# Certifying Local-Realism Violation 

Manny<br>NIST<br>2014

Collaborators: K. Coakley, S. Glancy, S. W. Nam, Y. Zhang.

## Overview

## Test Configurations and Models

Bell Functions

Anti-Local-Realism Certificates

Applications to Experiments

Recommendations

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):


B

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):



## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):



## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):


B

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):


B

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):


B

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):


B

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):


B

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):

A $\quad$| A | 00 | 01 | 10 | 11 | B |
| :---: | :---: | :---: | :---: | :---: | :---: |
| n | 0 | 1 | 0 | 0 | n |
| n | 1 | 0 | 0 | 0 | e |
| e | 0 | 0 | 0 | 1 | n |
| e | 0 | 0 | 1 | 0 | e |

## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):

A $\quad$| $A$ | 00 | 01 | 10 | 11 | $B$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | 0 | 1 | 0 | 0 | $n$ |
| $n$ | 1 | 0 | 0 | 0 | $e$ |
| $e$ | 0 | 0 | 0 | 1 | $n$ |
| $e$ | 0 | 0 | 1 | 0 | $e$ |

- Compatibility graph:



## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):

A $\quad$| $A$ | 00 | 01 | 10 | 11 | $B$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | 0 | 1 | 0 | 0 | $n$ |
| $n$ | 1 | 0 | 0 | 0 | $e$ |
| $e$ | 0 | 0 | 0 | 1 | $n$ |
| $e$ | 0 | 0 | 1 | 0 | $e$ |

- Compatibility graph:

- Trial record: Outcomes and settings $\left(o_{A}, o_{B}, s_{A}, s_{B}\right)$.


## Parties, Settings and Measurements

- $(2,2,2)$ (parties, settings choices, measurement outcomes):

A $\quad$| $A$ | 00 | 01 | 10 | 11 | $B$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | 0 | 1 | 0 | 0 | $n$ |
| $n$ | 1 | 0 | 0 | 0 | $e$ |
| $e$ | 0 | 0 | 0 | 1 | $n$ |
| $e$ | 0 | 0 | 1 | 0 | $e$ |

- Compatibility graph:

- Trial record: Outcomes and settings $\left(o_{A}, o_{B}, s_{A}, s_{B}\right)$.
- Trial model: $\operatorname{Prob}\left(O_{A}=o_{A}, O_{B}=o_{B}, S_{A}=s_{B}, S_{B}=s_{B} \mid\right.$ past $)$.


## Example I




## Examples II,III




## Examples II,III



## Examples II,III



## Examples II,III



## Examples II,III



## Examples II,III



## Examples II,III



The PR Box, Popescu\&Rohrlich(1997) [8].

## The $2 k$-cycle


"chained Bell inequalities", Braunstein(1990) [1], application in Colbeck\&Pironio(2011) [3]

## The $2 k$-cycle


"chained Bell inequalities", Braunstein(1990) [1], application in Colbeck\&Pironio(2011) [3]

## General Measurement-Outcome Models

- One Trial:
"Choose" measurement settings $\rightarrow$ measure $\rightarrow$ record outcomes.


## General Measurement-Outcome Models

- One Trial:
"Choose" measurement settings $\rightarrow$ measure $\rightarrow$ record outcomes.
- Common configuration parameters: $\left(N_{P}, N_{S}, N_{O}\right)$, where
$N_{P}$ : Number of "parties".
$N_{S}$ : Number of measurement settings at each party.
$N_{O}$ : Number of possible outcomes for each setting.


## General Measurement-Outcome Models

- One Trial:
"Choose" measurement settings $\rightarrow$ measure $\rightarrow$ record outcomes.
- Common configuration parameters: $\left(N_{P}, N_{S}, N_{O}\right)$, where
$N_{P}$ : Number of "parties".
$N_{S}$ : Number of measurement settings at each party.
$N_{O}$ : Number of possible outcomes for each setting.
- Universal pre-trial model.

$$
\begin{array}{ll}
S=\left(S_{A}, S_{B}, \ldots\right): & \text { settings random variables, } \\
O=\left(O_{A}, O_{B}, \ldots\right): & \text { outcome random variables, }
\end{array}
$$

with probability distribution:

$$
\mu(o, s)=\operatorname{Prob}(O=o, S=s \mid \text { past })
$$

## General Measurement-Outcome Models

- One Trial:
"Choose" measurement settings $\rightarrow$ measure $\rightarrow$ record outcomes.
- Common configuration parameters: $\left(N_{P}, N_{S}, N_{O}\right)$, where
$N_{P}$ : Number of "parties".
$N_{S}$ : Number of measurement settings at each party.
$N_{O}$ : Number of possible outcomes for each setting.
- Universal pre-trial model.

$$
\begin{array}{ll}
S=\left(S_{A}, S_{B}, \ldots\right): & \text { settings random variables, } \\
O=\left(O_{A}, O_{B}, \ldots\right): & \text { outcome random variables, }
\end{array}
$$

with probability distribution:

$$
\mu(o, s)=\operatorname{Prob}(O=o, S=s \mid \text { past })
$$

- Possible constraints:
- Remote context independence/no-signaling/consistent marginals.
- Remote outcome independence.
- Definiteness given the "complete state".


## Model Constraints to Consider



Cl . Remote context independence.

$$
\mu\left(o_{X} \mid s_{X}, s_{\neg X}\right)=\mu\left(o_{X} \mid s_{X}\right)
$$

## Model Constraints to Consider



Cl . Remote context independence.

$$
\mu\left(o_{X} \mid s_{X}, s_{\neg} X\right)=\mu\left(o_{X} \mid s_{X}\right)
$$

OI. Remote outcome independence.

$$
\mu\left(o_{X} \mid o_{\neg X}, s\right)=\mu\left(o_{X} \mid s\right)
$$

## Model Constraints to Consider



Cl . Remote context independence.

$$
\mu\left(o_{X} \mid s_{X}, s_{\neg X}\right)=\mu\left(o_{X} \mid s_{X}\right)
$$

OI. Remote outcome independence.

$$
\mu\left(o_{X} \mid o_{\neg X}, s\right)=\mu\left(o_{X} \mid s\right)
$$

D. Definiteness given "complete state" $f$ and settings.

$$
o=\left(o_{X}\right)_{X}=\left(f_{X}(s)\right)_{X}
$$

## Model Constraints to Consider



Cl . Remote context independence.

$$
\mu\left(o_{X} \mid s_{X}, s_{\neg X}\right)=\mu\left(o_{X} \mid s_{X}\right)
$$

OI. Remote outcome independence.

$$
\mu\left(o_{X} \mid o_{\neg X}, s\right)=\mu\left(o_{X} \mid s\right)
$$

D. Definiteness given "complete state" $f$ and settings.

$$
o=\left(o_{X}\right)_{X}=\left(f_{X}(s)\right)_{X}
$$

LR. Local realism, $\mathrm{Cl} \wedge(\mathrm{OI} \vee \mathrm{D}) \wedge \mu(\lambda)$.

$$
\mu(o, s)=\sum_{f: \text { for all } X f_{X}\left(s_{X}\right)=o_{X}} \mu(f) \mu(s)
$$

## Ideal Test



## Ideal Test



From $\mathbf{x}=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ compute $C_{\neg \mathcal{P}}(x)$, a certificate for $\neg \mathcal{P}$.
...where $\mathcal{P}$ is an "unwanted" property.

## Ideal Test



From $\mathbf{x}=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ compute $C_{\neg \mathcal{P}}(x)$, a certificate for $\neg \mathcal{P}$. ...where $\mathcal{P}$ is an "unwanted" property.

- Foundations: Constrain explanatory models.


## Ideal Test



From $\mathbf{x}=\left(x_{1}, \ldots, x_{n}, \ldots\right)$ compute $C_{\neg \mathcal{P}}(x)$, a certificate for $\neg \mathcal{P}$. ...where $\mathcal{P}$ is an "unwanted" property.

- Foundations: Constrain explanatory models.
- Protocols: Constrain hacker's access.


## Common Photon-Based Trials



## Recommendations

- Commit to deterministic trials. (W.o.l.g!)


## Recommendations

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".


## Recommendations

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".
- Plan for generation of training data and confirmatory experiments.
- Compute certificates and gain rate per setting bit.
- Report: Certificate values, gain rates and model assumptions.


## $(2,2, \mathcal{O})$-Bell inequalities

LR:
Outcome space $\mathcal{O}$


## $(2,2, \mathcal{O})$-Bell inequalities

LR:
Outcome space $\mathcal{O}$


## $(2,2, \mathcal{O})$-Bell inequalities

LR:

## Outcome space $\mathcal{O}$



$$
d_{n e}+d_{n n}+d_{e n} \geq d_{e e} \quad \Rightarrow \quad\left\langle d_{n e}\right\rangle_{\mu}+\left\langle d_{n n}\right\rangle_{\mu}+\left\langle d_{e n}\right\rangle_{\mu} \geq\left\langle d_{e e}\right\rangle_{\mu}
$$

## $(2,2, \mathcal{O})$-Bell inequalities

LR:

## Outcome space $\mathcal{O}$



$$
d_{n e}+d_{n n}+d_{e n} \geq d_{e e} \quad \Rightarrow \quad\left\langle d_{n e}\right\rangle_{\mu}+\left\langle d_{n n}\right\rangle_{\mu}+\left\langle d_{e n}\right\rangle_{\mu} \geq\left\langle d_{e e}\right\rangle_{\mu}
$$

Settings independent of state $\quad \Rightarrow \quad\left\langle d_{a b}\right\rangle=\left\langle d_{a b} \mid s=(a, b)\right\rangle$.

## $(2,2, \mathcal{O})$-Bell inequalities

LR:

## Outcome space $\mathcal{O}$



$$
d_{n e}+d_{n n}+d_{e n} \geq d_{e e} \quad \Rightarrow \quad\left\langle d_{n e}\right\rangle_{\mu}+\left\langle d_{n n}\right\rangle_{\mu}+\left\langle d_{e n}\right\rangle_{\mu} \geq\left\langle d_{e e}\right\rangle_{\mu}
$$

Settings independent of state $\quad \Rightarrow \quad\left\langle d_{a b}\right\rangle=\left\langle d_{a b} \mid s=(a, b)\right\rangle$.
Example. $\mathcal{O}=\{0,1\}: \begin{cases}d(a, b)=|b-a| & \rightarrow \mathrm{CHSH} \text { variant }, \\ d(a, b)=\max (0, b-a) & \rightarrow \mathrm{CH} \text { variant } .\end{cases}$

Timetag analysis (NIST 2013), Kurzynski\&Kaszlikowsi(2013) [6]

## Bell Functions

## Assumptions and context:

- RCI must hold for each trial. RCI :

Remote context independence with control over settings dist. p(s).

$$
\mu\left(o_{X} \mid s\right)=\mu\left(o_{X} \mid s_{X}\right), \quad \mu(o, s)=\mu(o \mid s) p(s)
$$

## Bell Functions

## Assumptions and context:

- RCI must hold for each trial. RCI :

Remote context independence with control over settings dist. $p(s)$.

$$
\mu\left(o_{X} \mid s\right)=\mu\left(o_{X} \mid s_{X}\right), \quad \mu(o, s)=\mu(o \mid s) p(s)
$$

- If LRI, then abandon ship. LRI:
$L R$ with independent full-support settings distribution.

$$
\mu(o, s)=\mu\left(f: \text { for all } X, f_{X, s_{X}}=o_{X}\right) p(s), \quad p(s)>0
$$

## Bell Functions

## Assumptions and context:

- RCI must hold for each trial. RCI :

Remote context independence with control over settings dist. $p(s)$.

$$
\mu\left(o_{X} \mid s\right)=\mu\left(o_{X} \mid s_{X}\right), \quad \mu(o, s)=\mu(o \mid s) p(s)
$$

- If LRI, then abandon ship. LRI:
$L R$ with independent full-support settings distribution.

$$
\mu(o, s)=\mu\left(f: \text { for all } X, f_{X, s_{X}}=o_{X}\right) p(s), \quad p(s)>0
$$

- If not LRI, invoke loopholes or bug?


## Bell Functions

## Assumptions and context:

- RCI must hold for each trial. RCI :

Remote context independence with control over settings dist. $p(s)$.

$$
\mu\left(o_{X} \mid s\right)=\mu\left(o_{X} \mid s_{X}\right), \quad \mu(o, s)=\mu(o \mid s) p(s)
$$

- If LRI, then abandon ship. LRI:
$L R$ with independent full-support settings distribution.

$$
\mu(o, s)=\mu\left(f: \text { for all } X, f_{X, s_{X}}=o_{X}\right) p(s), \quad p(s)>0
$$

- If not LRI, invoke loopholes or bug?

Bell function: A function $B:(o, s) \mapsto B(o, s) \in \mathbb{R}$ satisfying

$$
b_{B, p} \doteq \sup _{\mu \in \operatorname{LRI}(p)}\langle B(O, S)\rangle_{\mu}<\sup _{\mu \in \operatorname{RCI}(p)}\langle B(O, S)\rangle_{\mu}
$$

## Measuring Bell-Functions

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.

## Measuring Bell-Functions

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
Optimistic assumption: Every trial is independent and identical.

## Measuring Bell-Functions

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
Optimistic assumption: Every trial is independent and identical. Tradition: Empirically estimate $\langle B(O, S)\rangle$ :

1. Compute the sample mean $\bar{b}=\sum_{i} B\left(o_{i}, s_{i}\right) / N$.
2. Compute the sample variance $s^{2}$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

## Measuring Bell-Functions

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
Optimistic assumption: Every trial is independent and identical. Tradition: Empirically estimate $\langle B(O, S)\rangle$ :

1. Compute the sample mean $\bar{b}=\sum_{i} B\left(o_{i}, s_{i}\right) / N$.
2. Compute the sample variance $s^{2}$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

Conservative assumption: Trials depend on history, states vary.

## Measuring Bell-Functions

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
Optimistic assumption: Every trial is independent and identical.
Tradition: Empirically estimate $\langle B(O, S)\rangle$ :

1. Compute the sample mean $\bar{b}=\sum_{i} B\left(o_{i}, s_{i}\right) / N$.
2. Compute the sample variance $s^{2}$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

Conservative assumption: Trials depend on history, states vary. Emulate tradition: Empirically estimate $\sum_{i}\left\langle B\left(O_{i}, S_{i}\right)\right|$ past $\left._{i}\right\rangle / N$ :

1. Compute the sample mean $\bar{b}=\sum_{i} B\left(o_{i}, s_{i}\right) / N$.
2. Empirically upper bound the "martingale variance" $s^{2}$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

## Measuring Bell-Functions

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
Optimistic assumption: Every trial is independent and identical.
Tradition: Empirically estimate $\langle B(O, S)\rangle$ :

1. Compute the sample mean $\bar{b}=\sum_{i} B\left(o_{i}, s_{i}\right) / N$.
2. Compute the sample variance $s^{2}$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

Conservative assumption: Trials depend on history, states vary. Emulate tradition: Empirically estimate $\sum_{i}\left\langle B\left(O_{i}, S_{i}\right)\right|$ past $\left._{i}\right\rangle / N$ :

1. Compute the sample mean $\bar{b}=\sum_{i} B\left(o_{i}, s_{i}\right) / N$.
2. Empirically upper bound the "martingale variance" $s^{2}$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

## Interpretation:

Average Bell-values of trial states with confidence intervals.

## Interpreting Bell Values

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

## Interpreting Bell Values

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

Specific to this experimental run:

- $b \in[\bar{b}-s, \bar{b}+s]$ at confidence level $68 \%$.
- Nominal SNR: Qualitative strength of exceeding LRI bound.
...central limit theorem does not apply.


## Interpreting Bell Values

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

Specific to this experimental run:

- $b \in[\bar{b}-s, \bar{b}+s]$ at confidence level $68 \%$.
- Nominal SNR: Qualitative strength of exceeding LRI bound.

Comparative:
...central limit theorem does not apply.

- Different runs of the same experiment.
- Results from different experiments w. identical config., state.


## Interpreting Bell Values

Given: Trial results $\left(o_{1}, s_{1}\right), \ldots,\left(o_{N}, s_{N}\right)$.
3. Report $B=\bar{b} \pm s$ and nominal $S N R s /\left(\bar{b}-b_{B, p}\right)$.

Specific to this experimental run:

- $b \in[\bar{b}-s, \bar{b}+s]$ at confidence level $68 \%$.
- Nominal SNR: Qualitative strength of exceeding LRI bound.

Comparative:
...central limit theorem does not apply.

- Different runs of the same experiment.
- Results from different experiments w. identical config., state.

Not addressed:

- Fair comparison of experiments w. different configurations, Bell functions, assumptions.
- Fair comparison of implemented trials.
- Quantify ability of LRI to yield observed effects.


## Anti-LRI Certificates

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.
Bonus: Solve issues with nominal SNRs.

## Anti-LRI Certificates

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.
Bonus: Solve issues with nominal SNRs.
Solution: Construct and use positive, mean $\leq 1$ Bell functions.

1. Choose Bell fn. $B(O, S)$ with $B(O, S) \geq I_{B},\langle B(O, S)\rangle_{\mathrm{LRI}, p} \leq b_{B, p}$.

## Anti-LRI Certificates

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.
Bonus: Solve issues with nominal SNRs.
Solution: Construct and use positive, mean $\leq 1$ Bell functions.

1. Choose Bell fn. $B(O, S)$ with $B(O, S) \geq I_{B},\langle B(O, S)\rangle_{\mathrm{LRI}, p} \leq b_{B, p}$.
2. Shift and scale $P(O, S) \doteq\left(B(O, S)-I_{B}\right) /\left(b_{B, p}-I_{B}\right)$ so $P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1$, and hence

$$
\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1
$$

## Anti-LRI Certificates

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.
Bonus: Solve issues with nominal SNRs.
Solution: Construct and use positive, mean $\leq 1$ Bell functions.

1. Choose Bell fn. $B(O, S)$ with $B(O, S) \geq I_{B},\langle B(O, S)\rangle_{\mathrm{LRI}, p} \leq b_{B, p}$.
2. Shift and scale $P(O, S) \doteq\left(B(O, S)-I_{B}\right) /\left(b_{B, p}-I_{B}\right)$ so $P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1$, and hence

$$
\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1
$$

3. Get trial data $\ldots\left(o_{i}, s_{i}\right) \ldots$, compute $s_{N}$, note:

$$
\operatorname{Prob}\left(S_{N} \geq s_{N} \mid \operatorname{LRI}, p\right) \leq 1 / s_{N}
$$

(Markov's inequality)

## Anti-LRI Certificates

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.
Bonus: Solve issues with nominal SNRs.
Solution: Construct and use positive, mean $\leq 1$ Bell functions.

1. Choose Bell fn. $B(O, S)$ with $B(O, S) \geq I_{B},\langle B(O, S)\rangle_{\mathrm{LRI}, p} \leq b_{B, p}$.
2. Shift and scale $P(O, S) \doteq\left(B(O, S)-I_{B}\right) /\left(b_{B, p}-I_{B}\right)$ so $P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1$, and hence

$$
\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1
$$

3. Get trial data $\ldots\left(o_{i}, s_{i}\right) \ldots$, compute $s_{N}$, note:

$$
\operatorname{Prob}\left(S_{N} \geq s_{N} \mid \operatorname{LRI}, p\right) \leq 1 / s_{N}
$$

(Markov's inequality)
4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.
Y. Zhang et al. (2013) [13], General theory: Shafer et al. (2011) [9]

## Interpretation of Anti-LRI Certificates

$$
\begin{gathered}
P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \mathrm{past}_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1 . \\
\quad \operatorname{Prob}\left(S_{N} \geq s_{N} \mid \mathrm{LRI}, p\right) \leq 1 / s_{N} .
\end{gathered}
$$

4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

## Interpretation of Anti-LRI Certificates

$P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1$.
$\operatorname{Prob}\left(S_{N} \geq s_{N} \mid\right.$ LRI,$\left.p\right) \leq 1 / s_{N}$.
4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

## Statistical:

$-\operatorname{LRI}(p) \Rightarrow$ prob. of certifying at $\geq c$ is less then $2^{-c}$.

- Equivalent to a $p$-value bound...
- Bayes-factor-like. E.g. stop any time.


## Interpretation of Anti-LRI Certificates

$P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1$.

$$
\operatorname{Prob}\left(S_{N} \geq s_{N} \mid \operatorname{LRI}, p\right) \leq 1 / s_{N}
$$

4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

## Statistical:

- $\operatorname{LRI}(p) \Rightarrow$ prob. of certifying at $\geq c$ is less then $2^{-c}$.
- Equivalent to a $p$-value bound...
- Bayes-factor-like. E.g. stop any time.

Comparative:

- Certificate: Comparable overall strength.
- Gain rate: Comparable device/configuration strength.
- Independent of experimental details or Bell function, given model assumptions.


## Recent Experiments

- Pironio et al. (2010) [7]:
- Entangled atoms in two iontraps at 1 m .
- Aim: Certified random number expansion.
- Average CHSH value: $2<2.41(6)$ per trial for 3016 trials. Nominal SNR: 6.8.
- Certificate $\left(\log _{2}-\mathrm{p}\right): 10[7], 33 \equiv 6.3 \mathrm{~g} . S N R[12,11]$.


## Recent Experiments

- Pironio et al. (2010) [7]:
- Entangled atoms in two iontraps at 1 m .
- Aim: Certified random number expansion.
- Average CHSH value: $2<2.41(6)$ per trial for 3016 trials. Nominal SNR: 6.8.
- Certificate $\left(\log _{2}-p\right): 10[7], 33 \equiv 6.3 \mathrm{~g}$.SNR $[12,11]$.
- Giustina et al. (2013) [5]:
- Entangled photons, continuously emitted, timetagged detections.
- Aim: Bell violation without postselection.
- Average Bell function value: $0<5.24(8) 10^{-3}$ per photon-pair [5]. Nominal SNR: 66.
- Timetag function value: $1.083(19 \mid 35) 10^{5}$, nominal SNR 59 or 31.
- Justify coverage probability, certificate?


## Recent Experiments

- Pironio et al. (2010) [7]:
- Entangled atoms in two iontraps at 1 m .
- Aim: Certified random number expansion.
- Average CHSH value: $2<2.41(6)$ per trial for 3016 trials. Nominal SNR: 6.8.
- Certificate $\left(\log _{2}-p\right): 10[7], 33 \equiv 6.3 \mathrm{~g} . S N R[12,11]$.
- Giustina et al. (2013) [5]:
- Entangled photons, continuously emitted, timetagged detections.
- Aim: Bell violation without postselection.
- Average Bell function value: $0<5.24(8) 10^{-3}$ per photon-pair [5]. Nominal SNR: 66.
- Timetag function value: $1.083(19 \mid 35) 10^{5}$, nominal SNR 59 or 31.
- Justify coverage probability, certificate?
- Christensen et al. (2013) [2]:
- Entangled photons, pulsed emission, timetagged detections.
- Aim: Bell violation without postselection.
- Average Bell function value: $0<5.4(7) 10^{-5}$ per trial, n.SNR 7.7.
- PBR certificate $\left(\log _{2}-\mathrm{p}\right):$ TBD


## Recommendations

- Commit to deterministic trials. (W.o.l.g!)


## Recommendations

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".


## Recommendations

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".
- Plan for generation of training data and confirmatory experiments.
- Compute certificates and gain rate per setting bit.
- Report: Certificate values, gain rates and model assumptions.


## PBRs: Optimizing Certificate Algorithms

$$
\begin{gathered}
P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1 . \\
\quad \operatorname{Prob}\left(S_{N} \geq s_{N} \mid \mathrm{LRI}, p\right) \leq 1 / s_{N} .
\end{gathered}
$$

4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

## PBRs: Optimizing Certificate Algorithms

$P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1$.

$$
\operatorname{Prob}\left(S_{N} \geq s_{N} \mid \operatorname{LRI}, p\right) \leq 1 / s_{N} .
$$

4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

Flexible function choice:

- Optimize convex combination of PBR functions. (Use theory or training set.)

PBR: Probability Based Ratio.

- LRI tests: Include "trivial" and no-signalling constraints.


## PBRs: Optimizing Certificate Algorithms

$P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1$.

$$
\operatorname{Prob}\left(S_{N} \geq s_{N} \mid \operatorname{LRI}, p\right) \leq 1 / s_{N} .
$$

4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

Flexible function choice:

- Optimize convex combination of PBR functions. (Use theory or training set.)

PBR: Probability Based Ratio.

- LRI tests: Include "trivial" and no-signalling constraints.

Adaptive PBR functions:

- $P \rightarrow P_{i}$, chosen optimally before $i$ 'th trial.


## PBRs: Optimizing Certificate Algorithms

$P(O, S) \geq 0,\langle P(O, S)\rangle_{\mathrm{LRI}, p} \leq 1,\left\langle S_{N} \doteq \prod_{i=1}^{N} P\left(O_{i}, S_{i} \mid \text { past }_{i}\right)\right\rangle_{\mathrm{LRI}, p} \leq 1$.

$$
\operatorname{Prob}\left(S_{N} \geq s_{N} \mid \operatorname{LRI}, p\right) \leq 1 / s_{N} .
$$

4. Cert. $c \doteq \log _{2}\left(s_{N}\right)$, gain-rate/trial/set.-bit $g \doteq \log _{2}\left(s_{N}\right) /(H(p) N)$.

Flexible function choice:

- Optimize convex combination of PBR functions. (Use theory or training set.) PBR: Probability Based Ratio.
- LRI tests: Include "trivial" and no-signalling constraints.

Adaptive PBR functions:

- $P \rightarrow P_{i}$, chosen optimally before $i$ 'th trial.

Features:

- Adapts to changing states, experimental drifts; stop anytime.
- Matches or improves other approaches (e.g. Hoeffding bounds).
- Asymptotically optimal when trials are i.i.d.
- Can automatically optimize equivalent Gaussian SNR.
- Adaptable to unbounded triangle-inequality Bell functions.


## Simulation: Quantum Timetag Trials

Specs: $\begin{array}{lll}\begin{array}{l}\text { Poisson pairs, } \\ 1 \text { detector/party, }\end{array} & \begin{array}{l}\text { efficiency } 80 \%, \\ \text { CHSH optimized. }\end{array} & \text { square jitter. } \\ S_{\text {SNR }}\end{array}$
-100

## Simulation: Quantum Timetag Trials

Specs: $\begin{array}{lll}\text { Poisson pairs, } \\ 1 \text { detector/party, }\end{array} \begin{aligned} & \text { efficiency } 80 \%, \\ & \text { CHSH optimized. }\end{aligned} \quad$ square jitter.

## Simulation: LRI Timetag Trials

Specs: Match 1st and 2nd-order q. counting statistics at high apparent jitter.


## TOC I

| 0.0.1. Title Page | 0.0.2. Overview |  |
| :---: | :---: | :---: |
| 1.1.1. Parties, Settings and Measureme | 1.1.2. Example I | 1.1.3. Examples II,III |
| 1.1.4. The $2 k$-cycle | 1.1.5. General Measurement-Outcome I | 1.1.6. Model Constraints to Consider |
| 1.1.7. Ideal Test | 1.1.8. Common Photon-Based Trials |  |
| 1.2.1. Recommendations |  |  |
| 2.1.1. (2, 2, $\mathcal{O}$ )-Bell inequalities | 2.1.2. Bell Functions | 2.1.3. Measuring Bell-Functions |
| 2.1.4. Interpreting Bell Values |  |  |
| 3.1.1. Anti-LRI Certificates | 3.1.2. Interpretation of Anti-LRI Certific |  |
| 4.1.1. Recent Experiments |  |  |
| 5.1.1. Recommendations | 5.1.2. PBRs: Optimizing Certificate Al£ | 5.1.3. Simulation: Quantum Timetag T |
| 5.1.4. Simulation: LRI Timetag Trials | 5.1.5. TOC | 5.1.6. References |

## References

[1] S. L. Braunstein. Wringing out better Bell inequalities. Ann. der Physik, 202:22-56, 1990.
[2] B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam Nd N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat. Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett., 111:130406/1-5, 2013.
[3] R. Colbeck and R. Reneer. Free randomness can be amplifed. Nature Phys., 8:450-453, 2012. arXiv:1105.3195.
[4] R. D. Gill. Time, finite statistics, and Bell's fifth position. arXiv:quant-ph/0301059, 2003.
[5] M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger. Bell violation using entangled photons without the fair-sampling assumptions. Nature, 2013.
[6] P. Kurzynski and D. Kaszlikowski. The triangle principle: A new approach to non-contextuality and local realism. arXiv:1309.6777, 2013.
[7] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe. Random numbers certified by bell's theorem. Nature, 464:1021-1024, 2010.
[8] S. Popescu and D. Rohrlich. Causality and nonlocality as axioms for quantum mechanics. Found. Phys., 24:379-385, 1997.
[9] G. Shafer, A. Shen, N. Vereshchagin, and V. Vovk. Test martingales, Bayes factors and p-values. Statistical Science, 26:84-101, 2011.
[10] W. van Dam, R. D. Gill, and P. D. Grunwald. The statistical strength of nonlocality proofs. IEEE Trans. Inf. Theory, 51:2812-2835, 2005.
[11] Y. Zhang. Analysis of Tests of Local Realism. PhD thesis, U. Colorado at Boulder, Boulder, CO, 2013.
[12] Y. Zhang, S. Glancy, and E. Knill. Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A, 84:062118/1-10, 2011.

## References II

[13] Y. Zhang, S. Glancy, and E. Knill. Efficient quantification of experimental evidence against local realism. Phys. Rev. A, 88:052119/1-8, 2013.

