Applied NanoStructured Solutions LLC

2011

Dr. Tushar Shah – Chief Technology Officer

Carbon Nanostructure (CNS) Infusion

What's Different: CNS grown directly (infused) on surfaces

... a continuous, in-line, production scalable process for glass, carbon ,ceramic , metals

CNS General Appearance

SEM Images – CNS Infused on Fiber Substrate

CNS Sizing Characterization SEM Images – Diameter Measurements

CNS Definition

Overall Structure Model

CNS Definition

Structure Model – High Resolution

CNS Structural Overview

High Resolution Cross-Section SEM Images

CNS Branching and Anchorage

High Resolution Cross-Section SEM Images

CNS Branching and Entanglement

High Resolution TEM Images

CNS Branching and Entanglement

High Resolution TEM Images

CNS Branching and Entanglement

High Resolution TEM Images

Thermogravimetric & Raman Analysis Of Infused CNSs

Thermogravimetric (TGA) Analysis

CNS Infused On Fiber Equal In Quality To Commercially Available CNS

Carbon Enhanced Reinforcements (CER)

Product Forms with Multifunctional Properties

- Product Forms
- **CER Fiber Tow Prepregs**
- **CER Post Coated Tow For Fabrics**
- **CER Fabric Prepregs**
- **CER Thermoplastic Pellets**

"Tunable" Properties

- Physical
 - Density, thickness
- Mechanical
 - Toughness, isotropy
- Thermal
 - Control heat stability and conductivity
- Electrical
 - Shielding, storing, directing, absorbing
- Durability
 - Corrosion, wear, fatigue resistance

Product Forms provided per Stewardship and Customer Requirements

CNS Material Forms

CNS infusion demonstrated on multiple material forms for broad range of composite manufacturing processes and product applications: bodies of rotation, multi-material flat panels, complex geometries

- Fabrics
 - Prepreg
 - Wet layup
 - VARTM
 - Resin film infusion
- Tow/roving
 - Wet filament winding
 - Towpreg
 - Unidirectional tapes
- Chopped
 - Sheet, bulk and injection molding compounds

Demonstrating Standard Material Forms and Manufacturing Processes for Rapid Technology Transition

Substrate Materials and Architectures

Kevlar Fiber

- Our research can help to tailor various growth parameters to maximize specifications for a specific end use.
 - Growth Parameters Include: CNS Loading, CNS Length, CNS Size, # of CNS Walls

Process Can Be Tailored To A Variety of Substrates End Uses

ANS – Pilot Scale Manufacturing

Tows, 16" 40" moving to 60" Fabric Lines

ANS – Product Development Center

Autoclave

March 2011

Filament Winder

Sample Products

Ovens

Product Development Center for Prototype and Low Rate Manufacturing of Components

Goal: No Respireable Durable Fiber

ANS Product Stewardship

- ANS / Government Progress to date:
 - Air Monitoring
 - NIOSH Method 7400
 - All tests to date have not yielded any respireable durable fiber
- Next NIOSH Audit Activity begins 2/22/11
- A 3-part Pre-Manufacturing Notification (PMN) has been submitted to the EPA for review and approval
 - 3 products designated by CNS length:
 - Short: .01-15µ
 - Medium: 15-50µ
 - Long 50-100µ

ANS Tunable Properties Material Characteristics

CNS Infused To Glass Fiber Tow

Infused Low and High Density CNS

Electrical & Thermal Conductivity of Glass/Epoxy Composites

0

Improved Thermal Conductivity

EMI Shielding (2-18 GHz)

Increased Wt% CNS in Composite Improve EMI Shielding Characteristics

EMI Shielding (100Mhz – 1GHz)

Increased Wt% CNS in Composite Improves EMI Shielding Characteristics

EMI Shielding

- Demonstrate EMI shielding for composite construction
 - Evaluate effects of seams, gaps, gaskets

CNS Composite Cover Plate

Bonding of CNS Composite Structures Not Critical

Multifunctional Properties Mechanical Strength

- Demonstrating mechanical performance through industry standard test methods
 - Optimizing CNS processes to realize mechanical improvements in all properties and all material forms
 - ANS Technical Data Sheets with design allowables will be published

Optimizing CNS Process Recipe and Composite Manufacturing Processes

Composite Processes Development

Cross Sections

CNS improve critical failure interfaces in composites

Lightning Strike Test

30kA

Panel RFI 73 – CNS Glass/Epoxy 4 Plies Fabric, Surface Resistivity: 12

200kA

Panel RFI 472 – 1 *Pliy Fabric* CNS Carbon/Epoxy on 3 base plies

TOP (Strike Surface)

BOTTOM

Lightning Test – High Current Test

Baseline Glass/Epoxy Panel Vs. CNS Glass/Epoxy Panel

FRONT

BL Glass/Epoxy is Punctured and Delaminates, **CNS** Panel Strike Surface has surface abrasion

Future Needs

Very Complex CNS produced at high speeds on various sustrates
Need for high speed real-time analytical tools

- Surface analysis techniques
- Determine variations in density
- •Type of nanostructures
- Functionalization

Thank You

