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Outline 

• Emerging challenges with Big Data in scientific domains 

(5 min) 

• Examples of current approaches and solutions 

(15 min) 

• Description of SDAV organization and technologies 

(5 min) 
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 Scientific Data Management, Analysis, 
and Visualization 

• Applications  examples 

• Climate modeling 

• Combustion 

• Fusion 

• Astrophysics 

• Algorithms, techniques, and software 

• Representing scientific data – data models, metadata 

• Managing I/O – methods for removing I/O bottleneck 

• Accelerating efficiency of access – data structures, indexing 

• Facilitating data analysis – data manipulations for finding 

patterns and meaning in the data 

• Visual analytics – help understand data visually 
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A Typical Scientific Investigation Process 

• Current practice – data intensive tasks 

• Runs large-scale simulations on large supercomputers 

• Dump data on parallel disk systems 

• Export some of the data to archives 

• Move data to users’ sites – usually selected subsets 

• Perform data manipulations and analysis on mid-size clusters 

• Collect experimental / observational data 

• Move experimental / observational data to analysis sites 

• Perform comparison of experimental/observational to 

validate simulations 

• Iterate 
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A typical Scientific Investigation 
lots of Data Movement (GBs – TBs) 
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Exascale Systems: Potential Architecture 

Systems 2009 2018 Difference 

System Peak 2 Pflop/sec 1 Eflop/sec O(1000) 

Power 6 Mwatt 20 Mwatt 

System Memory 0.3 Pbytes 32-64 Pbytes O(100) 

Node Compute 125 Gflop/sec 1-15 Tflop/sec O(10-100) 

Node Memory BW 25 Gbytes/sec 2-4 Tbytes/sec O(100) 

Node Concurrency 12 O(1-10K) O(100-

1000) 

Total Node Interconnect 

BW 

3.5 Gbytes/sec 200-400 

Gbytes/sec 

O(100) 

System Size (Nodes) 18,700 O(100,000-1M) O(10-100) 

Total Concurrency 225,000 O(1 billion) O(10,000) 

Storage 15 Pbytes 500-1000 Pbytes O(10-100) 

I/O 0.2 Tbytes/sec 60 Tbytes/sec O(100) 

MTTI Days O(1 day) From J. Dongarra, “Impact of Architecture and Technology for Extreme Scale on Software and Algorithm 

Design,” Cross-cutting Technologies for Computing at the Exascale, February 2-5, 2010. 
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At Exascale (PBs) – data volume 
challenge 
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What Can be Done? 

   Provide analysis machines where data is generated 
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What  Else Can be Done? 

• Perform some data analysis and visualization on simulation machine (in-situ) 

• Reduce Data and prepare data for further analysis 

Simulation Machine 
+ Data Reduction and Indexing 

+ Analysis and Visualization 
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Bottlenecks/Problems for handling 
 Big Data  
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Some Solutions are Emerging 

(1) In-situ Analysis, Visualization, Data reduction, Indexing 

(2) Monitoring simulations progress in real-time 

(3) I/O slows down the computation 

(4) No automated archival management 

(5) Selection of subsets based on content 

(6) Reliable and effective data movement 

(7) Tools for real-time analysis and visualization 

(8) Validation of models using experimental data (some) 

(9) Automated data provenance (some) 
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Example: 

Framework for Improving I/O and  

in situ Visualization 
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I/O bottlenecks and analysis challenges faced 
by applications running on leadership systems 

 FLASH is multi-scale, multi-physics code 

used in domains including astrophysics, 

cosmology and high-energy density 

physics. 

 It uses a block-structured AMR, and at 

32K cores, I/O time is about 30% of the 

entire run achieving a max of 1GB/s out of 

35 GB/s on the ALCF Intrepid BG/P 

system. 

 Storage is sometimes referred to as the 

“black-hole”  by FLASH scientists as it 

significantly impedes the time to glean 

insights from the simulation. 
Visualization of  
Type 1A 
supernova 
explosion FLASH 
simulation 

Improving I/O performance and reducing the time-to-discovery  is 

critical to FLASH. Similar challenges faced by several 

applications running on DOE leadership systems such as 

PHASTA CDF code. 
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Highlight: GLEAN 

1
5 

 Strong scaling performance for 1GB data 
movement from ALCF Intrepid Blue Gene/P. 
Strong scaling is critical as we move towards 
systems with increased core counts. 

 Co-visualization of  a 3.3 billion element PHASTA 
simulation of  an aircraft wing running on 160K cores of  
ALCF Intrepid Blue Gene/P using ParaView on 100 
nodes of  ALCF Eureka analysis cluster enabled by 
GLEAN. 

 GLEAN is a flexible and extensible framework  to facilitate simulation-time data 

analysis and I/O acceleration. 

 Features include: topology-aware data movement, asynchronous data staging 

and burst buffering, leverages application data models, scalable analysis 

algorithms and infrastructure (in situ, co processing, in flight). 

 Scaled to entire ALCF infrastructure (160K BG/P Intrepid cores), achieved multi-

fold I/O improvement for FLASH, and demonstrated in situ analysis.  
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Example: 

 Capturing I/O and  

Monitoring simulations progress in real-time 
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ADIOS: Adaptable I/O System 

• Overview: service-oriented architecture: 

• Allows plug-ins for different I/O implementations 

• Abstracts the API from the method used for I/O 

• Simple API, almost as easy as F90 write 

statement 

• Synchronous and asynchronous transports 

supported with no code changes  

• Change I/O method by changing XML file only 

• ADIOS buffers data 

• ADIOS allows multiple transport 

methods per group 

External 

metadata 

(XML file) Scientific codes 
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• Automate the monitoring pipeline 

Use workflow 

• Monitoring of large-scale simulations  

must be dynamic 

• transfer of simulation output to remote machines  

• execution of conversion routines  

• image creation, data archiving 

• Requirements for ease-of-use  

Use dashboard 

• A way to view monitoring information from 

anywhere 

• A way to see graphs, images, and movies 

• A way to see provenance and move data to 

user’s site 

• A way to perform statistical analysis, compare 

graphs, etc. 

Monitoring saves cycles 

Monitoring simulations progress in real-time 
(Initially inspired a Fusion project) 
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The Kepler Workflow Engine 

• Kepler is a workflow execution system based on Ptolemy (open 

source from UCB) 

• Our work is in the development of components for scientific 

applications (called actors) 
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 visualize and compare shots  

Real-time visualization and analysis capabilities  
on dashboard 
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Example: 

In Situ Code Coupling 

and in Situ Visualization 
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In-situ Execution of Coupled Scientific Workflow 

Motivations: 
 Online and In-situ data analytics  

 E.g. visualization, feature tracking 

 

 

Driving Application Scenarios: 

 Emerging scientific workflows are composed of 
heterogeneous coupled component applications 
that interact and exchange significant volumes of 
data at runtime 

 On-chip data sharing is much cheaper than off-
chip data transfers 

 Large volumes of data movement over 
communication fabrics  contention, latency and 
energy consumption 

 High-end systems have increased cores count (per 
compute node) 

 E.g., Cray XK6  (Titan) -- AMD 16-core per 
processors; IBM BG/Q (Mira and Sequoia) --17-
core per processor 

 

 

Combustion 

simulation 

 Integrated and coupled multi-physics simulation 

 E.g. integrated climate modeling, fusion simulation, 

subsurface modeling, material science workflows

  

 

 

Fig. Tracking vortical structure in turbulent 

combustion flow field (Figure credit: Hongfeng Yu, 

Sandia Lab) 

Disk based 
 Increasing performance gap between computation and disk 

IO speeds, IO becomes the bottleneck 

Problems with Traditional Approach for Data Sharing: 

Coupler approach (hub-and-spoke) 
 Couplers can become the bottleneck limiting scalability 
 Larger data sharing latency, data is moved twice 

 Large volumes of network data movement  
Increasing costs in terms of time and energy! 

Fig. Illustration of traditional post-processing data 

processing/analysis pipeline (based on disk IO) 
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In-situ Execution of Coupled Scientific Workflow 

Two workflow scenarios evaluated on Cray XT5 
 
 Significant saving in the amount of data 

transferred over the network by co-locating data 
producers and consumers on the same 
processor 
 

 Data transfer time (and energy) decreased as 
much of the coupled data is retrieved directly  
from on-processor shared memory 

Results: 

Enable in-situ execution of coupled scientific workflow 

 Coupled simulation / data analytics /data processing 

workflow composed as a DAG of tasks 

 DataSpaces based shared space programming 

abstraction to express coordination and data sharing  

 Elastic DHT spans in-situ staging cores to keep track of 

data locations and provide metadata lookup service 

 Data-centric task mapping to increase intra-node data 

sharing and reuse 

 HybridDART – dynamically select between RDMA-

enabled network or shared memory for data transport 

 

Technology: 
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Fig. Illustration of data-centric task mapping 

Fig. In-situ execution of simulation and 

visualization processes on a multi-core platform  

References 
1. F. Zhang, C. Docan, M. Parashar, S. Klasky, N. Podhorszki, H. Abbasi: Enabling In-situ 
Execution of Coupled Scientific Workflow on Multi-core Platform. IPDPS’2012 
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Example: 

Client –Server Remote Visualization 
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Visualization of  Laser Back Scatter 

Requirement: Visualizing the time dependent 
behavior 

Simulation Goal: Understand Laser Back Scatter 

 Two laser beams impacting a deuterium and tritium 

target  

 Determine amount and direction of back scattered 

energy 

 

 Extreme data size generated by high resolution 
simulation (220 billion cells) 
 

 Correlating multiple, complex, 3d phenomenon over 
time 

Challenges 

 Visualizing input energy and back scatter 

energy over time 

 Understand how the back scatter is 

formed 

 Understand the orientation and intensity 

of the back scattered energy 

A burst of back scatter energy traveling from 

left to right 

Application: 

 laser-induced fusion at LLNL 

 Laser back scatter modeling by Dr. Steve Langer 
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Side-by-Side Volume Visualizations of Time 
Dependent Behavior 

Result/Impact 
Technology 

• Ability to view data using a client/server architecture 

using VisIT 

• Ability to quickly generate side-by-side animations 

of key physics quantities to understand time 

dependent behavior 

• Automated movie generation makes it easy for the 

user to see time evolution of data with different 

views and transfer functions. 

 

 

 Client/server architecture allows the user to 

view his data on his desktop without moving the 

data 

 Ability to interactively set transfer function to 

bring out features of interest at key points in the 

simulation 

 This is the first time scientists could see how 

the backscatter was forming. Orthogonal slices 

was inadequate, since this was a 3d 

phenomenon. This helps them design the target 

and laser pulse timing.  

Input beam Back scatter 

Reduced input beam corresponds to high back scatter 



Arie Shoshani 27 

 Example: 
 

Indexing to Select Subsets Based on Content 
 

facilitates interactive visualization 
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Selection of subsets based on content 

• Find the HEP collision events with the most distinct signature of 
Quark Gluon Plasma 

• Find the ignition kernels in a combustion simulation 

• Track a layer of exploding supernova 

These are not typical database searches: 

• Large high-dimensional data sets  
(1000 time steps X 1000 X 1000 X 1000 cells X 100 
variables) – each time step can have 100 billion data values 

• No modification of individual records during queries, i.e., 
append-only data 

• M-Dim queries: 500 < Temp < 1000 && CH3 > 10-4 && … 

• Large answers (hit thousands or millions of records) 

• Seek collective features such as regions of interest, 
histograms, etc. 

• Other application domains:  

• real-time analysis of network intrusion attacks 

• fast tracking of combustion flame fronts over time 

• accelerating molecular docking in biology applications 

• query-driven visualization 
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FastBit: accelerating analysis  
of very large datasets 

• Most data analysis algorithm cannot handle a whole dataset 

• Therefore, most data analysis tasks are performed on a subset of the data 

• Need: very fast indexing for real-time analysis 

• FastBit is an extremely efficient compressed bitmap indexing 

technology 

• Indexes and stores each column separately 

• Uses a compute-friendly compression techniques (patent 2006) 

• Improves search speed by 10x – 100x than best known bitmap indexing methods 

• Excels for high-dimensional data 

• Can search billion data values in seconds 

• Size: FastBit indexes are modest in size compared to 

well-known database indexes 

• On average about 1/3 of data volume compared to 3-4 times in 

common indexes (e.g. B-trees) 
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Flame Front Tracking with FastBit 

Finding & tracking of combustion flame fronts 

Flame front identification can be specified as a query, 
efficiently executed for multiple timesteps with FastBit. 

Cell identification 

Identify all cells that satisfy 

user specified conditions: 

“600 < Temperature < 700 

AND HO2concentr. > 10-7” 

 

Region growing 

Connect neighboring cells 

into regions 

 

Region tracking 

Track the evolution of the 

features through time 



Arie Shoshani 31 

Query-Driven Visualization 

• Collaboration between data management and visualization technologies 

• Use FastBit indexes to efficiently select the most interesting data for visualization 

• Above example: laser wakefield accelerator simulation 

• VORPAL produces 2D and 3D simulations of particles in laser wakefield 

• Finding and tracking particles with large momentum is key to design the accelerator 

• Brute-force algorithm is quadratic (taking 5 minutes on 0.5 mil particles), FastBit time  is linear in 

the number of results (takes 0.3 s, 1000 X speedup) 
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 Example: 
 

In Situ Data Reduction 
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Promising Ideas for larger scale data: 
and User-Assisted Data Reduction 

In situ analysis incorporates analysis routines into the simulation code. This technique allows 

analysis routines to operate on data while it is still in memory, potentially significantly reducing the 

I/O demands. 

One way to take advantage of in situ techniques is to perform initial analysis for the purposes of 

data reduction.  With help from the application scientist to identify features of interest, we can 

compress data of less interest to the scientist, reducing I/O demands during simulation and further 

analysis steps. 

The feature of interest in this case is the 

mixture fraction with an iso value of 0.2 

(white surface). Colored regions are a 

volume rendering of the HO2 variable 

(data courtesy J. Chen (SNL)). 

 

By compressing data more aggressively 

the further it is from this surface, we can 

attain a compression ratio of 20-30x 

while still retaining full fidelity in the 

vicinity of the surface.  

Contact: Kwan-Liu Ma 



Arie Shoshani 34 

Parallel Distance Field Computing 

Applications & Impact Technology 
 Distance fields can be used as importance 

fields to guide rendering, data compression, 

sampling, and feature-based optimizations. 

 The resulting technology will benefit many 

SciDAC applications from combustion, fusion, 

to climate and astrophysics simulations. 

 This work will motivate others to develop novel 

visualization and data reduction methods using 

distance fields.   

 

 

Depiction of a distance field computed from  a feature 

surface in data generated by a combustion simulation. 

Results 

 Distance field computing is fundamental to many 

data analysis and visualization applications. 

 This project realizes a highly scalable parallel 

implementation to support in situ processing and 

data reduction. 

 The design is general to handle a variety of data 

 The  product is a standalone library to be easily 

adopted for different settings. 

 

 A use case on a turbulent combustion 

simulation shows over 80% data reduction 

while revealing previously hidden flow 

features. 

 A parallel spatial data structure has been 

designed to accelerate the computation. 

 Tests on the parallel implementation show 

the data that must be exchanged is under 

0.01% of the total data, and the cost to 

exchange the data is under 0.2% of the 

overall time. 

 

Contact: Kwan-Liu Ma 
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 Example: 
 

 Time-varying Feature Tracking 
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Analysis and Visualization of  Madden-Julian 
Oscillation (MJO)  

Requirement: Time-varying Feature Tracking 

Simulation Goal: Understand MJO 
 A complex cloud system in multiple scales over the 

Indian and Pacific oceans 

 An important weather phenomenon related to the 

tropical intra-seasonal change 

 

 Large data size generated by high resolution simulations 
 Various temporal scales of MJO 

 make traditional techniques that perform per time 
step analysis and visualization ineffective 

 require global analysis over time other than local 
feature tracking 

 
 
 

Challenges 

 Visualizing the movement of MJO-related 

quantities (eg. cloud population and 

precipitation) 

 Understand how MJO is formed 

 Understand how MJO is related to 

different physical quantities 

 Feature identification to filter the major cloud 

movement of MJO 

(Upper left): Cloud rendering on a virtual globe 

(Lower left): The average water vapor mixing rate, 

indicating the existence of two MJO cycles 

Application: 
 Climate modeling by Dr. Ruby Leung and Dr. 

Samson Hagos at PNNL  
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Time-Varying Data Analysis with Time Activity 
Curves 

Result/Impact Technology 

• Robust global time-varying feature descriptors  

• Model the time-varying feature based on the 

change of value over time at each location 

• Visualize complex time-varying phenomena with 

detailed multivariate  temporal trend analysis  

 

 Flexible interface to allow scientists to interact 

with data at their desktop 

 Replace tedious viewing of animations with 

more efficient visualization of spatio-temporal 

features in still images 

 Assist in summarizing and verifying major 

temporal trends such as MJO in extreme scale 

data sets  

 

(Top): TAC-based (Time Activity Curve) region clustering  
(Bottom): Clustering TACs from all 2D location.  

Linked views between TAC-based overview and virtual globe. 
(Top Left): TACs per longitude as Hovmoller diagram.  
(Top Right) Cloud animation with Feature Tracking 
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 Example: 
 

 parallelization of  large-scale 3D movies 
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Analysis and Visualization of  Magnetic Reconnection 

Requirement: Remote Interactive Analysis 

Simulation Goal: 

 To understand the 3D evolution of tearing modes – a 

type of plasma instability that spontaneously 

produces magnetic reconnection while giving rise to 

topological changes in the magnetic field. 

 Large data size generated by high resolution simulation 
 Simulation on 98304 cores 
 6.4 billion cells 
 1.5 trillion particles 
 57 TB data 

 Only remote access to the supercomputer 
 Lack of dedicated visualization resources 

 
 

Challenges 

 Interactive 3D visualization of simulation data 

 Particle data 

 Mesh data 

 Comparison with theoretical expectations 

 Rapid exploration due to limited availability of 

supercomputer to run large simulations 

Application: 
 Simulation of magnetic reconnection by Bill 

Daughton (LANL) and Homa Karimabadi (UCSD) 
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Remote Visualization with ParaView 

Result/Impact Technology 

• ParaView: general purpose data analysis and 

visualization tool focused on large data 

• Client/server architecture for remote visualization 

on supercomputers 

• Designed to be extensible: I/O routines and 

domain-specific algorithms developed by science 

teams 

 Allowed scientists to remotely analyze and 

visualize their data when it is not possible to 

copy locally 

 Allowed scientists “to rapidly explore the grid 

data to understand the 3D evolution of magnetic 

reconnection” 

 As expected, a spectrum of tearing instabilities 

develops which interact, forming new current 

sheets and triggering secondary tearing 

instabilities 

Two isosurfaces showing the structure 
of  particle density (blue) and current 
density (red).  

Isosurface of particle density colored by 

current density  
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Goal 

• The goal of SDAV is twofold:  

• to actively work with application teams to assist them in achieving 

breakthrough science;  

• to provide technical solutions in the data management, analysis, and 

visualization regimes that are broadly used by the computational 

science community.  
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Accomplishing Our Goal 

•  Community Engagement.  

• We will actively engage application teams running on leading DOE 

computing systems, our sibling Institutes, and DOE computing facility 

personnel over the lifetime of the Institute.  

• Technology Deployment.  

• We will work with application scientists so that they can use state of the 

art tools and techniques to support their needs in data management, 

analysis, and visualization tasks.  

• Research Integration.  

• We will incorporate ASCR basic research results into our portfolio and 

develop new technologies as needed to meet the needs of application 

scientists over the next five years. 

• Software Support.  

• Just as ongoing communication ensures the relevance of our work, 

quality software deployment, maintenance, and support ensure the 

success of our tools.  
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Architecture-Awareness Plan  
 

• Argonne Leadership Computing Facility. 

•  The ALCF’s main computational resource is Intrepid, an IBM Blue Gene/P system with 40,960 

quad-core compute nodes (163,840 processing cores) and 80 terabytes of memory. Its peak 

performance is 557 teraflops. Mira is the next generation Leadership Computing resource to be 

deployed at the ALCF in 2013. Mira is an IBM Blue Gene/Q system with 48K 16-core compute nodes 

and 768 terabytes of memory. Its peak performance will be 10 petaflops.  

 

• National Energy Research Scientific Computing Center.   

• NERSC’s main computational resource is Hop- per, a Cray XE6 system with 6,384 compute nodes 

with 24 processors per node (153,216 processing cores), 217 TB of memory. Its peak performance 

is 1.28 petaflops. 

•   

• Oak Ridge Leadership Computing Facility.  

• The OLCF’s main computational resource is Jaguar, a Cray XT5 system with 18,688 dual-socket, 

hex-core SMP nodes (12 cores per node) with 300 terabytes of mem- ory. Its peak performance is 

2.33 petaflops. Titan is the next generation Leadership Computing resource to be deployed at the 

OLCF in 2012 - 2013. Titan will couple a traditional multi-core processor with a GPGPU processor 

optimized for multi-threaded performance and low power consumption. Titan peak performance 

will be 20 petaflops.  
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SDAV Institute Management Structure 
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Application Needs and Use Cases  

• According to our recent survey of application scientists, we 

observe that their greatest concerns when they scale their 

code are how to efficiently:  

• Write and subsequently analyze data 

• Compute and visualize data products 

• Perform remote visualization at the LCFs 

• Perform comparative/ensemble visualization 

• Perform I/O properly on LCFs as well as smaller clusters 

• Utilize in situ data processing  
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Applications and SDAV Technology Usage 
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SDAV Software Stack  
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Data Management Tools and Capabilities 

• In Situ Processing and Code Coupling 

• ADIOS, Glean 

• Indexing 

• FastBit 

• In Situ Data Compression 

• ISABELLA 

• Parallel I/O and File Formats 

• PnetCDF, BP-files, HDF5 
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Data Analysis Tools and Capabilities  

• Statistical and Data Mining Techniques  

• NU-Minebench 

• Importance-Driven Analysis Techniques  

• Domain-Knowledge Directed 

• Geometry Based 

• Information Theory Based 

•  Topological Methods  

• In Situ Topology  

• Feature-Based Analysis 

• High-Frequency Analysis and Tracking 

• Feature-Based Data Reduction  

• Vector Field Analysis  
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Visualization 

• Visit and ParaView 

• VTK-m framework 

• Flow Visualization Methods 

• Rendering 

• Ensembles, Uncertainty, and Higher-Dimensional Methods  
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The END 
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Summary of Plan for Integration of 
Visualization Accelerator Technology  

Scientists
  

Visualization ToolKit 
Library   

DAX 

Focus: 
Visualization 
Developers 

EAVL 

Focus: 
Advanced 

Data Models 

PISTON 

Focus: 

Portability 

VTK-Threading 

Focus: 

Evolutionary 
performance 
improvement 

use general-purpose visualization tools such as: 

these tools are built on the: 

which will integrate these accelerator technology R&D efforts:  

& 


