LICENSING OPPORTUNITY: SMART MIRROR

DESCRIPTION

Problem

The design overcomes the limitations of allowing simultaneous power measurement during laser use. The Smart Mirror's non-thermal approach reduces measurement time, allowing for better sensing of rapid changes in laser power.

Invention

The Smart Mirror is a device that accurately measures the power of laser sources without disturbing the laser beam. This is a promising technology for accurate monitoring of output power in industrial lasers that allows power measurement during the laser's performance of its routine operations. Such high-accuracy, non-exclusive power monitoring has not been previously possible. The novelty is in a radically different approach where the laser power is determined by measuring the force of the light as it reflects from a mirror. This device operates across a power range of 25W to 500W.

BENEFITS

Potential Commercial Applications

Small, robust package for use on the factory floor.

Competitive Advantage

- This device is a miniaturized (less than 5 cm on a side), mirrored force sensor that combines several key elements to make the sensor smaller, faster, and more sensitive to force.
- Highly accurate measurements that can be made in real time.
- Can be calibrated in-house using standard reference masses.
- Does not absorb laser light.

A mounted pair of springs with high ref ectivity mirror designed for 1070 nm laser incident at 45 degrees.

Contact: licensing@nist.gov

Meet Paul Williams, Ph.D.,

Physicist, National Institute of Standards and Technology

What If a Mirror Could Measure the Power of the Light It Reflects?

Three Ways to Measure Laser Power

Technique	Sensor	Quantity
Thermal Power Meter	Laser Absorber	Temperature
Semiconductor (Photodiode)	Laser Photodiode	Current / voltage
Radiation Pressure Power Meter	Laser	Force

Smart Mirror

Radiation-Pressure-Based Power Sensor

Smart Mirror: Sensor Element

Application Calibrated Laser Source

Application
Laser-based
Manufacturing:
Real-time accurate
laser power

The "Smart Mirror": Non-invasively measuring laser power

Mechanisms:

- Si-wafer mirror/spring suspension
- Interferometric (or capacitive) sensing

Current Specifications:

- Power range: **25-500 W**
- Uncertainty: **3.2** % (k=2)
- Noise equivalent power: 260 mW/√Hz
- Vibration isolation: 15 dB
- Technology readiness level: 4

Reference:

A.B. Artusio-Glimpse, et al., *Optics Express*, **28**, 13310 (2020).

LICENSING OPPORTUNITY

THE SMART MIRROR

THE TECHNOLOGY

U.S. Patent Number 10,234,309

The Smart Mirror is a device that accurately measures the power of laser sources without disturbing the laser beam. This is a promising technology for accurate monitoring of output power in industrial lasers that allows power measurement during the laser's performance of its routine operations. Such high-accuracy, non-exclusive power monitoring has not been previously possible. The novelty is in a radically different approach where the laser power is determined by measuring the force of the light as it reflects from a mirror. This device operates across a power range of 25W to 500W.

SMALLER

FASTER

HIGHLY ACCURATE

This device is a miniaturized (less than 5 cm on a side), mirrored, force sensor that combines several key elements to make the sensor smaller, faster, and more sensitive to force

The design overcomes the limitations of allowing simultaneous power measurement during laser use.

The non-thermal approach of the Smart Mirror reduces measurement time, which allows for better sensing of rapid changes in laser power.

BENEFITS

Highly accurate measurements that can be made in real time

Small, robust package for use on factory floor

Can be calibrated in-house using standard reference masses

Does not absorb laser light

Photograph of a mounted pair of springs with high reflectivity mirror designed for 1070 nm laser incident at 45 degrees.

CONTACT

Technology Partnerships Office (TPO)
National Institute of Standards and
Technology Gaithersburg, MD 20899
TPO@NIST.GOV