Nanoparticle Characterization Needs – From Composite Properties to Product Stewardship

The New Steel? February 28, 2011

Lee Silverman DuPont Nanocomposite Technologies Central Research and Development Wilmington, Delaware

Partitioning Nanotechnology Space

Nanomaterials are an Enabling Technology for Composites

Desired property combinations can be achieved with proper selection of materials and microstructure

- Manipulation of materials on very fine scale is broadly useful across polymer platforms
- Resulting materials have more function and value in use

Structure/property relationships are fundamental to material development

Nanoscale Science and Engineering and Product Stewarship:

Many nanostructures do NOT involve nanoparticles.

But most if not all nano-specific SHE questions that are being discussed relate to particles with nanoscale dimensions..

 "There is an important distinction between applications that use nanoscalar active areas on larger objects and chemicals or pharmaceuticals in which the nanometre-scale 'active area' is a discrete nanoparticle or nanotube Exposures to substances and materials other than nanoparticles are covered by existing understanding and regulation.... They are not considered further in this report except in that they may be in the form of discrete particles incorporated into materials in the nanometre size range."

Excerpted from *Nanoscience and nanotechnologies: opportunities and uncertainties*; Royal Society and the Royal Academy of Engineering, 2004

Environmental, Health and Safety, and Product Stewardship Requires Data

"All fiber types capable of depositing in the thorax are not alike in their pathogenic potential...

A complete characterization (i.e., dimensions, fiber number, mass, and aerodynamic diameter) of the fiber aerosol and retained dose is essential."

• R. McClellan, et. al. – Regul Toxicol Pharmacol, 16 (1992) 321-64

"A robust structure/activity paradigm has emerged from (research on fibre toxicology) that highlights fibre length, thinness, and biopersistence as major factors in determining the pathogenicity of a fibre."

• K. Donaldson, Crit. Rev. Toxicol. 39 (2009) 487-500

Therefore product stewardship requires extensive characterization

Environmental Defense – DuPont Nano Risk Framework

"A framework to facilitate the responsible development, production, use and disposal of nano-scale materials."

Collaboration begun in October 2005

Objective: A systematic and disciplined process, developed with broad collaboration

- Identify, manage and reduce potential health, safety and environmental risks throughout the lifecycle of such nanomaterials"
- Model and tool for industry, public interest groups, academia and government
- Make available information, tools and methods developed

Framework was published on June 21, 2007

A Mix of Familiar and New Elements

Familiar risk management paradigm

- Development of informational profiles (base sets)
- Information driven
- Reasonable worse case assumptions
- Appropriate bridging
- Applying life cycle thinking

As of 2/1/2011

- Total visits to website 20,365
- Total Downloads 9144
- Total Countries 134

www.nanoriskframework.com

Environmental Defense – DuPont NanoRisk Framework

Typical Information

Commercial Name

Technical Name

Common Form

Properties

Chemical Composition

Molecular Structure

Crystal Structure

Physical Form

Bulk Density

Size Distribution Surface-Area Particle Density Solubility Dispersability Agglomeration State Chemical Reactivity Surface Reactivity Porosity

Particle Size

Surface Charge

Nanocomposite Design Rules: Particle Dimensionality Defines Properties

Properties/uses		
Isotropy, transparency, electronic, magnetic, photonic, model systems	spheres	
electrical conductivity, themomechanical, network structures, fillers for fibers	rods	
Barrier, thermomechanical, flame retardancy, CTE in plane, very high interfacial area	plates	

Nanocomposite Systems Require Compatible Particles, Polymers and Processes

TiO₂, SiO₂, BaTiO₃, AIN, diamonds, Qdots, polymers...

 $CNT, Al_2O_3,$

SiC, TiO₂

exfoliated

graphite..

tubes....

Clay,

Dispersion & Compatibilization

Interfacial Chemistry

- Surfactants
- Coupling agents

Structures & Interphase

- Dendrimers
- Multiblock polymers
- Flexible links

Process Technology

- Polymer processing
- Milling/grinding
- Particle formation/modification

Polymers

Polyimide
Fluoropolymers
Thermoset
Polyamide
Polyamide
Polyolefins
Ionomers
Others...

Processes Developed to Create Excellent Dispersions in Multiple Polymers

Diffusion Barrier vs. Filler Aspect Ratio (Nielsen Model)

After L.E. Nielsen, Journal of Macromolecular Science, Part A, **1** (1967) 929 - 942

3/10/2011

Percolation Threshold to Aspect Ratio (Garboczi Model)

E.J. Garboczi, et. al., Physical Review E, **52** (1995) 819-828

3/10/2011

Graphene/Polystyrene Electrical Conductivity Fits Garboczi Model

S. Stankovich, et. al., Nature **442** (2006) 282-286

Thermal Conductivity vs. Aspect Ratio (Gao Model)

L. Gao, et. al., Chemical Physics Letters, **434** (2007) Pages 297-300

QU POND.

Elastic Modulus to Filler Aspect Ratio (Halpin-Tsai)

After J.C. Halpin, et. al., Polymer Engineering and Science, 16 (1976) 344-352 QU POND.

Techniques for Measuring Nanoparticle Size

Method	Dry/Solvent Dispersed			Composite			
	Plates	Spheres	Rods	Plates	Spheres	Rods	
Surface Area (BET)							
Static Light Scattering (SLS)							
Dynamic light scattering (DLS)							
Scanning Electron Microscopy (SEM)	\bigcirc		\bigcirc				
Transmission Electron Microscopy (TEM)	\bigcirc		\bigcirc	\bigcirc		\bigcirc	
Scanning Probe Microscopy (SPM)							
Small Angle X-ray Scattering (SAXS)							

Techniques for Measuring Nanoparticle Size

Method	Composite						
	Plate	Sphere	Rod	Distri- bution	Multi- modal	Faceted	Re- entrant
Surface Area (BET)							
Static Light Scattering (SLS)	\bigcirc		\bigcirc				
Dynamic light scattering (DLS)							
Scanning Electron Micr. (SEM)							
Transmission Electron Micr. (TEM)	\bigcirc		\bigcirc				
Scanning Probe Micr. (SPM)							
Small Angle X-ray Scattering (SAXS)							

Electron Microscopy can be Ambiguous

Individual Clay Sheets ARE Irregular

Height images (AFM)

Laponite

Montmorillonite

Images courtesy of Greg Blackman

Are These Microstructures Different?

Silica in polystyrene (10%)

Silica in PMMA (10%)

Need to Measure the Spaces (Dispersion)!

Nanoparticle Characterization Required for Product Stewardship, Property Understanding

NanoRisk Framework is rigorous and data driven assessment tool

- Materials and application descriptions
- Lifecycle profiles
- Risk evaluation and Management
- Decide, document and act
- Review and adapt

Nanoparticle characterization is a fundamental part of the product stewardship process

Protecting people and environment is our highest priority

Nanoparticle Characterization is Required for Understanding Property Development

Particle size, shape, distribution responsible for properties

Characterization of platy and rod-like particles onerous at best

- · Best done in highly oriented systems and low particle concentrations
- This is rarely the case in nanocomposites

Characterization almost impossible in nanocomposites

- Size distributions (especially multimodal)
- Faceted particles
- Highly irregular particles (especially re-entrant shapes)
- High loadings

Dispersion very important also

• But is the subject of another (lengthy) discussion

