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“... nature isn’t classical, dammit, and if you 
want to make a simulation of nature, you’d 
better make it quantum mechanical, and by 
golly it’s a wonderful problem, because it 
doesn’t look so easy.”	

!
Richard Feynman	

Simulating physics with computers (1981)



Why simulate quantum mechanics?

Implementing quantum algorithms	


• continuous-time quantum walk	


• adiabatic quantum computation	


• linear equations

Computational chemistry/physics	


• chemical reactions	


• properties of materials



Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

By performing measurements on the final state, a quantum computer 
can efficiently answer questions that (apparently) a classical computer 
cannot

i
d

dt
| (t)i = H| (t)i

Quantum simulation problem: Given a description of the 
Hamiltonian H, an evolution time t, and an unknown initial state 	

         , produce the final state           (approximately)| (t)i| (0)i



Quantum simulation

Simulation should approximate U(t) to within error ² (say, with 
respect to the diamond norm)

More generally, H can be time-dependent

Quantum simulation problem: Given a description of the 
Hamiltonian H, an evolution time t, and an unknown initial state 	

         , produce the final state           (approximately)| (t)i| (0)i

Equivalently, apply the unitary operator U(t) satisfying

i
d

dt
U(t) = H(t)U(t)

If H is independent of t, U(t) = e�iHt



Local and sparse Hamiltonians

In any given row, the 
location of the jth nonzero 
entry and its value can be 
computed efficiently (or is 
given by a black box)

Note:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each      acts on k = O(1) qubitsH =
Pm

j=1 Hj

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries 
per row, d = poly(log N) 
(where H is N £ N)

H =



Previous simulation methods

• Decompose Hamiltonian into a sum of terms that are easy to 
simulate	


• Recombine the terms by alternating between them

Product formulas

• Define an easy-to-implement unitary operation (a step of a quantum 
walk) whose spectrum is related to the Hamiltonian	


• Use phase estimation to obtain information about the spectrum	

• Introduce phases to give the desired evolution

Quantum walk

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

..
.

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)



Complexity of previous simulation methods
Parameters: dimension N

evolution time t
sparsity d
allowed error ²

[Lloyd 96]: (for local Hamiltonians only)poly(logN) (kHkt)2/✏

[Aharonov, Ta-Shma 02]: poly(d, logN) (kHkt)3/2/
p
✏

(for any ± > 0)[Childs 04]: O
�
(d4 log4 NkHkt)1+�/✏�

�

[Berry, Ahokas, Cleve, Sanders 07]: O
�
(d4 log⇤ NkHkt)1+�/✏�

�

[Childs, Kothari 11]: O
�
(d3 log⇤ NkHkt)1+�/✏�

�

[Childs10; Berry, Childs 12]: O(dkHk
max

t/
p
✏)

New result: O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�
⌧ := d2kHk

max

t



Fractional-query simulation
New approach: use tools for simulating the fractional-query model

Strictly improves all methods based on product formulas

Dependence on ² is exponentially improved!	

In fact, the improved dependence is optimal.

Two steps:	

• Reduce Hamiltonian simulation to fractional-query simulation	

• Improved algorithm for fractional-query simulation

High-level idea of fractional-query simulation:	

• Decompose the evolution into terms that can be implemented in 

superposition	

• “Compress” the implementation	

• Unit-time evolution only succeeds with constant probability; boost 

this using oblivious amplitude amplification



Outline
• Fractional-query model	


- Simulating fractional queries	

- Oblivious amplitude amplification	


• Reducing Hamiltonian simulation to fractional-query simulation	

• Features of the algorithm	


- Gate complexity	

- Local Hamiltonians	

- Time-dependent Hamiltonians	


• Optimality with respect to error	

• Comparison of simulation methods	

• Open questions



Fractional- and continuous-query models
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Useful for designing algorithms [Farhi, Goldstone, Gutmann 07]

Quantum query: Q|i, bi = (�1)bxi |i, bi
Black box hides a string x 2 {0, 1}n

More powerful than the discrete-query model?

No: Can simulate a t-query fractional-query algorithm with	

discrete queries [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

O(t log t
log log t )
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Simulating fractional queries
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◆

Fractional-query gadget: |0i R↵ • P R↵ 0
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Behavior of a segment

By rearranging the circuit, k queries suffice

But this still only succeeds with constant probability

Truncating the ancillas to Hamming weight                          
introduces error at most ²

k = O( log(1/✏)
log log(1/✏) )

“Segment” implementing                                           :UmQ↵mUm�1 · · ·U1Q
↵1U0

|0i R↵1 • · · · R↵1P

...
. . .

...

|0i R↵m · · · • R↵mP

U0 Q U1

· · ·

Um�1 Q Um
| i ...

. . .

· · ·



Correcting faults

Rube Goldberg, Professor Butts and the Self-Operating Napkin

[Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]
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¾ !
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¾ !
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segment 2!

undo!

¾ !
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undo!

¾ !

¼!

¾ !

¼!

…! ¾ !
segment t  

Query complexity: O
�
t
✏

log(t/✏)
log log(t/✏)

�



Oblivious amplitude amplification

To perform V with amplitude close to 1: use amplitude amplification?

Suppose U implements V with amplitude sin µ:

U |0i| i = sin ✓ |0iV | i+ cos ✓ |1i|�i

segment (without 
final measurement)

ideal evolution

With this oblivious amplitude amplification, we can perform the ideal 
evolution exactly with only three segments (one backward).

1
2

Using ideas from [Marriott, Watrous 05], we can show that a      -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!



Hamiltonian simulation using fractional queries
We reduce Hamiltonian simulation to fractional-query simulation.

Suppose H = H1 + H2 where H1, H2 have eigenvalues 0 and ¼.

Write                                                       for very large r (increasing 
r does not affect the query complexity, and only weakly affects the 
gate complexity).

e�i(H1+H2)t ⇡ (e�iH1t/re�iH2t/r)r

This is a fractional-query algorithm with oracles          and          .e�iH1 e�iH2

Package them as a single oracle                                                        .Q = |1ih1|⌦ e�iH1 + |2ih2|⌦ e�iH2

(may not be diagonal in the standard basis, but the 
fractional-query simulation doesn’t require that)



Decomposing sparse Hamiltonians
To give a complete simulation, decompose the d-sparse Hamiltonian 
into a sum of terms, each with eigenvalues 0 and ¼ (up to an overall 
shift and rescaling).

• Approximately decompose into terms with all nonzero entries equal
0
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Ex:

• Remove zero blocks so that all terms have two fixed eigenvalues
0
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H =
Pd2

j=1 Hj• Edge coloring:                         where each Hj is 1-sparse
new trick:  H is bipartite wlog since it suffices to simulate            H ⌦ �

x

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:



Gate complexity
Query complexity of this approach: O

�
⌧ log(⌧/✏)
log log(⌧/✏)

�

⌧ := d2kHk
max

twhere

Gate complexity is not much larger: O
�
⌧ log(⌧/✏)
log log(⌧/✏) (log(⌧/✏) + n)

�

where H acts on n qubits

Contributions to this gate complexity come from	

• Preparing the ancilla state	

• Performing simple operations between fractional queries	

• Implementing the fractional-query oracle using the sparse 

Hamiltonian oracle

Using oblivious amplitude amplification instead of recursive fault 
correction considerably simplifies the analysis.



Local Hamiltonians
Recall:  A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Directly applying our main result gives gate complexity

O
�
⌧ log

2
(⌧/✏)

log log(⌧/✏)n
�

⌧ := d2kHk
max

t = 4km2kHk
max

t

Ex:  Generic 2-local Hamiltonian acting for constant time
k = 2, m =

�n
2

�
, t, kHk

max

= O(1)

gives complexity            (cf. high-order product formulas:           )Õ(n5) Õ(n4)

But we can do better since we have an explicit decomposition into m 
k-local (and hence 2k-sparse) terms.  Resulting gate complexity:

⌧̃ := 2kmkHk
max

tO
�
⌧̃ log

2
(⌧̃/✏)

log log(⌧̃/✏)n
�

Ex:  Generic 2-local Hamiltonian acting for constant time: Õ(n3)



Time-dependent Hamiltonians
The query complexity of this approach depends only on the evolution 
time, not on the number of fractional-query steps

k d
dtH(t)k

⇒Query complexity of simulating sparse H(t) is independent of  
               (provided this is bounded)

(cf. [Poulin, Quarry, Somma, Verstraete 11])

Gate complexity depends only weakly on               :k d
dtH(t)k

O
�
⌧ log(⌧/✏) log((⌧+⌧ 0

)/✏)
log log(⌧/✏) n

� ⌧ := d2kHk
max

t

⌧ 0 := d2 max

s2[0,t]
k d
dsH(s)k t



Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦( log(1/✏)
log log(1/✏) )

Main idea:	

• Query complexity of parity is         even for unbounded error.	

• The same Hamiltonian as above computes parity with unbounded 

error by running for any positive time.  Running for constant time 
gives the parity with probability £(1/n!).

⌦(n)

Main idea:	

• Query complexity of computing the parity of n bits is        .	

• There is a Hamiltonian that can compute parity by running for 

time O(n).

⌦(n)

0 0 1 0 1 1 0



Comparison of sparse Hamiltonian simulations

Product formulas Quantum walk Fractional queries

Query complexity

Best known scaling 
with evolution time t 

and sparsity d
✓

Best known scaling 
with error ² ✓

Handles	

time-dependent 

Hamiltonians
✓ ✓

O

✓
dkHk

max

tp
✏

◆
d3kHkt

⇣
dkHkt

✏

⌘o(1) O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�

⌧ := d2kHk
max

t



Open questions
• Improvements to methods; (optimal?) tradeoffs between evolution 

time, error, and locality/sparsity	


• Improved simulation of specific kinds of Hamiltonians	


• Better understanding of applications to problems in quantum 
chemistry, etc.	


• Performance for small systems; implementations


