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Predictive Science 
Components: All involve uncertainty  
•  Experiments 

•  Models 

•  Simulations 

•  Experimental results are believed by everyone, except for the person who ran the 
experiment, source anonymous, quoted by Max Gunzburger, Florida State University.  

•  Essentially, all models are wrong, but some are useful, George E.P. Box, Industrial 
Statistician. 

•  Computational results are believed by no one, except the person who wrote the code, 
source anonymous, quoted by Max Gunzburger, Florida State University. 

•  I have always done uncertainty quantification.  The difference now is that it is 
capitalized. Bill Browning, Applied Mathematics Incorporated. 



Example: PZT-Based Actuators and Sensors 
PZT: Robobee -- Rob Wood, Harvard University Applications and Challenges: 

• Autonomous crop pollination 

• Search and rescue 

• Surveillance 

• Weather and climate mapping 

• Nonlinear and hysteretic dynamics 

Macro-Fiber Composites (MFC) 

Applications and Challenges: 
• Deployment/control of membrane mirrors 
• Shape modification, flow control 
•  kHz to MHz response rates 
• Nonlinear and hysteretic dynamics 

Energy Harvesting: Several platforms 
Electric Field  
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Multiscale Homogenized Energy Model (HEM) Development 

Example: PZT-Based Macro-Fiber Composite 

Collaboration: Billy Oates (FSU), 
Zhengzheng Hu (NCSU) 



Example: Viscoelastic Material Models 

Material Behavior: Significant rate dependence 

Finite-Deformation Model: Nonlinear non-affine 
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Parameters: Nonlinear non-affine model 

q = [Ge, Gc,λmax, η,β, γ]

q = [η,β, γ] , Fixed hyperelastic parameters

Gc: Crosslink network modulus

Ge: Plateau modulus

λmax: Maximum stretch of effective affine tube

Collaboration: Billy Oates, Paul Miles, Michael 
Hays (FSU) 



Example: X-Ray Crystallography 
Properties: 

•  Reveal relative positions of atoms, their 
atomic number, types of chemical bonds, etc.. 

•  Applications: determination of of DNA 
structure, design of pharmaceuticals, etc.. 

Objective: Use Bayesian analysis to quantify 
uncertainty associated with Rietveld model and 
background. 

Collaboration: C. Fancher, 
J. Jones, Z. Han, B. Reich, 
A. Wilson, I. Levin, K. Page 



Steps in Uncertainty Quantification 

Note: Uncertainty quantification requires synergy between statistics, mathematics 
and application area.  



Bayesian Model Calibration 

Bayesian Model Calibration:  

•  Parameters considered to be random 
variables with associated densities.  

Problem:  

•  Often requires high dimensional integration; 

o   e.g., p = 18 for MFC model 

o  p = thousands to millions for neutron transport 
models for nuclear power plant design 

Strategies:  

•  Sampling methods (Metropolis algorithms) 

•  Sparse grid quadrature techniques 

π(q|υ) = π(υ|q)π0(q)�
Rp π(υ|q)π0(q)dq



Delayed Rejection Adaptive Metropolis (DRAM) 
Proposal Distribution Algorithm: [Haario et al., 2006] 

J(q∗|qk−1) = N(qk−1, V )
1. Determine q0 = argmin
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(f) Accept q∗ with probability α

4. Update covariance as samples accepted 



Bayesian Model Calibration for Macro-Fiber Composite 

Experimental Structure: 

Beam Model: 
Capacitor probe 

MFC Patch 

Representative DRAM Results: (18 parameters, 32 states) 
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Correlated Residuals 



Bayesian Model Calibration for Viscoelastic Model 

Full Parameter Set: Nonlinear non-affine model 

q = [Ge, Gc,λmax, η,β, γ]

Note:  

•  Several parameter pairs appear non-identifiable in the sense they are not uniquely 
determined by the response. 



Bayesian Model Calibration for Viscoelastic Model 

Reduced Parameter Set: 

q = [η,β, γ] , Fixed hyperelastic parameters

Goal:  

•  Use global sensitivity analysis or parameter subset selection to determine 
nonidentifiable or noninfluential parameters before Bayesian analysis. 

Question:  

•  What does Bayesian analysis tell us about material properties? 
Moduli and stretch parameters not informed by data.  Fix at 
values inferred for low stretch rate for validation at higher rates. 



Monte Carlo Construction of Prediction Intervals 
Advantages: 

•  No additional cost for DRAM if interpolating. 

•  Does not require independent parameters. 

•  Does not require Gaussian or uniform 
densities. 

•  Incorporates both parameter and 
measurement uncertainties. 

Samples from Chain Data, Credible Intervals and 
Prediction Intervals 

Non-Gaussian Credible and 
Prediction Intervals 

Disadvantages: 

•  Slow convergence rate  

•  100-fold more evaluations required 
to gain additional place of accuracy. 

•  Computationally prohibitive for many 
PDE and often requires surrogates or 
advanced numerical techniques … 
Talk with Max Gunzburger. 

O‘ (1/
√
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Prediction Intervals for the Viscoelastic Model 
Linear Non-Affine Model: 

Nonlinear Non-Affine Model: 

dλ

dt
= 6.7× 10

−5
Hz

dλ

dt
= 0.335 Hz

dλ

dt
= 0.67 Hz



Current Directions and Challenges: 

•  How do we combine heterogeneous data – e.g., strain and polarization? 

o  Bayesian melding to modify priors and likelihoods … 

•  How do we combine data from disparate spatial/temporal scales – e.g., atomistic 
and continuum?  

o  Bayesian networks and trees … 

Bayesian Calibration Using Heterogeneous Multiscale Data 

Atomistic Data 

•  DFT simulations: W Oates 

•  Diffraction measurements: 
J. Jones  

Continuum Data 
•  Polarization 
•  Strain 

Goal: Calibrate continuum model DFT Informed Continuum 
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Bayesian Calibration Using Heterogeneous Multiscale Data 

Atomistic Data 

•  DFT simulations: W Oates 

•  Diffraction measurements: 
J. Jones  

Continuum Data 
•  Polarization 
•  Strain 

Goal: Calibrate continuum model DFT Informed Continuum 



Steps in Uncertainty Quantification 

Parameter Selection: Required for models with unidentifiable or noninfluential inputs 

•  e.g., Nuclear neutron transport codes can have 100,000 inputs 



Global Sensitivity Analysis 
Example: Portfolio model" Take!

Note:!
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Q2 ∼ N(0,σ2
2) with σ2 = 3

Q1 ∼ N(0,σ2
1) with σ1 = 1

c1 = 2 , c2 = 1

Local Sensitivities:!

Y = c1Q1 + c2Q2

Solutions:"
•  Response correlation"
•  Variance methods"
•  Random sampling of local sensitivities"

• Q1 and Q2 represent hedged porfolios
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Variance-Based Methods 
Sobol Representation:!
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Notation:"

Analogy: Taylor or Fourier 
series"

Analogy: !
•  Derivatives for Taylor"
•  Orthogonality of sines 

and cosines for Fourier"
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Variance-Based Methods 
Variances:! Sobol Indices:!

Statistical Interpretation: !
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Morris Screening 

Example: Consider uniformly distributed parameters on !
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Elementary Effect:!

Global Sensitivity Measures: r samples"
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SIR Disease Example 
SIR Model:"

dS

dt
= δN − δS − γkIS , S(0) = S0

dI

dt
= γkIS − (r + δ)I , I(0) = I0

dR

dt
= rI − δR , R(0) = R0

Susceptible"

Infectious"

Recovered"

Note:"Parameter set q = [γ, k, r, δ] is not identifiable

Assumed Parameter Distribution:"

γ ∼ U(0, 1) , k ∼ Beta(α,β) , r ∼ U(0, 1) , δ ∼ U(0, 1)

Response:"

y =

� 5

0
R(t, q)dt

Infection 
Coefficient"

Interaction 
Coefficient"

Recovery 
Rate"

Birth/death 
Rate"



SIR Disease Example 
Global Sensitivity Measures:"

γ k r δ

Si 0.0997 0.0312 0.7901 0.1750
STi −0.0637 −0.0541 0.5634 0.2029

µ∗
i (×103) 0.2532 0.2812 2.0184 1.2328

σi (×103) 0.9539 1.6245 6.6748 3.9886

Sobol"

Morris"

Result:"Densities for R(tf ) at tf = 5

Note: Can fix non-influential 
parameters"



Current Directions and Challenges: 

•  How do we combine heterogeneous responses – e.g., strain and polarization? 

o  One Approach: Pseudo-response 

•  How do we combine responses from disparate spatial/temporal scales – e.g., 
atomistic and continuum?  

Sensitivity Analysis Using Heterogeneous Multiscale Data 

Atomistic Responses 

•  DFT simulations 

Continuum Responses 
•  Polarization 
•  Strain 

y = ω1y
s + ω2y

p , ω1,ω2 Random

ys
yp



Concluding Remarks 
Notes: 

•  Model calibration, model selection, uncertainty 
propagation and experimental design are natural in a 
Bayesian framework. 

•  Parameter selection is critical to isolate identifiable 
and influential parameters. 

•  Due to complexity of models, surrogate models are 
required for many applications. 

•  Research issues and challenges for SA and UQ 

o  Data and model fusion for heterogeneous data; 
e.g., strain, polarization and energy. 

o  Data and model fusion across very disparate 
spatial and temporal scales; e.g., atomistic to 
macroscopic. 

•  Quantification of model discrepancy or bias is difficult 
but critical, especially when extrapolating. 

•  Prediction is very difficult, especially if it’s about the 
future, Niels Bohr (or Yogi Berra). 


