

Industry Forum: Monitoring, Diagnostics, and Prognostics for Manufacturing Operations, 8-11 May 2018, Gaithersburg, Maryland

Exercising Standardization of Prognostics and Health Management (PHM) for Manufacturing Industry

May 9, 2018

Junmin Lee Advisor: Byeng D. Youn

Co-authors: Chan Hee Park¹, Giljun Ahn¹, Jun Young Lee², Insun Shin³, Kyusung Jung⁴, Byeng D. Youn¹, Hyun Soo Jang², Daeil Kwon³, Joo-Ho Choi⁴

1 Department of Mechanical and Aerospace Engineering, Seoul National University, Republic of Korea

2 School of Automotive Engineering, Kookmin University, Republic of Korea

3 Department of Mechanical Aerospace and Nuclear Engineering, Ulsan National Institute of Science and Technology, Republic of Korea

4 School of Aerospace and Mechanical Engineering, Korea Aerospace University, Republic of Korea

Industrial Needs for PHM Standard

- Technical Advances \rightarrow Addressed Challenges in PHM
- However, needs for Standard Framework for users without PHM backgrounds
 - Defines general process for PHM development
 - Elaborates how to choose PHM approaches suitable for a target system

Survey for 41 manufacturing companies in Republic of Korea

Proposed Standard Framework for PHM Development

Step 1. Identification of System Types

Transmission module

- Reducer
- Ball screw
- Chain & belt
- Gear
- Bearing

Driver

module

- Motor • LM guide
- Hydraulic supply

Valve

Hydraulic module

Control module

- PLC
- Inverter Switch
- Cable

Power module

- Power supply
- Transformer
- Battery

Mechanical tool

• Electrical tool

Machining module

→ User select a target module/component

Step 2. Collection of System Information

Step 2

- Large amount of both
- Large amount of industrial data only
- Large amount of domain knowledge only
- Lack of both

Steps 3 to 5

- \rightarrow Hybrid method
- \rightarrow Data-driven method
- \rightarrow Physics-based method
- \rightarrow Rule-based method

→ User identify amount of information about the target system

Step 3. Acquisition of Data

Module	Component	Vibration	Thermography	Oil Analysis	Process	Performance	Acoustic	Electrical
					Parameter		Monitoring	Monitoring
Power module	Power supply	D	Р	D	-	-	-	D
	Transformer	D	-	М	-	-	М	М
	Energy storage system	-	М	-	-	-	-	М
Undraulia madula	Cylinder	Р	М	М	-	-	Р	-
nyuraulic mouule	Valve	D	Р	-	D	М	М	-
	PLC	-	-	-	-	-	-	D
Control modulo	Inverter	-	D	-	-	-	-	D
Control module	Switch	-	-	-	-	-	-	D
	Cable	-	-	-	-	D	D	D
	Motor	М	М	-	М	М	D	М
Driver module	LM Guide	D	-	-	-	-	D	-
	Hydraulic supply	М	М	М	М	М	-	-
Transmission module	Reducer	М	-	М	-	М	D	D
	Ball screw	D	D	-	D	-	-	D
	Chain & Belt	Р	-	-	-	-	Р	-
	Gear	М	-	М	-	D	D	D
	Bearing	М	М	М	-	-	М	D
Machining module-	Mechanical tool	М	-	-	М	М	D	D
	Electrical tool	-	-	-	-	-	-	-

M: Mature and commonly applied in industrial applications*

D: Under development and some initial applications*

P: Promising and potential*

(*: ISO 13379-1: CM and D of machines-Data interpretation and diagnostics techniques)

Step 4. Health Feature Extraction

Module	Component	Failure Mode	Measurement Parameters	Health Feature
Power	Power supply	Short	Vibration	TDF [1], FDF [1]
		Damage in dielectric materials	Gas	DGC [2, 3]
	Transformer	Partial discharge	Partial discharge	FDF [4, 5]
module		Mechanical damage	Impedance	R, L, C [6, 7]
			Vibration	TDF, FDF [8-11]
	Energy		Impedance	R, L, C [12]
	storage system	Short	Voltage	TDF [13]
			Vibration	TDF [14]
	Cylinder	Abrasion	Oil	empirical parameters [15]
	Cylinder	Abidition	Temperature	TDF [16]
			Resistance	TDF [16]
Hydraulic module			Vibration	entropy [17], SF [18], empirical parameters [19, 20]
	Valve	Abrasion	AE	TDF [21]
			Sound	SF [18]
			Pressure	PV Diagram [22]
			Velocity	TDF [23]
	PLC	Malfunction	-	-
	Inverter	Short	Voltage	TDF [24, 25]
	Switch	Short	Voltage	TFDF [26]
Control			Gas	TDF [27]
module	Cable	Short	Mechanical properties	hardness [27, 28]
			Voltage	TDF [29], FDF [28, 29]
			Impedance	R, L, C [28, 29]
Driver module			Current	FDF [30, 31], profile [32], TDF [33]
			Voltage	TDF [33], FDF [34], phase [35], residual error [36]
			Electric power	FDF [34, 37]
	Motor	Short	Torque	Profile [35], FDF [38]
			Magnetic flux	FDF [39, 40]
			Vibration	FDF [41]
			Impedance	TDF [36]
			Temperature	TDF [42]

BBBBBBBBBBBBB	6	Failure	Measurement	Health Feature	
wodule	component	Mode	Parameters		
Driver module	IM Guida	Abrasian	Vibration	FDF [43, 44]	
	LIVI Guide	Abrasion	AE	FDF [44]	
			Temperature	TDF [45-47]	
		Leakage	Viscosity	TDF [45]	
	Hydraulic supply		Vibration	TDF [47], FDF [46]	
	,		Flow rate	TDF [48]	
			Pollution level	TDF [45]	
			Vibration	SF [49], FDF [50-54],	
			Magnetic field	TDF [55]	
	Reducer	Abrasion	Sound	TDF [56]	
			AE	energy [57]	
			Electric power	TDF [58]	
		Abrasion	Vibration	FDF [59], backlash [60]	
	Ball screw		Current	empirical parameters [61]	
			Velocity	empirical parameters [61]	
	Chain & Belt	Short	Vibration	TDF, FDF	
Transmission module	Gear	Abrasion	Vibration	empirical parameters [62], TFDF [63], energy [63-65]	
			Magnetic field	TDF [55]	
			Sound	TFDF [64]	
			AE	TDF [66], energy [57]	
	Bearing	Abrasion	Vibration	TDF [67-71], FDF [72, 73]	
			AE	TDF [74, 75]	
			Sound	energy [68, 76, 77]	
			Current	TDF [78], FDF [79], TFDF [80]	
			Frequency	FDF [81]	
			Magnetic field	TDF [82]	
Machining module	Mechanical tool	Abrasion/def ormation	Mechanical force	empirical parameters [83, 84], TDF [85-88]	
			Vibration	TDF [87], FDF [88, 89]	
			Current	TDF [90]	
			Surface roughness	RMS [91, 92]	
			AE	TDF [93, 94], FDF [93, 94]	
			Voltage	TDF [88]	
	Electrical tool	Abrasion/def ormation	Vibration	TDF, FDF	

Step 5. Fault Diagnosis

	Component	Failure Mode	Fault Diagnosis			
Module			Physics-based/Rule-based	Data-driven		
	Power supply	Short	-	Back propagation NN [95], Random forest [96]		
Power module		Damage in dielectric materials	Fuzzy logic [97][98][101], Association rule-mining (ARM) classifier	k-NN [99] Back propagation NN [99]		
	I ransformer	Partial discharge	[105]	ANN [101] Multi-laver SVM [100][101]		
		Mechanical damage		Gene expression programming (GEP) [101]		
	Energy storage system	Short	Discrete event system model [102], Residual generation by Kalman filter (KF) [103], Extended Kalman filter (EKF) [104], Thermal modeling [105]	Functional SVM [106], Correlation assessment [107]		
Hydraulic module	Cylinder	Abrasion	Thermodynamic process modeling [108]	RBF kernel SVM [109], k-NN [109], Back propagation NN [109][110 ANN [111][112], Genetic NN [112]		
	Valve	Abrasion	-	Probabilistic NN [113], NN ensemble [114], ANN [115]		
	PLC	Malfunction	Petri-net [116], State transition diagram [117]	Bayesian network [118]		
Control module	Inverter	Short	Fuzzy logic[119] Residual generation by mixed logical dynamic (MLD) model[120] Current residual vector[121]	Multilayer perceptron network [122] Genetic NN [123]		
	Switch	Short	Residual generation by extended Kalman filter (EKF) [124] Sensor fault model [125]	Back propagation NN[126] Elman NN [126] Fuzzy c-means (FCM) [126]		
	Cable	Short	Electric arc model [127], High-impedance fault model [128]	Self-organizing map algorithm [129]		
Driver module	Motor	Short	Stator and rotor faulty model [130] Swing-angle model [131]	Hebbian-based unsupervised NN [132] RBF kernel SVM [133]		
	LM Guide	Abrasion	Linear rotor bearing kinematic model [134], High frequency resonance technique (HFRT) [135][136]	-		
	Hydraulic supply	Leakage	Frequency response diagram (FRD) [137][138]	Multilayer back propagation NN [139]		
	Reducer	Abrasion	-	Transductive SVM [140]		
Transmission module	Ball screw	Abrasion	Residual generation by Kalman filter (KF) [141]	Self-organizing map algorithm [142] Coefficient of variation [143]		
	Chain & Belt	Short		Kernel SVM [144], ANN [144] Self-adaptive growing NN [145]		
	Gear	Abrasion	Residual generation by autoregressive (AR) filter [146]	Wavelet SVM [147], Multimodal deep support vector classificatio [148], Proximal SVM [149], ANN [149][150], c5.0 [149]		
	Bearing	Abrasion	-	Kernel SVM [151], Wavelet SVM [152], One-classv-SVM [153], ANN [151], Fuzzy lattice classifier [154], Decision tree [154]		
Machining module	Mechanical tool	Abrasion/deformation	Mechanistic force model [155]	Hidden Markov model (HMM) [156]		
	Electrical tool	Abrasion/deformation	If then rule [157]	Recurrent NN [158]		

Step 5. Fault Prognosis

		Failure Mode	Fault Prognosis			
Module	Component		Physics-based/Rule-based	Data-driven		
Power module	Power supply	Short	Equivalent series resistance process modeling [159], Physics-based component aging models [160], Particle Filter [161]	Simple state-based method [162], Gaussian Process Regression [163]		
		Damage in dielectric materials	Perks' Hazard Function [164].			
	Transformer	Partial discharge	Population prediction model [165],	Logistic Regression [167]		
		Mechanical damage	Bayesian Particle Filter [166]			
	Energy storage system	Short	Extended Kalman Filter [168][169], Particle Filter [170][171][172]	Gaussian Process Regression [173]		
	Cylinder	Abrasion	-	Kernel Regression [174]		
Hydraulic module	Valve	Abrasion	Particle Filter [175][176], Kalman Filter [177], Valve fluid flow mode [178], Gamma process model [179]	Neural Network [180]		
	PLC	Malfunction	-	-		
	Inverter	Short	Particle Filter [161]	Gaussian Process Regression [163], Weibull General Renewal Process [181]		
Control module	Switch	Short	Particle Filter[161], Crow-AMSAA model[182]	Gaussian Process Regression [163]		
	Cable	Short	General Path model [183]	A Sliding-window Regression [184], Support Vector Regression [185]		
Driver module	Motor	Short	Particle Filter [186]	Hidden Markov Model [187][188], Recursive Least Square [189], Neural Network [190]		
	LM Guide	Abrasion	-	-		
	Hydraulic supply	Leakage	Kalman Filter [191]	-		
	Reducer	Abrasion	-	-		
	Ball screw	Abrasion	-	-		
	Chain & Belt	Short	-	-		
Transmission module	Gear	Abrasion	Particle Filter [192], Fast crack propagation model [193], Linear Kalman Filter[194], Paris Law [195]	Back Propagation Neural Network [196], Hidden Markov Model [197]		
	Bearing	Abrasion	Kalman Filter [198][199], Particle Filter [200][201], Paris Model [202][203], LP&IH Model [204]	Neural Network [205][206][207][208], Support Vector Regression [209][210][211][212], Recursive Least Square [213], Gaussian Process Regression [214], Hidden Markov Model [215]		
Machining module	Mechanical tool	Abrasion/deformation	Saucer's local linear model [216]	Continuous Hidden Markov Model [217], Mixture of Gaussian Hidden Markov Model [218], Neural Network [219][220], Support Vector Regression [221][222], Bayesian random sample path approach [223]		
Γ	Electrical tool	Abrasion/deformation	-	-		

Step 6. Cost and Benefit Analysis

Conduct Asset Degrader Analysis	Cost of PHM Technology Development & Implementation	The Benefits of the Technology Implementation	Calculate Decision Metrics
 Select critical asset for mission or objective (Machine tools, Inflight tanker) Select top degraders of asset (based on reliability & availability by interview) 	 Perform FMECA to design architecture of the PHM system (sensor, quantity, location) Development Algorithm Development Hardware and Software Qualification & Testing System Integration Integrated data environment Manufacture PHM sensor Installation 	 A literature search Brainstorming sessions with colleagues and other PHM practitioners for determining benefits Interviews with operators and maintainers Etc. 	• " Is it worthy?" • Return on Investment(ROI) $= \frac{Benefit - Cost}{Cost}$ • Payback $= \frac{Cost}{Monthly Benefit}$ • Net Cash Flow etc

"How Engineers Can Conduct Cost-Benefit Analysis for PHM Systems", Jeffrey Banks (2009)

Summary

- 6-step standard framework for PHM development
- Six fragile modules for manufacturing industry
- Reference tables to help to choose PHM approaches suitable for each target system

Acknowledgement

- Survey for Manufacturing Industry / Step 1. Identification of System Types (Kookmin University)
 - Jun Young Lee
 - Hyun Soo Jang (<u>hsjang@kookmin.ac.kr</u>)
- Step 2. Collection of System Information / Step 3. Acquisition of Data / Step 4. Health Feature Extraction (Seoul National University)
 - Junmin Lee, Chan Hee Park, Giljun Ahn
 - Byeng D. Youn (bdyoun@snu.ac.kr)
- Step 5. Fault Diagnosis (Ulsan National Institute of Science and Technology)
 - Insun Shin
 - Daeil Kwon (<u>dkwon@unist.ac.kr</u>)
- Step 5. Fault Prognosis / Step 6. Cost and Benefit Analysis (Korea Aerospace University)
 - Kyusung Jung
 - Joo-Ho Choi (jhchoi@kau.ac.kr)

THANK YOU FOR LISTENING