Automatic Identification of Regions of Neutron Diffraction Patterns Changing During Phase Transition

Shriya Haravu Mentor: Dr. William Ratcliff

-5

2 Theta

Real diffraction pattern data for FeTe (Iron Telluride) taken at Oak Ridge National Laboratory

Gaussian Mixture Modelling

- Didn't work
- Stuck in Local Minima

Two – step approach

1. Finding peaks

2. Mapping peaks from different diffraction patterns to each other

Step 1: Finding peaks Bumps - DREAM

Software Package Developed by Paul Kienzle

Actual parameters

Amplitudes:	100, 150, 101
Positions:	0, 15, 3
Standard Deviations:	.05, .15, .15

[0]
.a = G0a = 149.17 in [0,200]
.sigma = G0sigma = 0.150417 in [0,0.3]
.xc = G0xc = 15.0015 in [-5,16]
[1]
.a = G1a = 98.1573 in [0,200]
.sigma = G1sigma = 0.050735 in [0,0.3]
.xc = G1xc = 0.000934766 in [-5,16]
[2]
.a = G2a = 100.542 in [0,200]
.sigma = G2sigma = 0.151976 in [0,0.3]
.xc = G2xc = 3.0013 in [-5,16]

Step 1: Finding peaks

.

Step 1: Finding peaks Bayesian Information Criterion (BIC)

$$BIC = k \ln(n) - 2 \ln(\widehat{L})$$

k = # of parameters n = number of data points L = maximum log-likelihood

$$\chi^{2} = \left(\frac{1}{D.O.F}\right) \sum \frac{(O-E)^{2}}{E^{2}}$$

O = Observed data valueE = Expected data valueD.O.F = Degrees of Freedom

Low Temperature

Low Temperature 음 1000-Intensity BIC plots OF -5 2 Theta High Temperature 3500 - 6 Intensity

2 Theta -5

Conclusions

- Fitting peaks first using probabilistic approach as opposed to mapping individual data points to each other directly seems more promising
- Summer Summary:
 - We used Bumps + DREAM to fit peaks to simulated data
 - We integrated code for automatically determining how many peaks to fit

In the process:

- Learned to use CLI, GitHub
- Gained familiarity with modules

<u>This Photo</u> by Unknown Author is licensed under <u>CC</u> <u>BY-SA-NC</u>

Next Steps

- Testing on actual data/with more noise
- Improving Step 2 (Mapping)
- Generalizing from Powder to Crystal (1-D data to 2-D data)

Acknowledgements

