Certifying Local-Realism Violation

Manny

NIST

2014

Collaborators: K. Coakley, S. Glancy, S. W. Nam, Y. Zhang.

Test Configurations and Models

Bell Functions

Anti-Local-Realism Certificates

Applications to Experiments

Recommendations

• (2,2,2) (parties, settings choices, measurement outcomes):

Ą	ne
4	ľe

• (2,2,2) (parties, settings choices, measurement outcomes):

A	0

	-				
А	00	01	10	11	В
n	0	1	0	0	n

• (2,2,2) (parties, settings choices, measurement outcomes):

A	ne
---	----

А	00	01	10	11	В
n	0	1	0	0	n
n					е

• (2,2,2) (parties, settings choices, measurement outcomes):

A	0
	7

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е

• (2,2,2) (parties, settings choices, measurement outcomes):

A ne

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е
е					n

• (2,2,2) (parties, settings choices, measurement outcomes):

A	

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е
е	0	0	0	1	n

• (2,2,2) (parties, settings choices, measurement outcomes):

A	ne
A	

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е
е	0	0	0	1	n
е					е

• (2,2,2) (parties, settings choices, measurement outcomes):

A	1
A	

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е
е	0	0	0	1	n
е	0	0	1	0	е

• (2,2,2) (parties, settings choices, measurement outcomes):

A	ne
---	----

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е
е	0	0	0	1	n
е	0	0	1	0	е

• (2,2,2) (parties, settings choices, measurement outcomes):

A	ne

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	е
е	0	0	0	1	n
е	0	0	1	0	е

В

• Compatibility graph:

• (2,2,2) (parties, settings choices, measurement outcomes):

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	e
е	0	0	0	1	n
е	0	0	1	0	е

В

• Compatibility graph:

• *Trial* record: Outcomes and settings (*o*_A, *o*_B, *s*_A, *s*_B).

• (2,2,2) (parties, settings choices, measurement outcomes):

A	ne

А	00	01	10	11	В
n	0	1	0	0	n
n	1	0	0	0	e
е	0	0	0	1	n
е	0	0	1	0	е

В

Compatibility graph:

- *Trial* record: Outcomes and settings (*o*_A, *o*_B, *s*_A, *s*_B).
- Trial model: $Prob(O_A = o_A, O_B = o_B, S_A = s_B, S_B = s_B|past)$.

The PR Box, Popescu&Rohrlich(1997) [8].

"chained Bell inequalities", Braunstein(1990) [1], application in Colbeck&Pironio(2011) [3]

The 2k-cycle

"chained Bell inequalities", Braunstein(1990) [1], application in Colbeck&Pironio(2011) [3]

"Choose" measurement settings \rightarrow measure \rightarrow record outcomes.

"Choose" measurement settings \rightarrow measure \rightarrow record outcomes.

- Common configuration parameters: (N_P, N_S, N_O) , where
 - N_P: Number of "parties".
 - N_S : Number of measurement settings at each party.
 - N_O : Number of possible outcomes for each setting.

"Choose" measurement settings \rightarrow measure \rightarrow record outcomes.

- Common configuration parameters: (N_P, N_S, N_O) , where
 - N_P : Number of "parties".
 - N_S : Number of measurement settings at each party.
 - N_O : Number of possible outcomes for each setting.
- Universal pre-trial model.

 $S = (S_A, S_B, \ldots)$: settings random variables, $O = (O_A, O_B, \ldots)$: outcome random variables,

with probability distribution:

$$\mu(o, s) = \mathsf{Prob}(O = o, S = s | \mathsf{past}).$$

"Choose" measurement settings \rightarrow measure \rightarrow record outcomes.

- Common configuration parameters: (N_P, N_S, N_O) , where
 - N_P: Number of "parties".
 - N_S : Number of measurement settings at each party.
 - N_O : Number of possible outcomes for each setting.
- Universal pre-trial model.

 $S = (S_A, S_B, ...)$: settings random variables, $O = (O_A, O_B, ...)$: outcome random variables,

with probability distribution:

$$\mu(o,s) = \mathsf{Prob}(O = o, S = s | \mathsf{past}).$$

Possible constraints:

- Remote context independence/no-signaling/consistent marginals.
- Remote outcome independence.
- Definiteness given the "complete state".

Model Constraints to Consider

CI. Remote context independence.

$$\mu(o_X|s_X,s_{\neg X})=\mu(o_X|s_X).$$

Model Constraints to Consider

CI. Remote context independence.

$$\mu(o_X|s_X,s_{\neg X})=\mu(o_X|s_X).$$

OI. Remote outcome independence.

$$\mu(o_X|o_{\neg X},s)=\mu(o_X|s).$$
Model Constraints to Consider

CI. Remote context independence.

$$\mu(o_X|s_X,s_{\neg X})=\mu(o_X|s_X).$$

OI. Remote outcome independence.

$$\mu(o_X|o_{\neg X},s)=\mu(o_X|s).$$

D. Definiteness given "complete state" f and settings.

$$o=(o_X)_X=(f_X(s))_X.$$

Model Constraints to Consider

CI. Remote context independence.

$$\mu(o_X|s_X,s_{\neg X})=\mu(o_X|s_X).$$

OI. Remote outcome independence.

$$\mu(o_X|o_{\neg X},s)=\mu(o_X|s).$$

D. Definiteness given "complete state" f and settings.

$$o=(o_X)_X=(f_X(s))_X.$$

LR. Local realism, $CI \wedge (OI \vee D) \wedge \mu(\lambda)$.

$$\mu(o,s) = \sum_{f: \text{for all } X \ f_X(s_x) = o_X} \mu(f) \mu(s).$$

...where ${\mathcal{P}}$ is an "unwanted" property.

...where \mathcal{P} is an "unwanted" property.

• Foundations: Constrain explanatory models.

From $\mathbf{x} = (x_1, \dots, x_n, \dots)$ compute $C_{\neg \mathcal{P}}(x)$, a certificate for $\neg \mathcal{P}$where \mathcal{P} is an "unwanted" property.

- Foundations: Constrain explanatory models.
- Protocols: Constrain hacker's access.

...this can be considered as one trial.

• Commit to deterministic trials. (W.o.l.g!)

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".
- Plan for generation of training data and confirmatory experiments.
- Compute certificates and gain rate per setting bit.
- Report: Certificate values, gain rates and model assumptions.

 $d_{ne} + d_{nn} + d_{en} \geq d_{ee} \quad \Rightarrow \quad \langle d_{ne}
angle_{\mu} + \langle d_{nn}
angle_{\mu} + \langle d_{en}
angle_{\mu} \geq \langle d_{ee}
angle_{\mu}$

Timetag analysis (NIST 2013), Kurzynski&Kaszlikowsi(2013) [6]

 $d_{ne} + d_{nn} + d_{en} \geq d_{ee} \quad \Rightarrow \quad \langle d_{ne}
angle_{\mu} + \langle d_{nn}
angle_{\mu} + \langle d_{en}
angle_{\mu} \geq \langle d_{ee}
angle_{\mu}$

Settings independent of state $\Rightarrow \langle d_{ab} \rangle = \langle d_{ab} | s = (a, b) \rangle.$

Timetag analysis (NIST 2013), Kurzynski&Kaszlikowsi(2013) [6]

$$d_{ne} + d_{nn} + d_{en} \geq d_{ee} \quad \Rightarrow \quad \langle d_{ne} \rangle_{\mu} + \langle d_{nn} \rangle_{\mu} + \langle d_{en} \rangle_{\mu} \geq \langle d_{ee} \rangle_{\mu}$$

Settings independent of state $\Rightarrow \langle d_{ab} \rangle = \langle d_{ab} | s = (a, b) \rangle.$

Example.
$$\mathcal{O} = \{0,1\}$$
: $\begin{cases} d(a,b) = |b-a| & \rightarrow \text{ CHSH variant,} \\ d(a,b) = \max(0,b-a) & \rightarrow \text{ CH variant.} \end{cases}$

Timetag analysis (NIST 2013), Kurzynski&Kaszlikowsi(2013) [6]

 RCI must hold for each trial. RCI: Remote context independence with control over settings dist. p(s).

$$\mu(o_X|s) = \mu(o_X|s_X), \qquad \mu(o,s) = \mu(o|s)p(s).$$

 RCI must hold for each trial. RCI: Remote context independence with control over settings dist. p(s).

$$\mu(o_X|s) = \mu(o_X|s_X), \qquad \mu(o,s) = \mu(o|s)p(s).$$

• If LRI, then abandon ship. LRI: LR with independent full-support settings distribution.

$$\mu(o,s)=\mu(f:\text{for all }X,f_{X,s_x}=o_x)p(s), \qquad p(s)>0.$$

 RCI must hold for each trial. RCI: Remote context independence with control over settings dist. p(s).

$$\mu(o_X|s) = \mu(o_X|s_X), \qquad \mu(o,s) = \mu(o|s)p(s).$$

• If LRI, then abandon ship. LRI: LR with independent full-support settings distribution.

$$\mu(o,s)=\mu(f:\text{for all }X,f_{X,s_x}=o_x)p(s), \qquad p(s)>0.$$

• If not LRI, invoke loopholes or bug?

 RCI must hold for each trial. RCI: Remote context independence with control over settings dist. p(s).

$$\mu(o_X|s) = \mu(o_X|s_X), \qquad \mu(o,s) = \mu(o|s)p(s).$$

• If LRI, then abandon ship. LRI: LR with independent full-support settings distribution.

$$\mu(o,s)=\mu(f:\text{for all }X,f_{X,s_x}=o_x)p(s), \qquad p(s)>0.$$

• If not LRI, invoke loopholes or bug?

Bell function: A function $B: (o, s) \mapsto B(o, s) \in \mathbb{R}$ satisfying

$$b_{B,p} \doteq \sup_{\mu \in \mathsf{LRI}(p)} \langle B(O,S) \rangle_{\mu} \quad < \quad \sup_{\mu \in \mathsf{RCI}(p)} \langle B(O,S) \rangle_{\mu}$$

Measuring Bell-Functions

Given: Trial results $(o_1, s_1), \ldots, (o_N, s_N)$.

Measuring Bell-Functions

Given: Trial results $(o_1, s_1), \ldots, (o_N, s_N)$.

Optimistic assumption: Every trial is independent and identical.

Optimistic assumption: Every trial is independent and identical. **Tradition:** Empirically estimate $\langle B(O, S) \rangle$:

- 1. Compute the sample mean $\bar{b} = \sum_i B(o_i, s_i)/N$.
- 2. Compute the sample variance s^2 .
- 3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} b_{B,p})$.

Optimistic assumption: Every trial is independent and identical. **Tradition:** Empirically estimate $\langle B(O, S) \rangle$:

- 1. Compute the sample mean $\bar{b} = \sum_i B(o_i, s_i)/N$.
- 2. Compute the sample variance s^2 .
- 3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} b_{B,p})$.

Conservative assumption: Trials depend on history, states vary.

Optimistic assumption: Every trial is independent and identical. **Tradition:** Empirically estimate $\langle B(O, S) \rangle$:

- 1. Compute the sample mean $\bar{b} = \sum_i B(o_i, s_i)/N$.
- 2. Compute the sample variance s^2 .
- 3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} b_{B,p})$.

Conservative assumption: Trials depend on history, states vary. **Emulate tradition:** Empirically estimate $\sum_i \langle B(O_i, S_i) | \text{past}_i \rangle / N$:

- 1. Compute the sample mean $\bar{b} = \sum_i B(o_i, s_i)/N$.
- 2. Empirically upper bound the "martingale variance" s^2 .
- 3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} b_{B,p})$.

Optimistic assumption: Every trial is independent and identical. **Tradition:** Empirically estimate $\langle B(O, S) \rangle$:

- 1. Compute the sample mean $\bar{b} = \sum_i B(o_i, s_i)/N$.
- 2. Compute the sample variance s^2 .
- 3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} b_{B,p})$.

Conservative assumption: Trials depend on history, states vary. **Emulate tradition:** Empirically estimate $\sum_i \langle B(O_i, S_i) | \text{past}_i \rangle / N$:

- 1. Compute the sample mean $\bar{b} = \sum_i B(o_i, s_i)/N$.
- 2. Empirically upper bound the "martingale variance" s^2 .
- 3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} b_{B,p})$.

Interpretation:

Average Bell-values of trial states with confidence intervals.

Interpreting Bell Values

Given: Trial results $(o_1, s_1), \ldots, (o_N, s_N)$.

3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} - b_{B,p})$.

3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} - b_{B,p})$.

Specific to this experimental run:

- $b \in [\bar{b} s, \bar{b} + s]$ at confidence level 68%.
- Nominal SNR: Qualitative strength of exceeding LRI bound.

... central limit theorem does not apply.

3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} - b_{B,p})$.

Specific to this experimental run:

- $b \in [\overline{b} s, \overline{b} + s]$ at confidence level 68%.
- Nominal SNR: Qualitative strength of exceeding LRI bound.

... central limit theorem does not apply.

Comparative:

- Different runs of the same experiment.
- Results from different experiments w. identical config., state.

3. Report $B = \overline{b} \pm s$ and nominal SNR $s/(\overline{b} - b_{B,p})$.

Specific to this experimental run:

- $b \in [\overline{b} s, \overline{b} + s]$ at confidence level 68%.
- Nominal SNR: Qualitative strength of exceeding LRI bound.

... central limit theorem does not apply.

Comparative:

- Different runs of the same experiment.
- Results from different experiments w. identical config., state.

Not addressed:

- Fair comparison of experiments w. different configurations, Bell functions, assumptions.
- Fair comparison of implemented trials.
- Quantify ability of LRI to yield observed effects.

Context:	Expect non-LRI signature in the absence of a conspiracy,
	but quantified reassurance needed.

Bonus: Solve issues with nominal SNRs.

- Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.
- Bonus: Solve issues with nominal SNRs.
- **Solution:** Construct and use positive, mean ≤ 1 Bell functions.
 - 1. Choose Bell fn. B(O, S) with $B(O, S) \ge I_B$, $\langle B(O, S) \rangle_{LRI,p} \le b_{B,p}$.

Y. Zhang et al. (2013) [13], General theory: Shafer et al. (2011) [9]
Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.

Bonus: Solve issues with nominal SNRs.

Solution: Construct and use positive, mean ≤ 1 Bell functions.

- 1. Choose Bell fn. B(O, S) with $B(O, S) \ge I_B$, $\langle B(O, S) \rangle_{LRI,p} \le b_{B,p}$.
- 2. Shift and scale $P(O, S) \doteq (B(O, S) I_B)/(b_{B,p} I_B)$ so $P(O, S) \ge 0$, $\langle P(O, S) \rangle_{LRI,p} \le 1$, and hence

$$\left\langle S_{\mathcal{N}}\doteq\prod_{i=1}^{\mathcal{N}} P(O_i,S_i|\mathsf{past}_i)
ight
angle_{\mathsf{LRI},p} \leq 1.$$

Y. Zhang et al. (2013) [13], General theory: Shafer et al. (2011) [9]

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.

Bonus: Solve issues with nominal SNRs.

Solution: Construct and use positive, mean ≤ 1 Bell functions.

- 1. Choose Bell fn. B(O, S) with $B(O, S) \ge I_B$, $\langle B(O, S) \rangle_{LRI,p} \le b_{B,p}$.
- 2. Shift and scale $P(O, S) \doteq (B(O, S) I_B)/(b_{B,p} I_B)$ so $P(O, S) \ge 0$, $\langle P(O, S) \rangle_{\mathsf{LRI},p} \le 1$, and hence

$$\left\langle S_{\mathcal{N}}\doteq\prod_{i=1}^{\mathcal{N}} P(O_i,S_i|\mathsf{past}_i)
ight
angle_{\mathsf{LRI},p}\leq 1.$$

3. Get trial data $\ldots (o_i, s_i) \ldots$, compute s_N , note:

 $\mathsf{Prob}(S_N \ge s_N | \mathsf{LRI}, p) \le 1/s_N.$ (Markov's inequality)

Y. Zhang et al. (2013) [13], General theory: Shafer et al. (2011) [9]

Context: Expect non-LRI signature in the absence of a conspiracy, but quantified reassurance needed.

Bonus: Solve issues with nominal SNRs.

Solution: Construct and use positive, mean ≤ 1 Bell functions.

- 1. Choose Bell fn. B(O, S) with $B(O, S) \ge I_B$, $\langle B(O, S) \rangle_{\mathsf{LRI},p} \le b_{B,p}$.
- 2. Shift and scale $P(O, S) \doteq (B(O, S) I_B)/(b_{B,p} I_B)$ so $P(O, S) \ge 0$, $\langle P(O, S) \rangle_{\mathsf{LRI},p} \le 1$, and hence

$$\left\langle S_{\mathcal{N}}\doteq\prod_{i=1}^{\mathcal{N}} \mathcal{P}(\mathcal{O}_i,S_i|\mathsf{past}_i)
ight
angle_{\mathsf{LRI},p}\leq 1.$$

3. Get trial data $\ldots (o_i, s_i) \ldots$, compute s_N , note:

 $\operatorname{Prob}(S_N \ge s_N | \operatorname{LRI}, p) \le 1/s_N.$ (Markov's inequality)

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Y. Zhang et al. (2013) [13], General theory: Shafer et al. (2011) [9]

Interpretation of Anti-LRI Certificates

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Antecedents: Gill (2003) [4], van Dam et al. (2005) [10]

Interpretation of Anti-LRI Certificates

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Statistical:

- LRI(p) \Rightarrow prob. of certifying at $\geq c$ is less then 2^{-c} .
- Equivalent to a p-value bound...
- Bayes-factor-like. E.g. stop any time.

Antecedents: Gill (2003) [4], van Dam et al. (2005) [10]

Interpretation of Anti-LRI Certificates

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Statistical:

- LRI(p) \Rightarrow prob. of certifying at $\geq c$ is less then 2^{-c} .
- Equivalent to a *p*-value bound...
- Bayes-factor-like. E.g. stop any time.

Comparative:

- Certificate: Comparable overall strength.
- Gain rate: Comparable device/configuration strength.
- Independent of experimental details or Bell function, given model assumptions.

Antecedents: Gill (2003) [4], van Dam et al. (2005) [10]

- Pironio et al. (2010) [7]:
 - Entangled atoms in two iontraps at 1 m.
 - Aim: Certified random number expansion.
 - Average CHSH value: 2 < 2.41(6) per trial for 3016 trials. Nominal SNR: 6.8.
 - Certificate (log₂-p): 10 [7], 33 \equiv 6.3 g.SNR [12, 11].

- Pironio et al. (2010) [7]:
 - Entangled atoms in two iontraps at 1 m.
 - Aim: Certified random number expansion.
 - Average CHSH value: 2 < 2.41(6) per trial for 3016 trials. Nominal SNR: 6.8.
 - Certificate (log_2-p): 10 [7], 33 $\equiv 6.3\,g.\text{SNR}$ [12, 11].
- Giustina et al. (2013) [5]:
 - Entangled photons, continuously emitted, timetagged detections.
 - Aim: Bell violation without postselection.
 - Average Bell function value: $0 < 5.24(8)10^{-3}$ per photon-pair [5]. Nominal SNR: 66.
 - Timetag function value: 1.083(19 | 35)10⁵, nominal SNR 59 or 31.
 - Justify coverage probability, certificate?

- Pironio et al. (2010) [7]:
 - Entangled atoms in two iontraps at 1 m.
 - Aim: Certified random number expansion.
 - Average CHSH value: 2 < 2.41(6) per trial for 3016 trials. Nominal SNR: 6.8.
 - Certificate (log_2-p): 10 [7], 33 $\equiv 6.3\,g.\text{SNR}$ [12, 11].
- Giustina et al. (2013) [5]:
 - Entangled photons, continuously emitted, timetagged detections.
 - Aim: Bell violation without postselection.
 - Average Bell function value: $0 < 5.24(8)10^{-3}$ per photon-pair [5]. Nominal SNR: 66.
 - Timetag function value: 1.083(19 | 35)10⁵, nominal SNR 59 or 31.
 - Justify coverage probability, certificate?
- Christensen et al. (2013) [2]:
 - Entangled photons, pulsed emission, timetagged detections.
 - Aim: Bell violation without postselection.
 - Average Bell function value: $0 < 5.4(7)10^{-5}$ per trial, n.SNR 7.7.
 - PBR certificate (log₂-p): TBD

• Commit to deterministic trials. (W.o.l.g!)

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".

- Commit to deterministic trials. (W.o.l.g!)
- Change settings for each trial. (Make trials last longer if needed.)
- Any randomization helps avoid auxilliary assumptions.
- Blind the trials: Automated settings choices, no tweaking when settings are "visible".
- Plan for generation of training data and confirmatory experiments.
- Compute certificates and gain rate per setting bit.
- Report: Certificate values, gain rates and model assumptions.

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Flexible function choice:

- Optimize convex combination of PBR functions. (Use theory or training set.)
 PBR: Probability Based Ratio.
- LRI tests: Include "trivial" and no-signalling constraints.

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Flexible function choice:

• Optimize convex combination of PBR functions.

(Use theory or training set.) PBR: Probability Based Ratio.

• LRI tests: Include "trivial" and no-signalling constraints.

Adaptive PBR functions:

• $P \rightarrow P_i$, chosen optimally before *i*'th trial.

4. Cert. $c \doteq \log_2(s_N)$, gain-rate/trial/set.-bit $g \doteq \log_2(s_N)/(H(p)N)$.

Flexible function choice:

• Optimize convex combination of PBR functions.

(Use theory or training set.) PBR: Probability Based Ratio.

• LRI tests: Include "trivial" and no-signalling constraints.

Adaptive PBR functions:

• $P \rightarrow P_i$, chosen optimally before *i*'th trial.

Features:

- Adapts to changing states, experimental drifts; stop anytime.
- Matches or improves other approaches (e.g. Hoeffding bounds).
- Asymptotically optimal when trials are i.i.d.
- Can automatically optimize equivalent Gaussian SNR.
- Adaptable to unbounded triangle-inequality Bell functions.

Simulation: Quantum Timetag Trials

Simulation: LRI Timetag Trials

TOC I

0.0.1. Title Page	0.0.2. Overview	
1.1.1. Parties, Settings and Measureme	1.1.2. Example I	1.1.3. Examples II,III
1.1.4. The 2 <i>k</i> -cycle	1.1.5. General Measurement-Outcome N	1.1.6. Model Constraints to Consider
1.1.7. Ideal Test	1.1.8. Common Photon-Based Trials	
1.2.1. Recommendations		
2.1.1. $(2, 2, \mathcal{O})$ -Bell inequalities	2.1.2. Bell Functions	2.1.3. Measuring Bell-Functions
2.1.4. Interpreting Bell Values		
3.1.1. Anti-LRI Certificates	3.1.2. Interpretation of Anti-LRI Certific	
4.1.1. Recent Experiments		
5.1.1. Recommendations	5.1.2. PBRs: Optimizing Certificate Alg	5.1.3. Simulation: Quantum Timetag T
5.1.4. Simulation: LRI Timetag Trials	5.1.5. TOC	5.1.6. References

References I

- [1] S. L. Braunstein. Wringing out better Bell inequalities. Ann. der Physik, 202:22-56, 1990.
- [2] B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam Nd N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat. Detection-loophole-free test of quantum nonlocality, and applications. *Phys. Rev. Lett.*, 111:130406/1–5, 2013.
- [3] R. Colbeck and R. Reneer. Free randomness can be amplifed. Nature Phys., 8:450-453, 2012. arXiv:1105.3195.
- [4] R. D. Gill. Time, finite statistics, and Bell's fifth position. arXiv:quant-ph/0301059, 2003.
- [5] M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger. Bell violation using entangled photons without the fair-sampling assumptions. *Nature*, 2013.
- P. Kurzynski and D. Kaszlikowski. The triangle principle: A new approach to non-contextuality and local realism. arXiv:1309.6777, 2013.
- [7] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe. Random numbers certified by bell's theorem. *Nature*, 464:1021–1024, 2010.
- [8] S. Popescu and D. Rohrlich. Causality and nonlocality as axioms for quantum mechanics. Found. Phys., 24:379–385, 1997.
- [9] G. Shafer, A. Shen, N. Vereshchagin, and V. Vovk. Test martingales, Bayes factors and p-values. Statistical Science, 26:84–101, 2011.
- [10] W. van Dam, R. D. Gill, and P. D. Grunwald. The statistical strength of nonlocality proofs. IEEE Trans. Inf. Theory, 51:2812–2835, 2005.
- [11] Y. Zhang. Analysis of Tests of Local Realism. PhD thesis, U. Colorado at Boulder, Boulder, CO, 2013.
- [12] Y. Zhang, S. Glancy, and E. Knill. Asymptotically optimal data analysis for rejecting local realism. Phys. Rev. A, 84:062118/1–10, 2011.

References II

[13] Y. Zhang, S. Glancy, and E. Knill. Efficient quantification of experimental evidence against local realism. Phys. Rev. A, 88:052119/1-8, 2013.