First-principles calculations of solute-vacancy binding in magnesium

Dongwon Shin and Christopher Wolverton Department of Materials Science and Engineering Northwestern University 2009 NIST Diffusion Workshop

Acknowledgements

• This work was funded by the USAMP (US Automotive Materials Partnership) Project on ICME for Magnesium. This material is based upon work supported by the Department of Energy National Energy **Technology Laboratory under Award** Number Nos. DE-FC05-95OR22363, DE-FC05-02OR22910, and DE-FC26-02OR22910.

Introduction

- Magnesium alloys
 - Fuel efficiency in automobiles
 - May substitute for heavier aluminum and steel based counterpart in the future
 - Relatively low strength and creep resistance compared with aluminum alloys
- How to increase mechanical properties?
 - Searching for precipitate hardenable Mg alloys
 - Fine distribution of precipitates in Mg matrix

Microalloying!

Introduction

- Why microalloying improves mechanical property?
 - Not yet clearly explained for magnesium alloys
 - Analogous to Sn addition to Al-Cu
- Al-Cu alloys
 - Sn is reported to decrease natural aging of Al-Cu
 - Kimura and Hasiguti, Acta Metal. (1961) suggested:
 - Sn impurity and vacancy bonding starves the diffusing Cu atoms to vacancies
 - Suppress Cu clustering or GP zone formation
 - Promote precipitates' nucleation in Al matrix
 - Many researchers have measured solute-vacancy binding energy in Al

Solute-vacancy binding energy

- Difference between 'infinite separation' of defects (vacancy and solute) and NN separation

 $-E_{\text{bind}}(\mathbf{X} - \Box) = E(\mathrm{Mg}_{N-2}\mathbf{X}_{1}\Box_{1}) + E(\mathrm{Mg}_{N})$ $-E(\mathrm{Mg}_{N-1}\mathbf{X}_{1}) - E(\mathrm{Mg}_{N-1}\Box_{1})$

As byproducts, we also can get

Vacancy formation energy

$$E_{\text{vac}}(\Box) = E(\text{Mg}_{N-1}\Box_1) - \frac{N-1}{N}E(\text{Mg}_N)$$

Mixing enthalpy

$$E_{mix}(X) = E(Mg_{N-1}X_1) - \frac{N-1}{N}E(Mg_N) - E(X)$$

N: Number of lattice sites in a supercell, X: Solute, : Vacancy 7 /24

Supercell construction

lattice sites	$supercell size^*$	k-points	ratio (a:b:c)
48	$3{\times}2{\times}2$	$12 \times 12 \times 12$	1:1.15:1.09
64	$4 \times 2 \times 2$	$10 \times 10 \times 10$	1:0.87:0.82
96	$4 \times 2 \times 3$	$8 \times 8 \times 8$	1:0.87:1.23
144	$4 \times 3 \times 3$	$6 \times 6 \times 6$	1:1.30:1.23

* 4 atoms orthorhombic hcp unit cell has been used as a basis

Experimental validation						
	1	First-principles	Prev	Previous		
		(This work)	Value	Method		
Vacancy		0.74 ± 0.05	0.89 ± 0.06	Exp $(\Delta \rho_q)$		
formation (E_f)		$0.83\pm0.01^{\S}$	0.81 ± 0.02	Exp $(\Delta \rho_{eq})$		
			0.58 ± 0.01	$\operatorname{Exp}(\mathrm{DD})$		
			0.79 ± 0.03	Exp $(\Delta \rho_q)$		
			0.90 ± 0.1	$\operatorname{Exp}(\operatorname{PAS})$		
			0.83^{\dagger}	DFT		
			$0.83 \pm 0.07^{\ddagger}$	DFT		
Solute-Vacancy	Zn-□	0.05	0.07 ± 0.02	Exp $(\Delta \rho_q)$		
binding (E_b)	Al-🗆	0.03	0.29 ± 0.02	Exp (H_v)		

Experimental validation

§ LDA, N = 48, 64, 96, and 144

 † LDA, N=96

^{\ddagger} LDA, N=16, 36, and 54

 $\Delta \rho_{q,eq}$: Electrical resistivity of quenched, thermal equilibrium samples respectively

 H_v : Vickers hardness

DD: Differential dilatometry

PAS: Position-annihilation spectroscopy

9 /24

Vacancies in Metals: From First-Principles Calculations to Experimental Data

Karin Carling and Göran Wahnström

Department of Applied Physics, Chalmers University of Technology and Göteborg University, SE-412 96 Göteborg, Sweden

Thomas R. Mattsson, Ann E. Mattsson, Nils Sandberg, and Göran Grimvall

Theory of Materials, Department of Physics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden (Received 30 May 2000)

TABLE III. Fundamental properties of Al. Lattice constant *a*, bulk modulus *B*, cohesive energy E_c , vacancy formation energy H_V^F , including surface corrections H_V^{F*} , and binding energy for the nearest-neighbor divacancy $H_{2V,nn}^B = 2H_V^F - H_{2V,nn}^F$. Expt.: experimental data from the literature (*a* at T = 0 K, $B = (c_{11} + 2c_{12})/3$, and E_c at T = 0 K and 1 atm). Expt.*: our reinterpretation of the experimental results in Ref. [8]. Computed DFT data from the literature (full potential [14] and pseudopotential [23]) together with the present DFT data. The theoretical values for E_c are not corrected for the zero-point energy (≈ 39 meV). Our surface corrected data for the vacancy formation energy is shown in bold.

Method	<i>a</i> (Å)	B (Mbar)	E_c (eV)	H_V^F (eV) H_V^{F*} (eV)	$H^B_{2V,nn}$ (eV)
Expt.	4.03 [20]	0.77 [21]	3.39 [22]	0.67 ± 0.03 [7]	0.2, 0.3 [7]
Expt.*				0.68	0.00
GGA	4.039 [14] 4.042 [23]	0.773 [14] 0.744 [23]	3.415 [23]	0.54 0.69	-0.08
LDA	3.983 [14] 3.961 [23]	0.840 [14] 0.830 [23]	4.034 [23]	0.70 0.76	-0.07

LDA: 0.06 eV, GGA: 0.15 eV for AI

10/24

Solute-vacancy binding in Mg

What factors control solute-vacancy binding?

- Strain due to the size effect
 - Strain induced by a bigger solute can be reduced by putting a vacancy near a solute atom
 - Larger solute-vacancy binding as the size of solute increases
- Bond-breaking model
 - T. Hoshino et al., PRB, 1996: for Al-X (3d trans metals)
 - Very strong sp-d (host-impurity) bonds
 - "Unhappy" with the breakup the sp-d bonds
 - Repulsive interaction of vacancy with 3d solutes

Solute-vacancy binding in Al

Solute-Vacancy Binding in Al 0.5 Solute-Vacancy Binding Energy (eV) Pb Bi 0.4 Sh Sn 0.3 0.2 Ge Cd Au 0.1 Si Ag Zn Ga 0.0 Mg Mn -0.1 Şc -0.2 Ċŗ Zr -0.3 -0.4 -0.5 -10 10 -20 0 20 Impurity Volume (A^3)

Wolverton, C. (2007). "Solute-vacancy binding in aluminum." Acta Mater. 55(17): 5867-5872.

What factors control solute-vacancy binding?

- Strain due to the size effect
 - Strain induced by a bigger solute can be reduced by putting a vacancy near a solute atom
 - Larger solute-vacancy binding as the size of solute increases
- Bond-breaking model
 - T. Hoshino et al., PRB, 1996: for AI-X (3d trans metals)
 - Very strong sp-d (host-impurity) bonds
 - "Unhappy" with the breakup the sp-d bonds
 - Repulsive interaction of vacancy with 3d solutes

Solute-vacancy binding in Mg

Mg lattice parameters

• Mg lattice parameters are deduced from Mg63X calculations

18/24

• Slopes represent first-principles calculations

Mg lattice parameters

Summary

- Previously unknown solute-vacancy binding energies for various elements in Mg alloys have been calculated from firstprinciples supercell approach
- Calculated mono-vacancy formation energy in Mg agree well with experimental measurements
- Favorable solute-vacancy binding has been predicted for the elements that are experimentally shown to increase age-hardening response in Mg-alloys: Ag, Ca, Na, Zn, and In
- Calculated lattice parameters show that relaxation of surrounding Mg atoms to relieve strain induced by solute atoms may be complex
- Solute-vacancy binding in Mg may have to go beyond strain effect due to size mismatch and simple bonding breaking model