
Exponential improvement in precision	

for simulating sparse Hamiltonians

Andrew Childs	

Department of Combinatorics & Optimization	

and Institute for Quantum Computing	

University of Waterloo

based on joint work with	

Dominic Berry, Richard Cleve,

Robin Kothari, and Rolando Somma

arXiv:1312.1414	

To appear in STOC 2014

http://arxiv.org/abs/1312.1414

“... nature isn’t classical, dammit, and if you
want to make a simulation of nature, you’d
better make it quantum mechanical, and by
golly it’s a wonderful problem, because it
doesn’t look so easy.”	

!
Richard Feynman	

Simulating physics with computers (1981)

Why simulate quantum mechanics?

Implementing quantum algorithms	

• continuous-time quantum walk	

• adiabatic quantum computation	

• linear equations

Computational chemistry/physics	

• chemical reactions	

• properties of materials

Quantum dynamics
The dynamics of a quantum system are determined by its Hamiltonian.

A classical computer cannot even represent the state efficiently

By performing measurements on the final state, a quantum computer
can efficiently answer questions that (apparently) a classical computer
cannot

i
d

dt
| (t)i = H| (t)i

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an unknown initial state 	

 , produce the final state (approximately)| (t)i| (0)i

Quantum simulation

Simulation should approximate U(t) to within error ² (say, with
respect to the diamond norm)

More generally, H can be time-dependent

Quantum simulation problem: Given a description of the
Hamiltonian H, an evolution time t, and an unknown initial state 	

 , produce the final state (approximately)| (t)i| (0)i

Equivalently, apply the unitary operator U(t) satisfying

i
d

dt
U(t) = H(t)U(t)

If H is independent of t, U(t) = e�iHt

Local and sparse Hamiltonians

In any given row, the
location of the jth nonzero
entry and its value can be
computed efficiently (or is
given by a black box)

Note: A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Local Hamiltonians [Lloyd 96]

Hjwhere each acts on k = O(1) qubitsH =
Pm

j=1 Hj

Sparse Hamiltonians [Aharonov, Ta-Shma 03]

At most d nonzero entries
per row, d = poly(log N)
(where H is N £ N)

H =

Previous simulation methods

• Decompose Hamiltonian into a sum of terms that are easy to
simulate	

• Recombine the terms by alternating between them

Product formulas

• Define an easy-to-implement unitary operation (a step of a quantum
walk) whose spectrum is related to the Hamiltonian	

• Use phase estimation to obtain information about the spectrum	

• Introduce phases to give the desired evolution

Quantum walk

�
e�iAt/re�iBt/r

�r
= e�i(A+B)t +O(t2/r)

..
.

�
e�iAt/2re�iBt/re�iAt/2r

�r
= e�i(A+B)t +O(t3/r2)

Complexity of previous simulation methods
Parameters: dimension N

evolution time t
sparsity d
allowed error ²

[Lloyd 96]: (for local Hamiltonians only)poly(logN) (kHkt)2/✏

[Aharonov, Ta-Shma 02]: poly(d, logN) (kHkt)3/2/
p
✏

(for any ± > 0)[Childs 04]: O
�
(d4 log4 NkHkt)1+�/✏�

�

[Berry, Ahokas, Cleve, Sanders 07]: O
�
(d4 log⇤ NkHkt)1+�/✏�

�

[Childs, Kothari 11]: O
�
(d3 log⇤ NkHkt)1+�/✏�

�

[Childs10; Berry, Childs 12]: O(dkHk
max

t/
p
✏)

New result: O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�
⌧ := d2kHk

max

t

Fractional-query simulation
New approach: use tools for simulating the fractional-query model

Strictly improves all methods based on product formulas

Dependence on ² is exponentially improved!	

In fact, the improved dependence is optimal.

Two steps:	

• Reduce Hamiltonian simulation to fractional-query simulation	

• Improved algorithm for fractional-query simulation

High-level idea of fractional-query simulation:	

• Decompose the evolution into terms that can be implemented in

superposition	

• “Compress” the implementation	

• Unit-time evolution only succeeds with constant probability; boost

this using oblivious amplitude amplification

Outline
• Fractional-query model	

- Simulating fractional queries	

- Oblivious amplitude amplification	

• Reducing Hamiltonian simulation to fractional-query simulation	

• Features of the algorithm	

- Gate complexity	

- Local Hamiltonians	

- Time-dependent Hamiltonians	

• Optimality with respect to error	

• Comparison of simulation methods	

• Open questions

Fractional- and continuous-query models

U0 Q
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1 Q

U0
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1Q1/2 U2Q1/2 U3Q1/2 Q1/2

U0

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1

1/4

Q U2

1/4

Q
1/4

Q U3 U4

1/4

Q U5

1/4

Q
1/4

Q U6 U7

1/4

Q
1/4

Q

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

e�i⇡(HQ+HD)t

Useful for designing algorithms [Farhi, Goldstone, Gutmann 07]

Quantum query: Q|i, bi = (�1)bxi |i, bi
Black box hides a string x 2 {0, 1}n

More powerful than the discrete-query model?

No: Can simulate a t-query fractional-query algorithm with	

discrete queries [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

O(t log t
log log t)

U0 Q
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1 Q

U0
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1Q1/2 U2Q1/2 U3Q1/2 Q1/2

U0

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1

1/4

Q U2

1/4

Q
1/4

Q U3 U4

1/4

Q U5

1/4

Q
1/4

Q U6 U7

1/4

Q
1/4

Q

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

e�i⇡(HQ+HD)t

U0 Q
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1 Q

U0
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1Q1/2 U2Q1/2 U3Q1/2 Q1/2

U0

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1

1/4

Q U2

1/4

Q
1/4

Q U3 U4

1/4

Q U5

1/4

Q
1/4

Q U6 U7

1/4

Q
1/4

Q

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

e�i⇡(HQ+HD)t

U0 Q
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1 Q

U0
|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1Q1/2 U2Q1/2 U3Q1/2 Q1/2

U0

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

U1

1/4

Q U2

1/4

Q
1/4

Q U3 U4

1/4

Q U5

1/4

Q
1/4

Q U6 U7

1/4

Q
1/4

Q

|0i
|0i
|0i
|0i
|0i
|0i
|0i
|0i

e�i⇡(HQ+HD)t

Simulating fractional queries

R↵ =
1p
c+ s

✓p
c

p
sp

s �
p
c

◆
c = cos

⇡↵
2

s = sin

⇡↵
2

P =

✓
1 0
0 i

◆

Fractional-query gadget: |0i R↵ • P R↵ 0

Q| i ...
... Q↵| i

“Segment” implementing :UmQ↵mUm�1 · · ·U1Q
↵1U0

|0i R↵1 • · · · R↵1P

...
. . .

...

|0i R↵m · · · • R↵mP

U0 Q U1

· · ·

Um�1 Q Um
| i ...

. . .

· · ·

Behavior of a segment

By rearranging the circuit, k queries suffice

But this still only succeeds with constant probability

Truncating the ancillas to Hamming weight
introduces error at most ²

k = O(log(1/✏)
log log(1/✏))

“Segment” implementing :UmQ↵mUm�1 · · ·U1Q
↵1U0

|0i R↵1 • · · · R↵1P

...
. . .

...

|0i R↵m · · · • R↵mP

U0 Q U1

· · ·

Um�1 Q Um
| i ...

. . .

· · ·

Correcting faults

Rube Goldberg, Professor Butts and the Self-Operating Napkin

[Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

segment 1!

undo!

¾ !

¼!

undo!

¾ !

¼!

undo!

¾ !

¼!

¾ !

¼!

success!

fault!

segment 2!

undo!

¾ !

¼!

undo!

¾ !

¼!

undo!

¾ !

¼!

¾ !

¼!

…! ¾ !
segment t

Query complexity: O
�
t
✏

log(t/✏)
log log(t/✏)

�

Oblivious amplitude amplification

To perform V with amplitude close to 1: use amplitude amplification?

Suppose U implements V with amplitude sin µ:

U |0i| i = sin ✓ |0iV | i+ cos ✓ |1i|�i

segment (without
final measurement)

ideal evolution

With this oblivious amplitude amplification, we can perform the ideal
evolution exactly with only three segments (one backward).

1
2

Using ideas from [Marriott, Watrous 05], we can show that a -
independent reflection suffices to do effective amplitude amplification.

| i

But the input state is unknown!

Hamiltonian simulation using fractional queries
We reduce Hamiltonian simulation to fractional-query simulation.

Suppose H = H1 + H2 where H1, H2 have eigenvalues 0 and ¼.

Write for very large r (increasing
r does not affect the query complexity, and only weakly affects the
gate complexity).

e�i(H1+H2)t ⇡ (e�iH1t/re�iH2t/r)r

This is a fractional-query algorithm with oracles and .e�iH1 e�iH2

Package them as a single oracle .Q = |1ih1|⌦ e�iH1 + |2ih2|⌦ e�iH2

(may not be diagonal in the standard basis, but the
fractional-query simulation doesn’t require that)

Decomposing sparse Hamiltonians
To give a complete simulation, decompose the d-sparse Hamiltonian
into a sum of terms, each with eigenvalues 0 and ¼ (up to an overall
shift and rescaling).

• Approximately decompose into terms with all nonzero entries equal
0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 2 0 0
0 0 2 0 0 0
0 0 0 0 0 3
0 0 0 0 3 0

1

CCCCCCA
=

0

BBBBBB@

0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
+

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA
+

0

BBBBBB@

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

1

CCCCCCA

Ex:

• Remove zero blocks so that all terms have two fixed eigenvalues
0

BB@

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

1

CCA =
1

2

0

BB@

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

1

CCA+
1

2

0

BB@

�1 0 0 0
0 �1 0 0
0 0 0 1
0 0 1 0

1

CCA
Ex:

H =
Pd2

j=1 Hj• Edge coloring: where each Hj is 1-sparse
new trick: H is bipartite wlog since it suffices to simulate H ⌦ �

x

color(`, r) = (idx(`, r), idx(r, `))d2-coloring:

Gate complexity
Query complexity of this approach: O

�
⌧ log(⌧/✏)
log log(⌧/✏)

�

⌧ := d2kHk
max

twhere

Gate complexity is not much larger: O
�
⌧ log(⌧/✏)
log log(⌧/✏) (log(⌧/✏) + n)

�

where H acts on n qubits

Contributions to this gate complexity come from	

• Preparing the ancilla state	

• Performing simple operations between fractional queries	

• Implementing the fractional-query oracle using the sparse

Hamiltonian oracle

Using oblivious amplitude amplification instead of recursive fault
correction considerably simplifies the analysis.

Local Hamiltonians
Recall: A k-local Hamiltonian with m terms is d-sparse with d = 2k m

Directly applying our main result gives gate complexity

O
�
⌧ log

2
(⌧/✏)

log log(⌧/✏)n
�

⌧ := d2kHk
max

t = 4km2kHk
max

t

Ex: Generic 2-local Hamiltonian acting for constant time
k = 2, m =

�n
2

�
, t, kHk

max

= O(1)

gives complexity (cf. high-order product formulas:)Õ(n5) Õ(n4)

But we can do better since we have an explicit decomposition into m
k-local (and hence 2k-sparse) terms. Resulting gate complexity:

⌧̃ := 2kmkHk
max

tO
�
⌧̃ log

2
(⌧̃/✏)

log log(⌧̃/✏)n
�

Ex: Generic 2-local Hamiltonian acting for constant time: Õ(n3)

Time-dependent Hamiltonians
The query complexity of this approach depends only on the evolution
time, not on the number of fractional-query steps

k d
dtH(t)k

⇒Query complexity of simulating sparse H(t) is independent of  
 (provided this is bounded)

(cf. [Poulin, Quarry, Somma, Verstraete 11])

Gate complexity depends only weakly on :k d
dtH(t)k

O
�
⌧ log(⌧/✏) log((⌧+⌧ 0

)/✏)
log log(⌧/✏) n

� ⌧ := d2kHk
max

t

⌧ 0 := d2 max

s2[0,t]
k d
dsH(s)k t

Lower bounds
No-fast-forwarding theorem [BACS 07]: ⌦(t)

New lower bound: ⌦(log(1/✏)
log log(1/✏))

Main idea:	

• Query complexity of parity is even for unbounded error.	

• The same Hamiltonian as above computes parity with unbounded

error by running for any positive time. Running for constant time
gives the parity with probability £(1/n!).

⌦(n)

Main idea:	

• Query complexity of computing the parity of n bits is .	

• There is a Hamiltonian that can compute parity by running for

time O(n).

⌦(n)

0 0 1 0 1 1 0

Comparison of sparse Hamiltonian simulations

Product formulas Quantum walk Fractional queries

Query complexity

Best known scaling
with evolution time t

and sparsity d
✓

Best known scaling
with error ² ✓

Handles	

time-dependent

Hamiltonians
✓ ✓

O

✓
dkHk

max

tp
✏

◆
d3kHkt

⇣
dkHkt

✏

⌘o(1) O
�
⌧ log(⌧/✏)
log log(⌧/✏)

�

⌧ := d2kHk
max

t

Open questions
• Improvements to methods; (optimal?) tradeoffs between evolution

time, error, and locality/sparsity	

• Improved simulation of specific kinds of Hamiltonians	

• Better understanding of applications to problems in quantum
chemistry, etc.	

• Performance for small systems; implementations

