective exposition and broad treatment of a specific subject area and appeal to readers with a wide range of scientific or technical interests. The Jacob Rabinow Applied Research Award, first presented in 1975, is granted for outstanding achievements in the practical application of the results of scientific engineering research. The Edward Bennet Rosa Award, established in 1964, is granted for outstanding achievement in or contributions to the development of meaningful and significant engineering, scientific, or documentary standards, either within NIST, or in cooperation with other Government agencies or private groups, or in cooperation with international standards organizations. The William P. Slichter Award, first presented in 1992, is granted for outstanding achievements by NIST staff in building or strengthening ties between NIST and industry. The Samuel Wesley Stratton Award, first presented in 1962, is granted for outstanding scientific or engineering achievements in support of NIST objectives. It is customarily associated with distinguished publications in professional journals. This Appendix lists only awards for scientific achievement. Awards granted for administrative excellence or for other accomplishments are not included in this appendix. ### 1994 Gold Medal Awards— James E. Hill, Miles E. Smid, Jack Sugar Group: Theodore D. Doiron, Timothy J. Drapela, Paul D. Hale, Steven E. Mechels, Matt Young Allen V. Astin Measurement Science Award— Group: George W. Burns, Margaret G. Kaeser. Gregory F. Strouse, M. Carroll Croarkin, William F. Guthrie Edward Uhler Condon Award— Charles M. Beck II Jacob Rabinow Applied Research Award— Group: Herbert T. Bandy, Bradley N. Damazo, M. Alkan Donmez, David E. Gilsinn, Mahn H. Hahn, Kari K. Harper, Michael D. Kennedy, Neil D. Wilkin, Wendy A. Wyatt, Kenneth W. Yee Edward Bennett Rosa Award— David C. Stieren William P. Slichter Award—Robert I. Scace Samuel Wesley Stratton Award— Richard D. Leapman, Dale E. Newbury ### 1995 Gold Medal Awards— Donald L. Hunston, Michael R. Rubin, Hratch G. Semerjian, Donald B. Sullivan, Charles R. Tilford Group: Jau Shi Jun, John A. Kramer, William B. Penzes, Fredric E. Scire, E. Clayton Teague, John S. Villarrubia Allen V. Astin Measurement Science Award— E. Clayton Teague Edward Uhler Condon Award— David J. Nesbitt Jacob Rabinow Applied Research Award— Stephen E. Stein Edward Bennett Rosa Award— Group: William D. Dorko, Franklin R. Guenther William P. Slichter Award- Group: David A. Didion, Piotr A. Domanski, Mark A. Kedzierski Samuel Wesley Stratton Award— Eric A. Cornell ### 1996 Gold Medal Awards— Eric A. Cornell, Allen C. Newell, Lyle H. Schwartz Group: Technology Services, Chief Counsel Office for Technology Administration, Office of the Assistant Secretary for Export Enforcement, Office of the Assistant Commissioner for Trademarks Allen V. Astin Measurement Science Award— Group: Eric B. Steel, Shirley Turner, Jennifer R. Verkouteren, Eric S. Windsor Edward Uhler Condon Award— None Jacob Rabinow Applied Research Award— Allen R. Hefner, Jr. Edward Bennett Rosa Award— Group: Walter S. Liggett, Jr., Samuel R. Row III, David J. Pitchure, Jun Feng Song, Theodore V. Vorburger William P. Slichter Award- Steven T. Bushby Samuel Wesley Stratton Award— John M. Martinis ### 1997 Gold Medal Awards— Kevin M. Carr, Robert E. Hebner, Ernest G. Kessler, Rance A. Velapoldi Group: Reactor Operations and Engineering Group Allen V. Astin Measurement Science Award— Billy W. Mangum Edward Uhler Condon Award— Richard L. Kautz Jacob Rabinow Applied Research Award— Nelson N. Hsu Edward Bennett Rosa Award— George W. Burns William P. Slichter Award— Group: Anthony Bur, Kalman Migler, Francis Wang Samuel Wesley Stratton Award— Wen-Li Wu ### 1998 Gold Medal Awards— B. Stephen Carpenter, Harry S. Hertz, Lura J. Powell, Rosalie T. Ruegg, Paul S. Julienne Group: Gene C. Hilton, Kent D. Irwin, John M. Martinis, David A. Wollman Allen V. Astin Measurement Science Award— Judah Levine Edward Uhler Condon Award— None Jacob Rabinow Applied Research Award— Group: Gene C. Hilton, Kent D. Irwin, John M. Martinis, David A. Wollman Edward Bennett Rosa Award— Group: Edgar G. Erber, Dennis S. Everett, Howard H. Harary William P. Slichter Award- Group: W. Gary Mallard, Stephen E. Stein Samuel Wesley Stratton Award— William F. Egelhoff, Jr. Gold Medal Awards—William J. Boettinger Group: Charles J. Glinka, Charles F. Majkrzak Allen V. Astin Measurement Science Award— Group: Nile M Oldham, Mark E. Parker, Robert J. Densock, Raymond M. Hoffman, Richard D. Schneeman Edward Uhler Condon Award— John R. D. Copley Jacob Rabinow Applied Research Award—Group: Ronald G. Dixson, Joseph N. Fu Edward Bennett Rosa Award— Fred L. Walls William P. Slichter Award- Mark O. McLinden Samuel Wesley Stratton Award— Group: David B. Newell, Richard L. Steiner, Edwin R. Williams ### 2000 Gold Medal Awards— Takashi Kashiwagi Group: Victor R. McCrary, John W. Roberts Allen V. Astin Measurement Science Award— John L. Hall Edward Uhler Condon Award— Group: Ali Eichenberger, Mark W. Keller, John M. Martinis, Neil M. Zimmerman Jacob Rabinow Applied Research Award— Group: Edwin R. Fuller, Jr., Andrew R. Roosen, Stephen A. Langer Edward Bennett Rosa Award— Belinda L. Collins William P. Slichter Award- Fernando L. Podio Samuel Wesley Stratton Award— Robert D. McMichael Gold Medal Awards— Group: Elaine B. Barker, Lawrence E. Bassham, William E. Burr, James F. Dray, Jr., Morris J. Dworkin, James G. Foti, James R. Nechvatal, Edward A. Roback, Miles E. Smid, Juan Soto, Jr. Group: Robert A. Clary, Chistopher J. Evans, Michael L. McGlauflin, Manfred L. Osti, Richard L. Rhorer, Charles R. Tilford, Eric P. Whitenton Group: James C. Bergquist, Steven T. Cundiff, Scott A. Diddams, Leo Hollberg, Christopher W. Oates, June Ye Group: Daniel Josell, Thomas P. Moffat, Gery R. Stafford Allen V. Astin Measurement Science Award— Thomas R. Scott Edward Uhler Condon Award— Group: James C. Bergquist, Steven R. Jefferts, David J. Wineland Jacob Rabinow Applied Research Award— None Edward Bennett Rosa Award— R. Michael McCabe William P. Slichter Award— Group: Eric K. Lin, Wen-Li Wu Samuel Wesley Stratton Award— Deborah Shiu-Lan Jin ### 2002 Gold Medal Awards— Leadership: John A. Dagata, Alim A. Faith, Katharine B. Gebbie, William R. Ott, Leslie E. Smith, Jorge R. Urrutia Scientific and Engineering Achievement: Samuel P. Benz, Charles J. Burroughs, Bert M. Coursey, John F. Barkley, Jr., David F. Ferraiolo, David R. Kuhn Allen V. Astin Measurement Science Award— Bert M. Coursey Edward Uhler Condon Award— Charles W. Clark, Keith Burnett, Lu Deng, Edward W. Hagley, William D. Phillips Jacob Rabinow Applied Research Awards— James S. Albus, Stephen B. Balakirsky, Tommy Y. Chang, Tsai Hong, Alberto D. Lacaze, Steven A. Legowik, Karl N. Murphy Edward Bennett Rosa Award— B. Carol Johnson William P. Slichter Award— Edward F. Kelley Samuel Wesley Stratton Award— Chris A. Michaels, Lee J. Richter, Stephan J. Stranick Gold Medal Awards- Leadership: Roger B. Marks, Albert C. Parr, Jack E. Snell Scientific and Engineering Achievement: Richard G. Gann, Ray Radebaugh, William F. Egelhoff, Jr. Allen V. Astin Measurement Science Award— John H. Lehman Edward Uhler Condon Award— None Jacob Rabinow Applied Research Award— Xiao Tang Edward Bennett Rosa Award— David L. Duewer William P. Slichter Award- Kang Lee, Richard D. Schneeman Samuel Wesley Stratton Award— David J. Wineland ### 2004 Gold Medal Awards— Leadership: Robert F. Moore, Charles W. Clark Scientific and Engineering Achievement: Group: Elizabeth A Donley, Thomas P. Heavner, Steven R. Jefferts Daniel A. Fischer Group: James F. Dray, Alan H. Goldfine, Teresa Schwarzhoff, John Wack Allen V. Astin Measurement Science Award— Group: Timothy J. Burns, Brian S. Dutterer, Richard J. Fields, Michael D. Kennedy, Lyle E. Levine, Richard D. Rhorer, Eric P. Whitenton, Howard W. Yoon Edward Uhler Condon Award— Ronald G. Murno Jacob Rabinow Applied Research Award— Group: Paul C Brand, Richard J. Fields, Henry J. Prask Edward Bennett Rosa Award— Group: Douglas H. Blackburn, Steven J. Choquette, Edgar S. Etz, Wilbur S. Hurst William P. Slichter Award- Jonathan W. Martin Samuel Wesley Stratton Award— Paul S. Julienne Gold Medal Awards— Leadership Category: Miral M. Dizar, Sivaraj Shyam-Sunder Group: Joseph A. Falco, Frederick M. Proctor, Keith A. Stouffer, Albert J. Wavering Scientific/Engineering Achievement: Joseph A. Stroscio Group: Jason D. Averill, Howard R. Baum, Richard W. Burkowski, Kathryn M. Butler, Stephen A. Cauffman, Frank L. Davis, W. Stuart Dols, Richard G. Gann, John L. Gross, William L. Grosshandler, Anthony P. Hamins, Valentine G. Junker, Erica D. Kuligowski, James R. Lawson, Hai S. Lew, Therese P. Mcallister, Kevin B. Mcgrattan, Thomas J. Ohlemiller, Richard D. Peacock, William M. Pitts, Kuldeep R. Prasad, Fahim Sadek, Emil Simiu, Robert L. Vettori, Jiann C. Yang, Stephen W. Banovic, Timothy J. Foecke, Frank W. Gayle, William E. Luecke, J. David Mccolskey, James J. Filliben, Matthew Heyman, Verna B. Hines, Michael E. Newman, Craig Burkhardt, Melissa Lieberman, Michael R. Rubin Allen V. Astin Measurement Science Award—Charles E. Gibson Howard W. Yoon Edward Uhler Condon Award—Michael A. Lombardi Jacob Rabinow Applied Research Award— Joseph M. Antonucci Edward Bennett Rosa Award— Katherine E. Sharpless William P. Slichter Award— Mark F. Palmer Samuel Wesley Stratton Award— Jeffery W. Lynn ### 2006 Gold Medal Awards— Leadership Category: Patrick D. Gallagher, James E. Hill, Lisa A. Karam Scientific/Engineering Achievement Category: Jabez J. McClelland Group: David B.
Newell, Richard L. Steiner, Edwin R. Williams Personal and Professional Excellence Category: Dereck R. Orr Allen V. Astin Measurement Science Award—Michele M. Schantz Edward Uhler Condon Award—Richard G. Gann Jacob Rabinow Applied Research Award— Group: James S. Albus, Charles H. Giauque, Adam S. Jacoff, Frederick M. Proctor, William P. Shackleford, Ann Marie Virts, Brian A. Weiss Edward Bennett Rosa Award— Group: Matthew L. Aronoff, Arthur F. Griesser, John V. Messina, Eric D. Simmon William P. Slichter Award— John H. Burnett Samuel Wesley Stratton Award— Jun Ye ### 2007 Gold Medal Awards— Taner Yildirim Group: Samuel P. Benz, Charles J. Burroughs, Paul D. Dresselhaus, Joseph R. Kinard, Jr., Thoms E. Lipe, Jr., Yi-Hua Tang Group: Judah Levine, Thomas E. Parker Group: Joy P. Dunkers, Gale A. Holmes, Walter G. McDonough, Chad R. Snyder, Michael H. Francis, Jeffrey R. Guerrieri, David R. Novotny, Perry F. Wilson Group: William C. Barker, Ramaswamy Chandramouli, Donna F. Dodson, James F. Dray, Jr., Hildegard Ferraiolo, Timothy Grance, Patrick J. Grother, William I. MacGregor, William T. Polk, Teresa Schwarzhoff Allen V. Astin Measurement Science Award— Igor Vayshenker Edward Uhler Condon Award— John W. Ekin Jacob Rabinow Applied Research Award— John E. Kitching Edward Bennett Rosa Award— Group: David J. Evans, Victor Nedzelnitsky, Randall P. Wagner William P. Slichter Award- Group: Steven Grantham, Shannon Hill, Thomas B. Lucatorto, Charles Tarrio, Robert E. Vest Group: Eric K. Lin, Vivek M. Prabhu, Wen-Li Wu Samuel Wesley Stratton Award— Kent D. Irwin ### 2008 Gold Medal Awards- Carl J. Williams Group: John M. Butler, David L. Duewer, Margaret C. Kline, Janette W. Redman, Peter M. Vallone Group: James C. Bergquist, Till P. Rosenband Group: Stephen I. Kerber, Daniel Madrzylowski Group: William E. Burr, David W. Flater, Alan H. Goldfine, Barbara Guttman, Nelson E. Hastings, John M. Kelsey, Sharon J. Laskowski, Mark W. Skall, John P. Wack Group: Stephen Quirolgico, Mudumbai Ranganathan Allen V. Astin Measurement Science Award— Robert R. Zarr Edward Uhler Condon Award— None Jacob Rabinow Applied Research Award— Sae Woo Nam Edward Bennett Rosa Award— Edward Bennett Rosa Award— Edward Bennett William P. Slichter Award—Paul A. Boynton Samuel Wesley Stratton Award—Dietrich G. Leibfried ### 2009 Gold Medal Awards— Paul D. Lett Group: Muhammad Arif, David L. Jacobson Group: Douglas C. Montgomery, Scott W. Rose Group: Steven D. Phillips, Craig M. Shakarji Group: Matthew P. Barrett, Timothy Grance, Christopher S. Johnson, Peter M. Mell, Stephen D. Quinn, Karen A. Scarfone, Murugiah P. Souppaya Allen V. Astin Measurement Science Award—Group: Paul D. Hale, Dylan F. Williams, Andrew M. Dienstfrey, Chih Ming Wang Edward Uhler Condon Award— No Recipients Jacob Rabinow Applied Research Award— Jeffrey W. Gilman Edward Bennett Rosa Award— Steven T. Bushby William P. Slichter Award— No Recipients Samuel Wesley Stratton Award— James C. Bergquist Source: Annual Awards Ceremony programs. Awards file, NIST Archives. ### **APPENDIX H** ### MEMBERS OF THE VISITING COMMITTEE ON ADVANCED TECHNOLOGY The Visiting Committee on Advanced Technology (VCAT) reviews and makes recommendations regarding general policy for the National Institute of Standards and Technology, its organization, its budget, and its programs, within the framework of applicable national policies as set forth by the President and the Congress. The VCAT submits an annual report to the Secretary of Commerce for submission to the Congress. Public Law 56-177, which established the National Bureau of Standards as an agency of the Department of the Treasury on March 3, 1901, directed the creation of a Visiting Committee of five members, "men prominent in the various interests involved," to be appointed by the Secretary of the Treasury, to visit NBS at least annually, and to report to the secretary upon the efficiency of its scientific work and the condition of its equipment. Despite the transfer of NBS to the Department of Commerce and Labor in 1903 and the creation in 1913 of a separate Department of Commerce, the procedures of the Visiting Committee remained unchanged until 1988. The text of Public Law 100-418, August 23, 1988, replaced the earlier Visiting Committee by a Visiting Committee on Advanced Technology (VACT). The new committee, to be appointed by the NIST Director, was to be composed of nine members, at least five of whom were to be from U.S. industry. The VCAT was to meet at least quarterly and to provide an annual report on NIST, to be submitted to Congress through the Secretary of Commerce. Public Law 104-113, March 7, 1996, changed the number of members to 15, at least 10 of whom shall be from United States industry. Public Law 110-69, August 9, 2007, changed the meeting times to twice each year from the previous quarterly requirement. The dates indicate the terms of appointment. | Milton M. Chang
Chairman, New Focus, Inc. | 1996-1999 | |--|-----------| | Steven A. Malone Director, Nebraska Dept. of Agriculture's Weights and Measures Program | 1998-1999 | | Louise K. Goeser General Manager, Whirlpool Corporation | 1998-2000 | | Dr. Duane A. Adams Vice Provost for Research, Carnegie Mellon University | 1999-2001 | | Dr. Conilee G. Kirkpatrick Vice President, HRL Laboratories | 1999-2002 | | Dr. James W. Mitchell Director, Materials; Reliability and Ecology Research Laboratory, Lucent Technologies | 1999-2002 | | Dr. Caroline A. Kovac
Vice President, Services, Applications and Solutions, IBM | 1999-2003 | | Dr. Thomas A. Manuel President, Council for Chemical Research | 1999-2004 | | Dr. F. Raymond Salemme | 1999-2004 | Founder, President, and Chief Scientific Officer, 3-Dimensional Pharmaceuticals, Inc. | Dr. Juan M. Sanchez , VCAT Chair Vice President for Research, University of Texas, Austin | 2000-2005 | |--|-----------| | Dr. April M. Schweighart Product Business Manager, Motorola | 2000-2005 | | Dr. Deborah L. Grubbe
Corporate Director, Safety & Health, DuPont Safety, Health, Environment | 2001-2006 | | Dr. Wayne H. Pitcher, Jr. Technology Management Consultant | 2001-2003 | | Dr. Lloyd R. Harriott Professor, Dept. of Electrical and Computer Engineering, University of Virginia | 2001-2003 | | Dr. Masayoshi Tomizuka Director, Engineering Systems Research Center, University of California, Berkeley | 2001 | | Mr. Gary D. Floss Business Partner, Bluefire Partners | 2002-2007 | | Dr. Richard M. Gross Corporate Vice President of Research and Development, The Dow Chemical Company | 2002-2004 | | Dr. Jennie Hunter-Cevera
President, University of Maryland Biotechnology Institute | 2002-2004 | | Mr. Scott C. Donnelly Senior Vice President, GE Corporate Research and Development, General Electric Company | 2003-2004 | | Lou Ann Heimbrook Vice President of Global Operations, Merek & Co., Inc. | 2003-2009 | | Robert T. Williams Director, Manufacturing Operations Support & Technology, Caterpillar Inc. | 2003-2009 | | Dr. Donald B. Keck Chief Technology Officer, Infotonic Technology Center Inc. and Retired Vice President, Research Director Corning Incorporated | 2004-2006 | | Mr. Edward J. Noha
Chairman Emeritus, CNA Financial Corporation | 2004-2006 | | Mr. Thomas A. Saponas Retired Senior Vice President & Chief Technology Officer, Agilent Technologies | 2004-2006 | | Dr. James W. Serum President, SciTek Ventures | 2004-2009 | | Dr. John F. Cassidy Senior Vice President, Science & Technology, United Technologies Corporation | 2005-2007 | | Dr. E. David Spong Vice Chairman, ChangeAgent, Inc. | 2005-2007 | | Mr. W. Wyatt Starnes Chairman & CEO, SignaCert, Inc. | 2005-2007 | |--|-----------| | Dr. Thomas M. Baer Executive Director, Stanford Photonics Research Center, Stanford University | 2006-2009 | | Dr. Paul A. Fleury Dean of Engineering & Frederick W. Beinecke Professor of Engineering and of Applied Physics, Yale University | 2006-2009 | | Dr. Vinton G. Cerf Vice President and Chief Internet Evangelist, Google | 2007-2009 | | Dr. William Happer, Jr. Department of Physics, Princeton University | 2007 | | Dr. Elsa Reichmanis Director, Materials for Communications Research, Alcatel-Lucent | 2007-2009 | | Dr. Ruzena Bajcsy Professor of Electrical Engineering and Computer Sciences, University of California, Berkeley | 2008-2009 | | Dr. Peter Green Vincent T. and Gloria M. Gorguze Professor of Engineering and Department Chair, Materials Science and Engineering, Professor, Chemical Engineering, Macromolecular Science and Engineering University of Michigan | 2008-2009 | | Dr. Pradeep Khosla Dean, College of Engineering, Philip and Marsha Dowd University Professor, Founding Director, CyLab, Carnegie Mellon University | 2008-2009 | | Dr. Alan I. Taub Executive Director, GM Research and Development, General Motors Corp. | 2008-2009 | **Source:** VCAT web site: http://www.nist.gov/director/vcat/vcatmembership_since1988.htm accessed on July 13th, 2009. ### **APPENDIX I** ### **NIST ACTUAL OBLIGATIONS, 2000-2009** The table below shows the monies spent by NIST during the period FY 2000-FY 2009. Data for the period 1994-1999 may be found in *Responding to National Needs: The National Bureau of Standards Becomes the National Institute of Standards and Technology 1969-1993*, pp. 915-916. Obligations (\$M) | FY 2000 | FY 2001 | FY 2002 | FY 2003 | FY 2004 | FY 2005 | FY 2006 | FY 2007 | FY 2008 | FY
2009* | |---------------|-----------------|-----------------|-----------------|-----------------|------------------|-----------------|-----------------|----------|----------| | Appropriation | s: | | | | | | | | | | Scientific : | and Technical | Research and | Services (STRS | S) (NIST Labs | and Baldrige N | National Qualit | y Program) | | | | 283.5 | 311.0 | 329.8 | 358.8 | 345.4 | 379.3 | 398.6 | 440.8 | 450.0 | 534.2 | | Industrial ' | Technology Se | rvices (Advan | ced Technology | Program (AT | P) and Manufa | acturing Extens | sion Partnershi | p (MEP)) | | | 301.6 | 281.3 | 306.0 | 310.5 | 233.5 | 239.9 | 183.9 | 199.9 | 144.9 | 161.2 | | Constructi | on of Research | Facilities (inc | eludes Congres | sional add-ons |) | | | | | | 200.5 | 37.7 | 70.6 | 77.1 | 58.2 | 87.2 | 168.6 | 51.5 | 138.3 | 231.7 | | Reimbursables | s (funds from s | services render | ed: work for ot | her agencies, o | calibrations, SI | RM sales, etc.) | | | | | 114.8 | 116.6 | 125.8 | 135.0 | 152.7 | 149.0 | 174.9 | 160.2 | 170.3 | 170.9 | | 900.4 | 746.6 | 832.2 | 881.4 | 789.8 | 855.4 | 926.0 | 852.4 | 903.5 | 1,098.0 | ^{*} FY 2009 amounts include obligations relating to funding NIST received in accordance with American Reinvestment and Recovery Act (ARRA). Source: Janet Miller and Suzanne Evans, NIST Budget Division (2000-2005). Tim Day, NIST Budget Division (2006-2009). ### APPENDIX J ### NIST PUBLICATION SERIES This appendix lists the current periodical and nonperiodical NIST publications. Following each publication name is the NIST Research Library call number, the date of inception of the publication under its present name, and a description of the materials therein. See *Responding to National Needs*, Appendix J, for information on predecessor publications. The official descriptions of all current periodical and nonperiodical NIST publications can be found in the NIST Administrative Manual, Subchapter 4.09, Appendix J. ### **Federal Information Processing Standards** JK468.A8A3 No. 0 (1968)-Present Publications in this series collectively constitute the Federal Information Processing Standards Register. The Register serves as the official source of information in the Federal Government regarding standards issued by NIST pursuant to the Federal Property and Administrative Services Act of 1949 as amended, Public Law 89-306 (79 Stat. 1127), and as implemented by Executive Order 11717 (38 FR 12315, dated May 11, 1973) and Part 6 of Title 15 CFR (Code of Federal Regulations). ### Journal of Physical and Chemical Reference Data O199.J65 Vol. 1 (1972)-Present This journal provides critically evaluated physical and chemical property data and critical reviews of measurement techniques. It is not an outlet for original experimental measurements or for review articles of a descriptive or primarily theoretical nature. The National Standard Reference Data System is one source of contributions to the Journal. JPCRD is published by the American Institute of Physics for NIST. ### Journal of Research of the National Institute of Standards and Technology OC1.U524 Vol. 93 no. 6 (1988)-Present Reports NIST research and development in those disciplines of the physical and engineering sciences in which the Institute is active. These include physics, chemistry, engineering, mathematics, and computer sciences. Papers cover a broad range of subjects, with major emphasis on measurement methodology and the basic technology underlying standardization. Also included from time to time are survey articles on topics closely related to the Institute's technical and scientific programs. Issued six times a year. ### Letter Circulars of the National Institute of Standards and Technology QC100.U5775 No. 1135 (1988)-Present Irregularly published lists of NIST publications and references, and general information concerning specific subjects on which popular interest had been demonstrated through inquiries addressed to NIST. ### **National Standard Reference Data Series** QC100.U573 No. 75-120 (2000)-Present Provides quantitative data on the physical and chemical properties of materials, compiled from the world's literature and critically evaluated. Developed under a worldwide program coordinated by NIST under the authority of the National Standard Data Act (Public Law 90-396). ### **NIST Building Science Series** TA435.U58 No. 166 (1989)-Present Disseminates technical information developed at the Institute on building materials, components, systems, and whole structures. The series presents research results, test methods, and performance criteria related to the structural and environmental functions and the durability and safety characteristics of building elements and systems. ### **NIST Grant/Contract Reports** OC100.U6N25 88-551-Present This series reports work of an outside person or organization working under grantor contract from NIST. ### **NIST Handbooks** OC1.U51 No. 146 (1989)-Present Recommended codes of engineering and industrial practice (including safety codes) developed in cooperation with interested industries, professional organizations, and regulatory bodies. ### **NIST Interagency Reports/Internal Reports** QC100.U56 No. 88-3837 (1988)-Present A special series of interim or final reports on work performed by NIST for outside sponsors (both government and non-government). These publications often have a limited or restricted distribution. ### **NIST Monographs** QC100.U556 No. 175 (1990)-Present Major contributions to the technical literature on various subjects related to the Institute's scientific and technical activities. ### **NIST National Construction Safety Team Act Reports** TH443.N35 No. 1. 2005-Present This series comprises the reports of investigations carried out under Public Law 107-231, the technical cause(s) of the building failure investigated; any technical recommendations for changes to or the establishment of evacuation and emergency response procedures; any recommended specific improvements to building standards, codes, and practices; and recommendations for research and other appropriate actions to help prevent future building failures. ### **NIST Special Publications** QC100.U57 No. 750 (1988)-Present These publications include proceedings of conferences sponsored by NIST, NIST annual reports and bibliographies, as well as specialized information in the form of wall charts and pocket cards. Subseries of NIST Special Publications are used for specific areas of specialized information, such as calibration services and computer security. ### **NIST Technical Notes** QC100.U5753 No. 1250 (1988)-Present Studies or reports which are complete in themselves but restrictive in their treatment of a subject. Analogous to monographs but not so comprehensive in scope or definitive in treatment of the subject area. Often serve as a vehicle for final reports of work performed at NIST under the sponsorship of other government agencies. ### **Planning Reports** QC100.U5P5 No. 1 (1980)-Present Internal reports that are shared with government or private agencies. ### **Voluntary Product Standards** QC100.U563 No. 14 (1969)-Present Developed under procedures published by the Department of Commerce in Part 10, Title 15, of the Code of Federal Regulations. The standards establish nationally recognized requirements for products, and provide all concerned interests with a basis for common understanding of the characteristics of the products. NIST administers this program in support of the efforts of private-sector standardizing organizations. **Source:** NIST Information Services Division ### APPENDIX K ### STRUCTURE AND LEADERSHIP OF NIST The NIST administrative structure changed several times during the years 1991-2009. A few changes of note included the creation in April 2007 of two new operating units—the National Center for Neutron Research and the Center for Nanoscale Science and Technology. The former had previously been a division in the Materials Science and Engineering Laboratory. These changes first appeared on the March 2008 organizational chart. Another change was the establishment of the position of Chief Scientist in the Director's Office in June 2006. The first appointment appeared on the January 2007 organizational chart. The Chief Scientist position reported to the Director, and was created to assist the Director and other NIST senior management in identifying specific technical opportunities for NIST, ensuring that NIST continues its legacy of technical excellence, and representing NIST at a high level in technical meetings and in international matters. The Chief Scientist also helped promote and plan science, technology, engineering, and mathematics education programs at NIST. The NIST organization chart of May 2009 is included in this appendix. ### **NIST ORGANIZATIONAL CHART**