Automatic Identification of Regions of Neutron Diffraction Patterns Changing During Phase Transition

Shriya Haravu
Mentor: Dr. William Ratcliff

Neutron Scattering

Neutron Scattering

Change in powder temperature

Change in powder structure

Change in powder diffraction pattern

Real diffraction pattern data for FeTe (Iron Telluride) taken at Oak Ridge National Laboratory

Gaussian Mixture Modelling

- Didn't work
- Stuck in Local Minima

Two - step approach

1. Finding peaks

2. Mapping peaks from different diffraction patterns to each other

Step 1: Finding peaks

$$
f(x)=a \exp \left(-\frac{(x-b)^{2}}{2 c^{2}}\right)
$$

Step 1: Finding peaks Bumps - DREAM

Software Package Developed by Paul Kienzle

model

Actual parameters

Amplitudes:

100, 150, 101
Positions:
0, 15, 3
Standard Deviations: .05, . 15, . 15

```
[0]
    a = G0a = 149.17 in [0, 200]
    .sigma = G0sigma = 0.150417 in [0,0.3]
    xc = G0xc = 15.0015 in [-5,16]
[1]
    .a = G1a = 98.1573 in [0,200]
    .sigma = G1sigma = 0.050735 in [0,0.3]
    xc = G1xc = 0.000934766 in [-5,16]
[2]
    a = G2a = 100.542 in [0,200]
    .sigma = G2sigma = 0.151976 in [0,0.3]
    .xc = G2xc = 3.0013 in [-5,16]
```


Step 1: Finding peaks

High Temperature

Low Temperature

High Temperature

High Temperature

⑪DDATS

Step 1: Finding peaks Bayesian Information Criterion (BIC)

$$
\mathrm{BIC}=k \ln (n)-2 \ln (\widehat{L})
$$

$\mathrm{k}=$ \# of parameters n = number of data points L = maximum log-likelihood

$$
\chi^{2}=\left(\frac{1}{D \cdot O \cdot F}\right) \sum \frac{(O-E)^{2}}{E^{2}}
$$

$\mathrm{O}=$ Observed data value
E = Expected data value
D.O.F = Degrees of Freedom

BIC plots

High Temperature

High Temperature

Conclusions

- Fitting peaks first using probabilistic approach as opposed to mapping individual data points to each other directly seems more promising
- Summer Summary:
- We used Bumps + DREAM to fit peaks to simulated data
- We integrated code for automatically determining how many peaks to fit

In the process:

- Learned to use CLI, GitHub
- Gained familiarity with modules

Next Steps

- Testing on actual data/with more noise
- Improving Step 2 (Mapping)
- Generalizing from Powder to Crystal (1-D data to 2-D data)

Acknowledgements

