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I Manufacturing Power

Global Manufacturing Competitiveness Index: Country rankings

(100: High, 10: Low)

china @ GGG 100
United states €= [ 095

South Korea [N 767
United Kingdom 41 GG 755
raiwan g I 72.9
vexico () N 605
canada (+) I 6.7
singapore @ [ 6.2

Ref: Delotte Touche Limited and US Council on Competitiveness, “2016 Global Manufacturing Competitiveness Index”
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I Some Figures of Smart Factory Effort in Korea

Korea Smart Factory Foundation (KOSF) Newly Launched in 2014

20000

Intermediate |

/ 21.5%

Intermediate Il

2.1%
*Elementary
76.4%
‘14 ‘15 ‘16 ‘17 ‘20 ‘22
<Number of smart factories <The level of smart factories in domestic
supported by the KOST Program> companies>
e Number: 18 times from ’14 to ’17  Elementary: ERP with data acqn.

* Intermediate I: RT equipment data acqn.
* Intermediate Il: RT decision making and
control

e Level: Elementary (76.4%)

Ref: ’18.04 MOTIE Smart Factory Korea Foundation “2017 Successful Episodes of Smart Factory”
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I Outcomes out of Smart Factory Effort in Korea

Improvement of Overall Manufacturing Capability
(2800 companies with smart factory, Dec 2017)

Industry 4.0 in Manufacturing
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Ref: S&T Market Report Vol. 56 2018.02 Smart Factory Industry and Market Trend
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I Global Recognition of SNU & OnePredict

Statistical Deep |IPlindustrial Information Prognosis)
analysis learning Solution

Railway Vehicle HVAC System Pulverizer Bogie System

o

-
2014 IEEE PHM 2014 PHM Society 2015 PHM Society 2017 PHMAP 2017 PHM Society
Data Challenge Data Challenge Data Challenge Data Challenge Data Challenge

Awards

PHM Asia Pacific 2017 g Phmsociety ¢ IEEE

“Five times winner of Global PHM Data Challenges

over Various Industrial Sectors”
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I PHM Standard Architecture (Collab. w/ UNIST, KAU, and Kookmin Univ.)

e Standard PHM Approaches e Standard PHM Procedure
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I PHM Standard Architecture

e Standard Architecture & MDP* Table for PHM

Exercising Standardization of Prognostics and Health Management (PHM) for Manufacturing Industry
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http://shrm.snu.ac.kr/index.php?idx=511&hCode=BOARD&bo_idx=5&sfl=&stx=&page=view&pg=1

Part Il

Successful PHM Episodes

Gi.c

Case Study 1
Industry Robots

Case Study 2

Industrial Bearing

Case Study 4

Deep Learning -
Steam/Gas Turbine

Case Study 3

Overhead Hoist
Transport

i




Industrial Bearing
. Rolling-Element Bearing

SCHAEFFLER . <&

SAMSUNG HEAVY INDUSTRIES

Case Study 2

Industrial Bearing




I REB Failure Prognostics (Schaeffler & Samsung Heavy Industry)

GuardiOne

We Predict Things To Come

1. Sensing

,\ih-
Wind Turbine Motor

Industrial Bearings 'b'_ @ ﬁ

(custom order)

X e

ISO 10816-1 (Vibration measured on Non-Rotating Parts)
Spindle Pump & Robots

Compressor
2. Analysis 3. Diagnosis & Prognosis

prognostics
15
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I REB Failure Prognostics (Schaeffler & Samsung Heavy Industry)

G GuardiUne GuardiOne Bearing (Monitoring)

www.BANDICAM.com

Real-time Monitoring of Color Image of Health Trend Monitoring Remaining Life
Health Condition Condition of Health Condition Trend Monitoring
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Steam/Gas Turbine
w/ Journal Bearing

(Data—driven, Deep Learning)

Case Study 4

@)

m/Gas Turbine



I Deep Learning

Input Hidden
layer Layerl

Deep Learning

Autonomous machine learning
algorithms to extract data features
through abstraction
of massive data sets

Random
Images
Popularity of Deep Learning Applications of Deep Learning
- Improved computing power Vision Recognition Voice Recognition

- Enlarged data size
- Advanced DL techniques

Search Trends in Google

100

Relative Index

2012 2014 2016 2018
Year

*R. Zhao et al. (2016), IEEE Tran. Neural Networks and Learning Systems (Submitted); K. Fragkiadaki (2012) Computer Vision-ECCV; Q. V. Le (2012) ICML
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I Deep Learning in PHM

* Data-driven Approach for Feature Learning?

Data } Feature } Feature } Feature
Acquisition Extraction Selection Learning
Based Deep Learning Based
Domain Knowledge Not Required
System Dependency Independent
Feature Representation Deep
Big Data Learning Well-fitted Model

* Deep Learning Based Fault Diagnosis?

Data . .
. } Autonomous Feature Engineering by DL
Acquisition

DL Type Input Data Type Input Data Labels Others

DBN n/a Unsupervised Break through in deep learning (2006)

CNN Vision Data (Images) Supervised Parameter sharing, local connectivity

RNN Sequential Data (Speech) Supervised Storing sequential information

AE n/a Unsupervised Representation learning, dimension

reduction

*H. Oh et al. (2017), IEEE Tran. Industrial Electronics
** R. Zhao et al. (2016), IEEE Tran. Neural Networks and Learning Systems (Submitted)
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I Deep Learning in PHM

* Deep Learning Algorithms?)

Deep Belief Network Recurrent Neural Network
E
W
K
Input g‘ky Output  |nput < >‘ Output
XL -
23 S *5pd”
N
\ OT
- RNN Cell
RBM 1 RBM 3 ‘
Convolutional Neural Network
Input Output

—— 2" |ayer shared weights
| J1 ]

= 15! |ayer shared weights Encoder Decoder

*THE ASIMOV INSTITUTE (http://www.asimovinstitute.org)
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System Health &
Risk Management

I Deep Learning for Steam Turbine

* GuardiOne Turbine-Deep

1. Sensing 2. Analysis

Omni-directional Regeneration (ODR)
\ A Gap Sensor

(Gap)
Housing
Shaft

‘ }
Vibration

Vibration Data Acquisition Vib-Imaging Technique

3. Scale-free Turbine Prognostics (Fully validated, 92% prediction accuracy)

Fault Log Deep Learning Result

# Status # Norm. Rubb. Misalign. Oil Whirl

#1 Normal #1 0.975 0.010 0.014 0.006

#2 Normal #2 0.991 0.005 0.004 0.000

VsS.

#3 Normal #3 0.482 0.288 0.186 0.042

#4 Normal #4 0.828 0.135 0.034 0.003
= - #5 Rubbing #5 0.037 0.958 0.005 0.001
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Closing Remarks
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I Industrial Information Prognosis (lIP)

Industrial Information Prognosis (lIP)

Business: Raw Material = Product

RaV\{ Product
Material
‘A .
. U)X |
Industrial - Industrial
Raw Data

Information
LJIC
s: Industrial Data = Information

“Industrial Information is the one with industrial value, which includes availability,
qguality, productivity, energy efficiency, safety, etc.”
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I Issues in PHM

Missing, Unsynchronized, Noisy Data

Lack of Labeled Data
D Class Imbalance, Labeling Quality

Lack of Resources
PHM Experts, Budgets

Cyber Security & Data Ownership

Protection of Cloud Network Information

oY%

0l
AD aih gin
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THANK YOU
FOR LISTENING

ANY QUESTION?
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