Exponential improvement in precision for simulating sparse Hamiltonians

Andrew Childs
Department of Combinatorics \& Optimization
and Institute for Quantum Computing
University of Waterloo
based on joint work with
Dominic Berry, Richard Cleve, Robin Kothari, and Rolando Somma

$$
\begin{gathered}
\text { arXiv:I3I2.1414 } \\
\text { To appear in STOC } 2014
\end{gathered}
$$

"... nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical, and by golly it's a wonderful problem, because it doesn't look so easy."

Richard Feynman
Simulating physics with computers (198I)

Why simulate quantum mechanics?

Computational chemistry/physics

- chemical reactions
- properties of materials

Implementing quantum algorithms

- continuous-time quantum walk
- adiabatic quantum computation
- linear equations

Quantum dynamics

The dynamics of a quantum system are determined by its Hamiltonian.

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

Quantum simulation problem: Given a description of the Hamiltonian H, an evolution time t, and an unknown initial state $|\psi(0)\rangle$, produce the final state $|\psi(t)\rangle$ (approximately)

A classical computer cannot even represent the state efficiently
By performing measurements on the final state, a quantum computer can efficiently answer questions that (apparently) a classical computer cannot

Quantum simulation

Quantum simulation problem: Given a description of the Hamiltonian H, an evolution time t, and an unknown initial state $|\psi(0)\rangle$, produce the final state $|\psi(t)\rangle$ (approximately)

Equivalently, apply the unitary operator $U(t)$ satisfying

$$
i \frac{\mathrm{~d}}{\mathrm{~d} t} U(t)=H(t) U(t)
$$

If H is independent of $t, U(t)=e^{-i H t}$

More generally, H can be time-dependent

Simulation should approximate $U(t)$ to within error ϵ (say, with respect to the diamond norm)

Local and sparse Hamiltonians

Local Hamiltonians [Lloyd 96]
$H=\sum_{j=1}^{m} H_{j}$ where each H_{j} acts on $k=O(1)$ qubits
Sparse Hamiltonians [Aharonov, Ta-Shma 03]
At most d nonzero entries per row, $d=\operatorname{poly}(\log N)$ (where H is $N \times N$)

In any given row, the

Note: A k-local Hamiltonian with m terms is d-sparse with $d=2^{k} m$

Previous simulation methods

Product formulas

- Decompose Hamiltonian into a sum of terms that are easy to simulate
- Recombine the terms by alternating between them

$$
\begin{aligned}
\left(e^{-i A t / r} e^{-i B t / r}\right)^{r} & =e^{-i(A+B) t}+O\left(t^{2} / r\right) \\
\left(e^{-i A t / 2 r} e^{-i B t / r} e^{-i A t / 2 r}\right)^{r} & =e^{-i(A+B) t}+O\left(t^{3} / r^{2}\right) \\
& \vdots
\end{aligned}
$$

Quantum walk

- Define an easy-to-implement unitary operation (a step of a quantum walk) whose spectrum is related to the Hamiltonian
- Use phase estimation to obtain information about the spectrum
- Introduce phases to give the desired evolution

Complexity of previous simulation methods

Parameters:	dimension N evolution time t	sparsity d allowed error ϵ

[Lloyd 96]: poly $(\log N)(\|H\| t)^{2} / \epsilon \quad$ (for local Hamiltonians only)
[Aharonov, Ta-Shma 02]: $\operatorname{poly}(d, \log N)(\|H\| t)^{3 / 2} / \sqrt{\epsilon}$
[Childs 04]: $O\left(\left(d^{4} \log ^{4} N\|H\| t\right)^{1+\delta} / \epsilon^{\delta}\right) \quad$ (for any $\delta>0$)
[Berry, Ahokas, Cleve, Sanders 07]: $O\left(\left(d^{4} \log ^{*} N\|H\| t\right)^{1+\delta} / \epsilon^{\delta}\right)$
[Childs, Kothari II]: $O\left(\left(d^{3} \log ^{*} N\|H\| t\right)^{1+\delta} / \epsilon^{\delta}\right)$
[Childs I0; Berry, Childs I2]: $O\left(d\|H\|_{\max } t / \sqrt{\epsilon}\right)$
New result: $O\left(\tau \frac{\log (\tau / \epsilon)}{\log \log (\tau / \epsilon)}\right) \quad \tau:=d^{2}\|H\|_{\max } t$

Fractional-query simulation

New approach: use tools for simulating the fractional-query model
Two steps:

- Reduce Hamiltonian simulation to fractional-query simulation
- Improved algorithm for fractional-query simulation

High-level idea of fractional-query simulation:

- Decompose the evolution into terms that can be implemented in superposition
- "Compress" the implementation
- Unit-time evolution only succeeds with constant probability; boost this using oblivious amplitude amplification

Strictly improves all methods based on product formulas
Dependence on ϵ is exponentially improved!
In fact, the improved dependence is optimal.

Outline

- Fractional-query model
- Simulating fractional queries
- Oblivious amplitude amplification
- Reducing Hamiltonian simulation to fractional-query simulation
- Features of the algorithm
- Gate complexity
- Local Hamiltonians
- Time-dependent Hamiltonians
- Optimality with respect to error
- Comparison of simulation methods
- Open questions

Fractional- and continuous-query models

Black box hides a string $x \in\{0,1\}^{n}$
Quantum query: $Q|i, b\rangle=(-1)^{b x_{i}}|i, b\rangle$

Useful for designing algorithms [Farhi, Goldstone, Gutmann 07]
More powerful than the discrete-query model?
No: Can simulate a t-query fractional-query algorithm with $O\left(t \frac{\log t}{\log \log t}\right)$ discrete queries [Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

Simulating fractional queries

Fractional-query gadget:

$$
R_{\alpha}=\frac{1}{\sqrt{c+s}}\left(\begin{array}{cc}
\sqrt{c} & \sqrt{s} \\
\sqrt{s} & -\sqrt{c}
\end{array}\right) \quad \begin{aligned}
& c=\cos \frac{\pi \alpha}{2} \\
& s=\sin \frac{\pi \alpha}{2}
\end{aligned} \quad P=\left(\begin{array}{ll}
1 & 0 \\
0 & i
\end{array}\right)
$$

"Segment" implementing $U_{m} Q^{\alpha_{m}} U_{m-1} \cdots U_{1} Q^{\alpha_{1}} U_{0}$:

Behavior of a segment

"Segment" implementing $U_{m} Q^{\alpha_{m}} U_{m-1} \cdots U_{1} Q^{\alpha_{1}} U_{0}$:

Truncating the ancillas to Hamming weight $k=O\left(\frac{\log (1 / \epsilon)}{\log \log (1 / \epsilon)}\right)$ introduces error at most ϵ

By rearranging the circuit, k queries suffice
But this still only succeeds with constant probability

Correcting faults

Rube Goldberg, Professor Butts and the Self-Operating Napkin
[Cleve, Gottesman, Mosca, Somma, Yonge-Mallo 09]

Oblivious amplitude amplification

Suppose U implements V with amplitude $\sin \theta$:

To perform V with amplitude close to 1 : use amplitude amplification?
But the input state is unknown!
Using ideas from [Marriott, Watrous 05], we can show that a $|\psi\rangle$ independent reflection suffices to do effective amplitude amplification.

With this oblivious amplitude amplification, we can perform the ideal evolution exactly with only three segments (one backward).

Hamiltonian simulation using fractional queries

We reduce Hamiltonian simulation to fractional-query simulation.

Suppose $H=H_{1}+H_{2}$ where H_{1}, H_{2} have eigenvalues 0 and π.
Write $e^{-i\left(H_{1}+H_{2}\right) t} \approx\left(e^{-i H_{1} t / r} e^{-i H_{2} t / r}\right)^{r}$ for very large r (increasing r does not affect the query complexity, and only weakly affects the gate complexity).

This is a fractional-query algorithm with oracles $e^{-i H_{1}}$ and $e^{-i H_{2}}$.
Package them as a single oracle $Q=|1\rangle\langle 1| \otimes e^{-i H_{1}}+|2\rangle\langle 2| \otimes e^{-i H_{2}}$.
(may not be diagonal in the standard basis, but the fractional-query simulation doesn't require that)

Decomposing sparse Hamiltonians

To give a complete simulation, decompose the d-sparse Hamiltonian into a sum of terms, each with eigenvalues 0 and π (up to an overall shift and rescaling).

- Edge coloring: $H=\sum_{j=1}^{d^{2}} H_{j}$ where each H_{j} is 1-sparse new trick: H is bipartite wlog since it suffices to simulate $H \otimes \sigma_{x}$ d^{2}-coloring: $\operatorname{color}(\ell, r)=(\operatorname{idx}(\ell, r), \operatorname{idx}(r, \ell))$
- Approximately decompose into terms with all nonzero entries equal

EX: $\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 3 & 0\end{array}\right)=\left(\begin{array}{llllll}0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)+\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)+\left(\begin{array}{llllll}0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right)$

- Remove zero blocks so that all terms have two fixed eigenvalues

Ex: $\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)=\frac{1}{2}\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)+\frac{1}{2}\left(\begin{array}{rrrr}-1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right)$

Gate complexity

Query complexity of this approach: $O\left(\tau \frac{\log (\tau / \epsilon)}{\log \log (\tau / \epsilon)}\right)$

$$
\text { where } \tau:=d^{2}\|H\|_{\max } t
$$

Gate complexity is not much larger: $O\left(\tau \frac{\log (\tau / \epsilon)}{\log \log (\tau / \epsilon)}(\log (\tau / \epsilon)+n)\right)$

where H acts on n qubits

Contributions to this gate complexity come from

- Preparing the ancilla state
- Performing simple operations between fractional queries
- Implementing the fractional-query oracle using the sparse Hamiltonian oracle

Using oblivious amplitude amplification instead of recursive fault correction considerably simplifies the analysis.

Local Hamiltonians

Recall: A k-local Hamiltonian with m terms is d-sparse with $d=2^{k} m$
Directly applying our main result gives gate complexity

$$
O\left(\tau \frac{\log ^{2}(\tau / \epsilon)}{\log \log (\tau / \epsilon)} n\right) \quad \tau:=d^{2}\|H\|_{\max } t=4^{k} m^{2}\|H\|_{\max } t
$$

Ex: Generic 2-local Hamiltonian acting for constant time $k=2, m=\binom{n}{2}, t,\|H\|_{\text {max }}=O(1)$ gives complexity $\tilde{O}\left(n^{5}\right)$ (cf. high-order product formulas: $\tilde{O}\left(n^{4}\right)$)

But we can do better since we have an explicit decomposition into m k-local (and hence 2^{k}-sparse) terms. Resulting gate complexity:

$$
O\left(\tilde{\tau} \frac{\log ^{2}(\tilde{\tau} / \epsilon)}{\log \log (\tilde{\tau} / \epsilon)} n\right) \quad \tilde{\tau}:=2^{k} m\|H\|_{\max } t
$$

Ex: Generic 2-local Hamiltonian acting for constant time: $\tilde{O}\left(n^{3}\right)$

Time-dependent Hamiltonians

The query complexity of this approach depends only on the evolution time, not on the number of fractional-query steps
\Rightarrow Query complexity of simulating sparse $H(t)$ is independent of $\left\|\frac{\mathrm{d}}{\mathrm{d} t} H(t)\right\|$ (provided this is bounded)
(cf. [Poulin, Quarry, Somma, Verstraete II])

Gate complexity depends only weakly on $\left\|\frac{\mathrm{d}}{\mathrm{d} t} H(t)\right\|$:

$$
O\left(\tau \frac{\log (\tau / \epsilon) \log \left(\left(\tau+\tau^{\prime}\right) / \epsilon\right)}{\log \log (\tau / \epsilon)} n\right) \quad \begin{aligned}
\tau & :=d^{2}\|H\|_{\max } t \\
\tau^{\prime} & :=d^{2} \max _{s \in[0, t]}\left\|\frac{\mathrm{d}}{\mathrm{~d} s} H(s)\right\| t
\end{aligned}
$$

Lower bounds

No-fast-forwarding theorem [BACS 07]: $\Omega(t)$
Main idea:

- Query complexity of computing the parity of n bits is $\Omega(n)$.
- There is a Hamiltonian that can compute parity by running for time $O(n)$.

New lower bound: $\Omega\left(\frac{\log (1 / \epsilon)}{\log \log (1 / \epsilon)}\right)$
Main idea:

- Query complexity of parity is $\Omega(n)$ even for unbounded error.
- The same Hamiltonian as above computes parity with unbounded error by running for any positive time. Running for constant time gives the parity with probability $\Theta(1 / n!)$.

Comparison of sparse Hamiltonian simulations

	Product formulas	Quantum walk	Fractional queries								
Query complexity	$d^{3}\\|H\\| t\left(\frac{d\\|H\\| t}{\epsilon}\right)^{o(1)}$	$O\left(\frac{d\\|H\\|_{\max } t}{\sqrt{\epsilon}}\right)$	$\tau\left(\tau \frac{\log (\tau / \epsilon)}{\log \log (\tau / \epsilon)}\right)$ $\tau:=d^{2}\\|H\\|_{\max } t$								
Best known scaling with evolution time t and sparsity d											
Best known scaling with error ϵ	\checkmark	\checkmark									
Handles time-dependent Hamiltonians	\checkmark		\checkmark								

Open questions

- Improvements to methods; (optimal?) tradeoffs between evolution time, error, and locality/sparsity
- Improved simulation of specific kinds of Hamiltonians
- Better understanding of applications to problems in quantum chemistry, etc.
- Performance for small systems; implementations

