IoTAB Smart Traffic and Transit Technologies Subgroup

Draft Outline

Technology Overview

- o Infrastructure hardware, software, connectivity, edge computing
 - Hardware
 - Traffic signals and controller assemblies,
 - Roadside units,
 - Traffic signal cameras and sensors that can detect near collisions to impact signal timing (ATSPM – Advanced Traffic Signal Performance Measure)
 - EV charging equipment (i.e., Level 1, Level 2, DC Fast Charging);
 - LIDAR/Camera sensors
 - Solar panels mounted on poles.
 - Parking sensors
 - Road maintenance sensors
 - Vehicle mounted sensors that also measure road conditions.
 - Off road equipment that interacts with these various sensors
 - Drones
 - (Planes/Airports?)
 - Systems security, intelligence, monitoring, management, maintenance
 - Software route planning cars and buses
 - Connectivity- Cellular Vehicle to Everything (C-V2X), 5G, autonomous navigation (both edge and cloud)
 - Edge computing- self-driving vehicles-last mile delivery
 - Tied into the infrastructure (linkage to the IoT AB Smart and Critical Infrastructure)
 - Artificial intelligence

• Opportunities and benefits (for personas)

- Safety applications/use cases- technology can save lives
 - emergency vehicle traffic pre-emption,
 - entering school or work zone,
 - pedestrian crossing ahead;
 - improving road safety;
 - protecting Vulnerable Road Users
 - Vision zero;
- Support Function
 - Package and Food Delivery
- Congestion mitigation/environmental benefits
 - orderly flow of traffic.
 - limit traffic to reduce congestion (congestion/smart toll pricing)
 - increase productivity (less time spent in traffic)
- o Commerce/trade -
 - want organizations to thrive when developing these devices.
 - incentivize companies to develop systems for common good and use;

 ability to develop systems for companies outside the US; increase harmonization with other countries

• Barriers (faced by personas for IoT implementation)

- Policy/regulation/practices -
 - need clarity with respect to privacy
 - Notice when PII captured;
 - transparency for the individual;
 - lack of clarity on what is collected can violate expectations;
 - important to minimize PII to limit risk to individuals;
 - organizations need to be clear on retention, not over-retain, delete data when no longer needed;
 - need transparency on what is collected, use of collected data, and retention of data
 - Linkage back to privacy subgroup
 - Policy on use of traffic camera data for accident investigation, assignment of insurance claim
 - Policies and regulations for self-driving automobiles/drones
 - Liability concerns when self-driving automobiles are hacked.
 - Liability concerns if drone delivers the wrong medicine
- Accessibility and inclusion
 - Benefits not necessarily available to everybody;
 - smarter the technology requires more presentation of information to users/general public and can't make assumptions about what is available;
 - EV charging not available in all areas
- Education/Training and resources -
 - For the highway engineers, learning curve for communication/smart transportation technologies; not traditionally part of highway engineers background;
 - operation of smart traffic technology will require more support and training; need to design so that someone with a fourth-grade education can operate it
 - education and awareness for users needed especially if a traffic system runs through multiple jurisdictions
 - some state DOTs have very few staff
 - Workforce development issues that are unique to this area
- Interoperability versus IP
 - developed technology needs to be protected and not stolen; don't want to lose control when manufactured by others;
 - important for IP for research and manufacturing to be linked together.
 - interoperability challenge when dealing with different jurisdictions
- Cybersecurity Risk–
 - Connected devices used as gateway devices for other things.
 - Physical security- traffic cabinets can be opened with a single key
 - Organizations that don't have a robust cybersecurity approach
 - Need linkage back to Security Sub-team.
- Funding -

- public, public/private partnerships, private –
- states have to submit plans to receive EV infrastructure funding;
- Potential industry experts we have to speak with (Specific speakers TBD)-
 - Select State DOTs;
 - representative from the Vision Zero network;
 - o representative from the Highway engineering exchange program;
 - Australia smart cities expert,
 - Representative from a research firm that can talk about grid impacts with increased EVs (NREL, McKinsey, World Resources Institute).
 - Someone that can speak to security risks specific to transportation (future looking-especially with the increase in autonomous vehicles).
- **Potential industry references we should consider** industry papers, case studies, other countries, etc.-
 - Federal Agencies National Highway Transportation Safety Board; US DOT (work related to intelligent transportation systems- pilots in NYC, Tampa, and Wyoming:<u>https://www.its.dot.gov/pilots/</u>)
 - State and local jurisdictions: Georgia (Fulton Country School District), Utah, California
 - Smart City examples: Columbus, NYC, Singapore
 - Studies on the growth of the EV market and how it impacts the grid (possibly NREL, McKinsey, World Resources Institute).
- Standards Organizations in this space- NEMA, SAE, IEEE