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Circuit-to-Hamiltonian (Feynman-
Kitaev)

Mapping from time-dependent circuit to the ground-state of a
Hamiltonian H.

Circuit has n qubits and gates U,, ....U,. Introduce a clock register
|t>: |t=0>....|t=L> and let

L
Heircuit = Z(_Ut X |t><t o 1| + h.c. +|t — 1)<t — 1| + |t><t|)
t=1

Ground-state of H_;,-. is history state of the circuit (for any §)
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Features of Circuit-to-
Hamiltonian Mapping

View as particle hopping on a time-line, gate U; is
executed when particle hops from position t-1 to t.

Realize clock register using a domain wall clock (e.g.
|111100000)) or particle clock (e.g. |0000100000) so
that [t — 1)(t|, |t)(t] acts on O(1) (3 resp. 2) clock qubits.

Read out answer of computation from history state
Spectrum of H, independent of gates: E}, « 1 —

Tk
cos( 7). Gap A = 0(Y/,2)
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Use of Circuit-to-Hamiltonian
Mapping |: universal continuous
gquantum walk

Quantum Walk (e.g. Nagaj) on a line or circle:

Start walk in t=0 state, evolve with H ;.. fOr
random time s~L? (L gates in original quantum circuit)
such that one approximately

samples a time from s
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Use of Circuit-to-Hamiltonian
Mapping Il

Proof that quantum adiabatic computation is equivalent to
gquantum computation with a circuit model.
L

Hetreuie = ) (=Ue ® [6(t = 1] + h.c. [t = 1(¢ = 1] + e)(e])

t=1
Quantum Adiabatic Computation with Hj;-cyi+ (t) such

that at t=0, Hejreyie (¢ = 0) = Heprewie (U =1, ..., U = 1)
and Hcircuit(t =T) = Hcircuit(Ul: ter) UL)-
Adiabatic theorem applies as Gap A(t) = 0(*/,2)
(Original construction uses linear interpolation: H(t)

tHcircuit + (1 o t)Hinit)



Use of Circuit-to-Hamiltonian
Mapping Il

Quantum Cook-Levin Theorem (Kitaev): proof that
determining the lowest energy of a n-qubit
Hamiltonian with 1/poly(n) accuracy is QMA-
complete, i.e. hard for quantum computers.

ldea: any problem in QMA (quantum NP) has a
verification circuit which (approximately) outputs O or
1 depending on input being a valid proof.

Construct H = Hijreyir + Hinpur + Houtpue Which has
low energy state iff there exists an input (proof) such
that circuit outputs 1 and only high-energy states
when circuit outputs O.



Depth D

n qubits

For simplicity, we assume we have a 1D quantum circuit with
nearest-neighbor interactions (and periodic boundary conditions).
Such circuit is universal for computation if D=poly(n).



A different construction?

Mizel et al. ‘Ground State Quantum Computation’

in 1999 & PRL 99, 070502 (2007)) consider a fermionic
Hamiltonian (for adiabatic QC) with the following features:

A qubit g in a quantum circuit of depth

D is represented by 2(D+1) fermionic
modes, a;(q),b;(q),i =0..D Track of length D

For example: electron in left/right - EFT?( AN
quantum dot or electron spin. R /44 AN
Particles (fermions) can hop on this Fl: - -
track of length D. L g
Construct H,;cy i+ SUCh that

* Single qubit gate U is represented by a single particle
hopping on such track (and changing its internal state).
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Mizel et al. construction

 Two-qubit gate C(U), e.g. CNOT is
represented as pairs of particles
hopping together. They can only
move forward or backward when
they are both ‘at the gate’.




New circuit-to-Hamiltonian
construction

If quantum circuit is 1D, then Mizel et al. Hamiltonian

H_;,,i¢ 1S an interacting fermion 2D Hamiltonian (or 2D
qubit Hamiltonian with 4 qubit interactions).

Properties of this construction are not well understood.

We show that their construction is an example of a
general space-time circuit-to-Hamiltonian construction
through which we can get new QMA (quantum adiabatic
QC & quantum walk) results.



Space-Time Circuit-to-

Hamiltonian
Define a clock for each qubit q: |tq = 0, ...,D).

Time configuration t = (tq1, t,....t5,)
Term in H,;--yi¢ fOr a two-qubit gate U on qubit g, p at time s+1

—UQ|t,=s+ 1Lty =s+1)t. =s,t, =s|+h.c.
+[t, = s,t4 =S><tp =5,t; = 5|
+Ht,=s+ Lt =s+1)t, =s+1L,t; =s+1]

“Times of interacting qubits are moved ahead/backward if they
are synchronized”.

The previous fermionic model effectively corresponds to a certain
clock realization (is thus unitarily equivalent).
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Definition valid time-configuration t (informally): for no pair of
gubits interacting at time t in the circuit is the clock of one qubit
past t and the clock of the other qubit before t.

H_;-cuit preserves the subspace of valid time-configurations



time ‘Light-like” space-time

intervals
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A valid time-configuration has only space-like or light-like space-time
intervals while for an invalid time-configuration some intervals are

time-like (with respect to a 2D Minkowski metric g = ((1) _01) ).



‘Light-like’ space-time
intervals

Zero-energy pure light-like t can be avoided. The ground-state of the
circuit Hamiltonian equals history state

Zpropertv(t < 0)[EL =t ... tp).

with V(t < 0) those unitaries which are applied to go from 0 (all
clocks reading t=0) to time-string t.



A very useful representation

Valid time-configurations are closed strings on a cylinder if we
have a one- ' ' '

dimensional circu

It on a circ

le.
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e is represented as square and blue
is vertex in the graph. Points in time are on the edges. Strings

are connected by transitions < — > :



Diffusion of a String on a Torus

We will consider a circuit Hamiltonian with periodic boundary in time
(original circuit has beginning and an end) for technical reasons.
String t is equivalently described by boundary point 7 and x; = +1
deviations from this point,sot = 1, x

(a) (b)

Interesting model: 2D growth model/diffusion of domain wall of
Ising ferromagnet at T=0.



Results

The circuit Hamiltonian can be represented in the relabeled
basis |T,x > and we can define plane-wave eigenstates

1 .
[P :\/—5 z e?mkt/DIry k= 0..D — 1

TEZp

such that Hejpeyie Wi €) =[Wir)H(k)|E), where H(k) is a
1D spin-1/2 Heisenberg chain with a twisted (k-dependent)

boundary (and );; Z; = 0).
2 1
Theorem: A1 (H jrcyit) = 4192(7;—1)71 + 0 (n4D2) :

(For 1D circuits of the form given and
periodic boundaries in time)

Scaling as 1/S? with S the size of circuit.




Application for QMA

Using this lowerbound on the gap, we can prove that (informally)

“determining the lowest eigenvalue of a two-dimensional
interacting fermion model (periodic boundary conditions in both
directions) in the sector where there is one fermion per

line is QMA-complete.”

To prove this one needs a.o.
to add spatially-local

terms to Hamiltonian

in order to penalize
improper time-configuration
(realized by blue quartic
operators in the picture)

B quartic interactic

4 triangle operator

Figure 5. The black dots are fermionic sites, each with two modes (an T or | s
say). The (red) squares represent the quartic gate interactions and the (blue) tria
operators penalize improper fermionic configurations (improper time-configuratic
A (blue) triangle operator with top cormer a and bottom corners b and ¢ ec
na(1 —ny —n.). The lattice has periodic boundary conditions in both directions.



Some Open Questions

 Complexity Perspective: how does gap depend on geometric
structure of the quantum circuit (i.e. D-dimensional circuits,
expander circuits, MERA circuits).

* (Can this model be useful for a 2D fermionic universal quantum
walk? Yes, potentially but it depends on some more properties of
the spectrum (ongoing work).




