NIST Smart Grid Program

Smart Grid Interoperability and Cybersecurity Workshop

NIST Smart Grid Program

November 13-14, 2018

Welcome & Workshop Objectives – Chris Greer

<u>Note</u>: If you want to order lunch for delivery to NCCoE and have not yet done so, please see Konstantina in the registration now.

Tuesday	v, November 13, 2018							
9:30 am	REGISTRATION							
10:00 am	WELCOME AND WORKSHOP OBJECTIVES Chris Greer, NIST							
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY John Gibson, Avista Utilities							
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY							
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability. Dwayne Bradley Duke Energy Chris Irwin U.S. Department of Energy Joe Peichel Xcel Energy Alvin Razon National Rural Electric Cooperative Association Naza Shelley District of Columbia Public Service Commission MODERATOR: David Wollman, NIST							
12:00 pm	LUNCH							
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY							
	Wade Malcolm, Open Energy Solutions							
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS							
	Avi Gopstein, NIST							
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY							
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability							
3:30 pm	BREAK							
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY							
	 Risk Profiles—Jeffrey Marron, NIST Interface Categories—Nelson Hastings, NIST Securing Communications—Michael Bartock, NIST 							
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY							
5:00 pm	Adjourn							

NIST Smart Grid Program

Smart Grid Interoperability and Cybersecurity Workshop

Chris Greer

Director, Smart Grid and Cyber-Physical Systems Office National Institute of Standards and Technology U.S. Department of Commerce

November 13-14, 2018

Measurements are critical...

to commerce

"Uniformity in the currency, weights, and measures of the United States is an object of great importance, and will, I am persuaded, be duly attended to."

George Washington, State of the Union Address, 1790

to innovation

If you know how to measure something, you can design it, compare it, understand it, and improve it

NIST Illustrated, https://youtu.be/2j9BGVKbzS4

and to international trade

• Up to 92% of U.S. exports affected by standards/technical regulations

NIST measurement science provides the foundation for innovation in every industry and economic sector, from manufacturing to health care to defense

NIST Mission

To promote U.S. innovation and industrial competitiveness by advancing **measurement science**, **standards**, and **technology** in ways that enhance economic security and improve our quality of life

Measurement Science – Creating the experimental and theoretical tools – methods, metrics, instruments, and data – that enable innovation

Standards – Disseminating physical standards, providing technical expertise to documentary standards that enable interoperability and commerce

Technology – Driving innovation through knowledge dissemination and public-private partnerships to bridge gap between discovery /marketplace

NIST Laboratory Programs

Energy Independence and Security Act

NIST has *"primary responsibility"* to coordinate development of a framework that includes protocols and model standards for information management to achieve interoperability of smart grid devices and systems..."

Interoperability Frameworks to date

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.1108r3

NIST Special Publication 1108r3

NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 3.0

2014

Smart Grid and Cyber-Physical Systems Program Office and Energy and Environment Division, Engineering Laboratory

in collaboration with Quantum Measurement Division, Semiconductor and Dimensional Metrology Division, and Electromagnetics Division, Physical Measurement Laboratory and Advanced Network Technologies Division, Information Technology Laboratory

http://dx.doi.org/10.6028/NIST.SP.1108r3

National Institute of Standards and Technology U.S. Department of Commerce

NIST Special Publication 1108R2

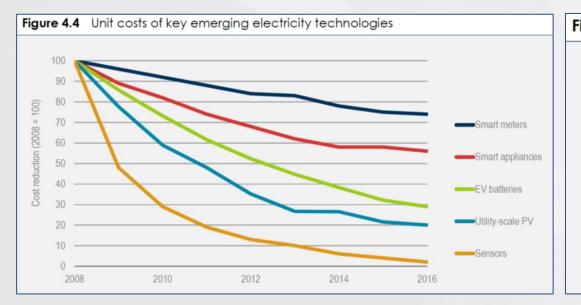
NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 2.0

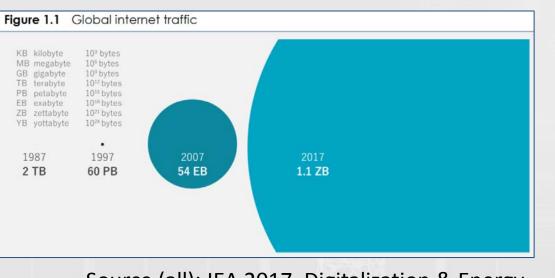
> Office of the National Coordinator for Smart Grid Interoperability, Engineering Laboratory *in collaboration with* Physical Measurement Laboratory *and* Information Technology Laboratory

Nistional Institute of Standards and Technology • U.S. Department of Commerce

NIST Special Publication 1108

NIST Framework and Roadmap for Smart Grid Interoperability Standards, Release 1.0

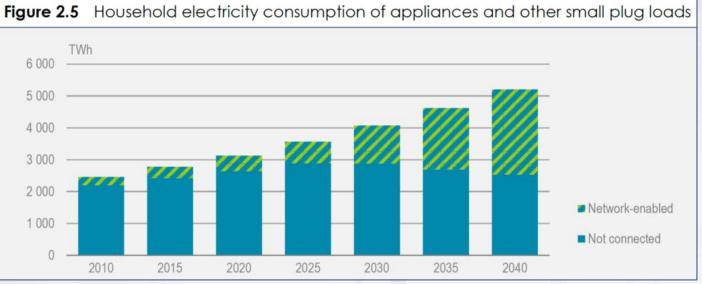

Office of the National Coordinator for Smart Grid Interoperability

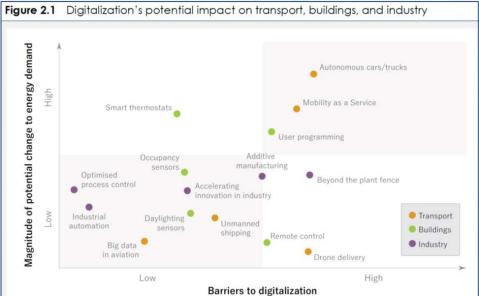


2010

2012

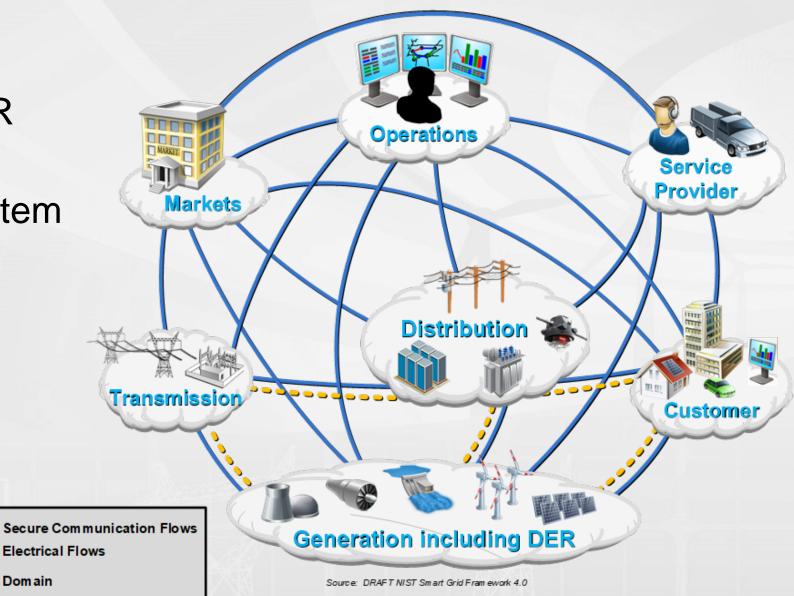
A break for context...





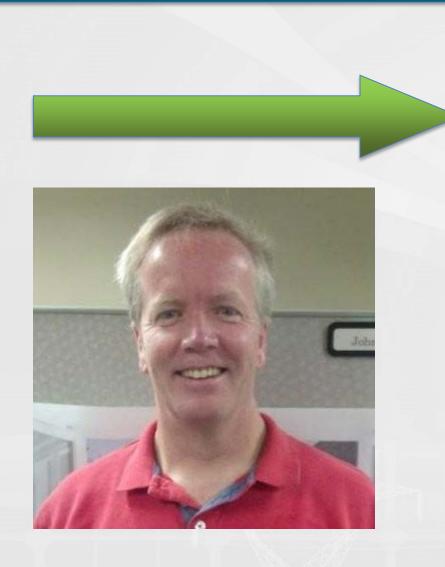
Source (all): IEA 2017, Digitalization & Energy

N I


S T

Smart Grid Conceptual Model (2018, Draft)

- Generation including DER
- Intelligent distribution system
- Empowered consumers
- Emerging Markets



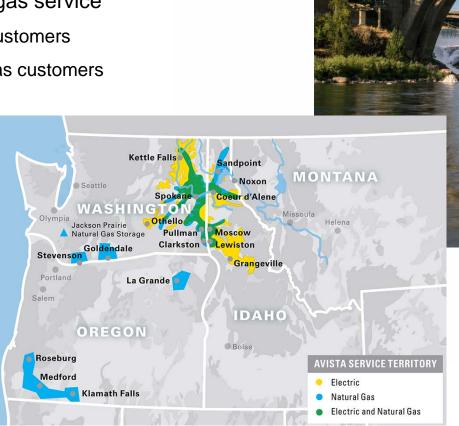
Workshop Agenda & Purpose

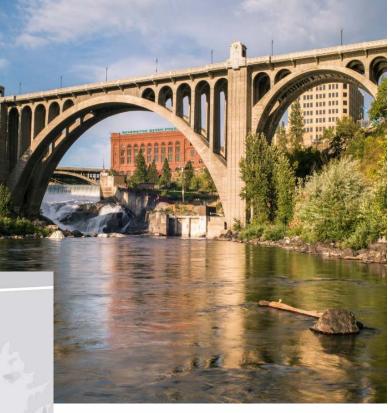
Tuesday	η, November 13, 2018					
9:30 am	REGISTRATION					
10:00 am	WELCOME AND WORKSHOP OBJECTIVES					
	Chris Greer, NIST					
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY					
	John Gibson, Avista Utilities					
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY					
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid					
	modernization and interoperability.					
	Dwayne Bradley Duke Energy					
	Chris Irwin U.S. Department of Energy Joe Peichel Xcel Energy					
	Joe Peichel Xcel Energy Alvin Razon National Rural Electric Cooperative Association					
	Naza Shellev District of Columbia Public Service Commission					
	MODERATOR: David Wollman, NIST					
12:00 pm	LUNCH					
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY					
	Wade Malcolm, Open Energy Solutions					
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS					
	Avi Gopstein, NIST					
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY					
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key					
	Aspects and Concerns related to grid modernization and interoperability					
3:30 pm	BREAK					
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY					
	Risk Profiles—Jeffrey Marron, NIST					
	Interface Categories—Nelson Hastings, NIST					
	Securing Communications—Michael Bartock, NIST					
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY					
5:00 pm	ADJOURN					

Wednes	day, November 14, 2018						
8:30 am	REGISTRATION						
8:45 am	WELCOME AND OBJECTIVES						
9:00 am	KEYNOTE: CYBERSECURITY OF COMPLEX SYSTEMS						
	Ron Ross, NIST						
9:30 am	PANEL SESSION: CYBERSECURITY AND GRID MODERNIZATION						
	Panelists discuss some of the cybersecurity challenges and practices emerging from grid modernization, with a focus on device and domain communication pathways and interoperability.						
	Carol Hawk U.S. Department of Energy						
	David Lawrence Duke Energy						
	Michael Murray BlackRidge Technology						
	Candace Suh-Lee Electric Power Research Institute						
	MODERATOR: Elizabeth Sisley, Calm Sunrise Consulting						
10:30 am	Вгеак						
10:45 am	PARALLEL BREAKOUT SESSIONS						
	Breakout sessions repeat during the afternoon. Participants can join discussions in two different topics.						
	 Learning from other Sensor Networks: Translating and Linking Logical Interface Categories Risk Profiles for Grid Architectures and Services 						
	Securing New Communications Architectures: Brokered vs. Brokerless Cybersecurity						
12:15 pm	LUNCH						
1:30 pm	PARALLEL BREAKOUT SESSIONS						
	Breakout sessions repeated from the morning. Participants are asked to join a different topic.						
	Learning from other Sensor Networks: Translating and Linking Logical Interface Categories						
	 Risk Profiles for Grid Architectures and Services 						
	Securing New Communications Architectures: Brokered vs. Brokerless Cybersecurity						
3:00 pm	Вгеак						
3:15 pm	REPORT OUT PANEL						
3:45 pm	NEXT STEPS						
4:00 pm	ADJOURN						

Grid Mod. & the Case for Interoperability – John Gibson

Tuesday	/, November 13, 2018						
9:30 am	REGISTRATION						
10:00 am	WELCOME AND WORKSHOP OBJECTIVES Chris Greer, NIST						
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY John Gibson, Avista Utilities						
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY						
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability. Dwayne Bradley Duke Energy Chris Irwin U.S. Department of Energy Joe Peichel Xcel Energy Alvin Razon National Rural Electric Cooperative Association Naza Shelley District of Columbia Public Service Commission MODERATOR: David Wollman, NIST						
12:00 pm	Lunch						
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY						
	Wade Malcolm, Open Energy Solutions						
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS						
	Avi Gopstein, NIST						
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability						
3:30 pm	BREAK						
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY Risk Profiles—Jeffrey Marron, NIST Interface Categories—Nelson Hastings, NIST Securing Communications—Michael Bartock, NIST 						
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY						
5:00 pm	Adjourn						

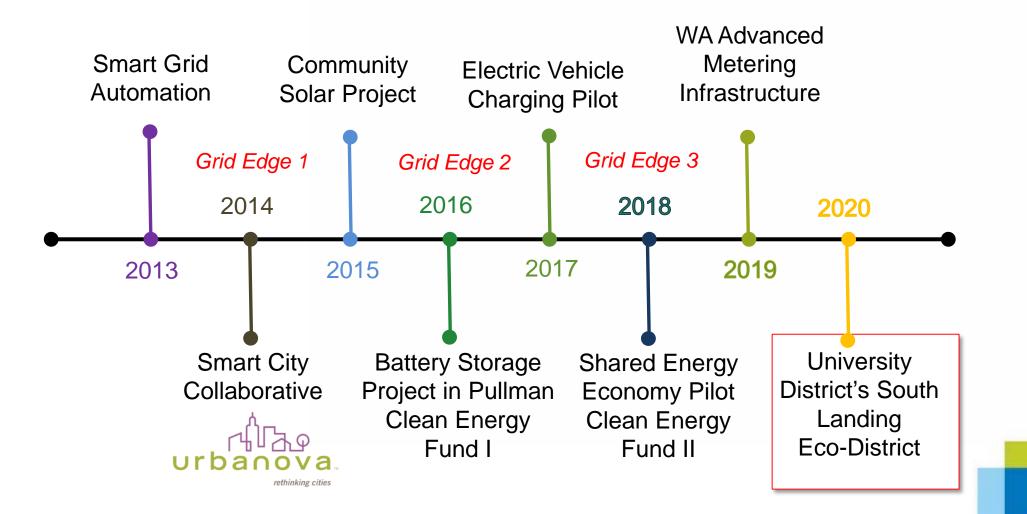



Innovation for Future Utility Business Model

John Z Gibson, P.E. Avista Utilities Chief R&D Engineer November 2018

About Avista

- Incorporated in 1889
- Investor-Owned Utility with headquarters in Spokane, Washington
- Over 1,700 employees
- Electric and natural gas service
 - 379,000 electric customers
 - 342,000 natural gas customers



Capture opportunity from the changing electric utility business model

Avista's Projects of Grid Edge Journey of Discovery

AVISTA

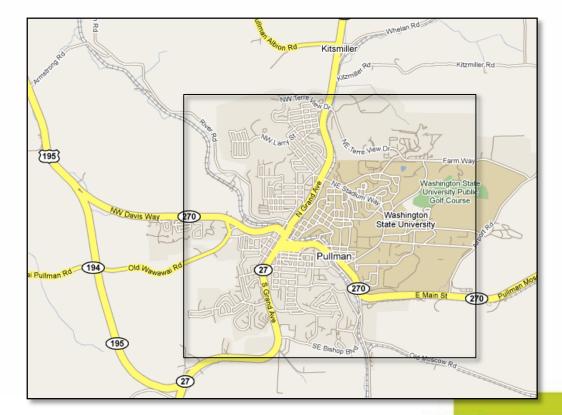
Introduction: Avista's Use Case Chronology

Movement from inward system improvements to outward customer experience


- Smart Grid
- Turner Energy Storage Project
- Shared Energy Economy
- Smart City
- Eco-District

Smart Grid Deployment

American Recovery and Reinvestment Act

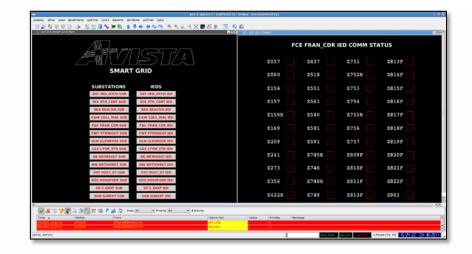

Smart Grid Investment Project

• Fifty Nine Distribution Feeders

Smart Grid Demonstration Project

Thirteen Distribution Feeders

AVISTA


Smart Grid Technologies

Communication

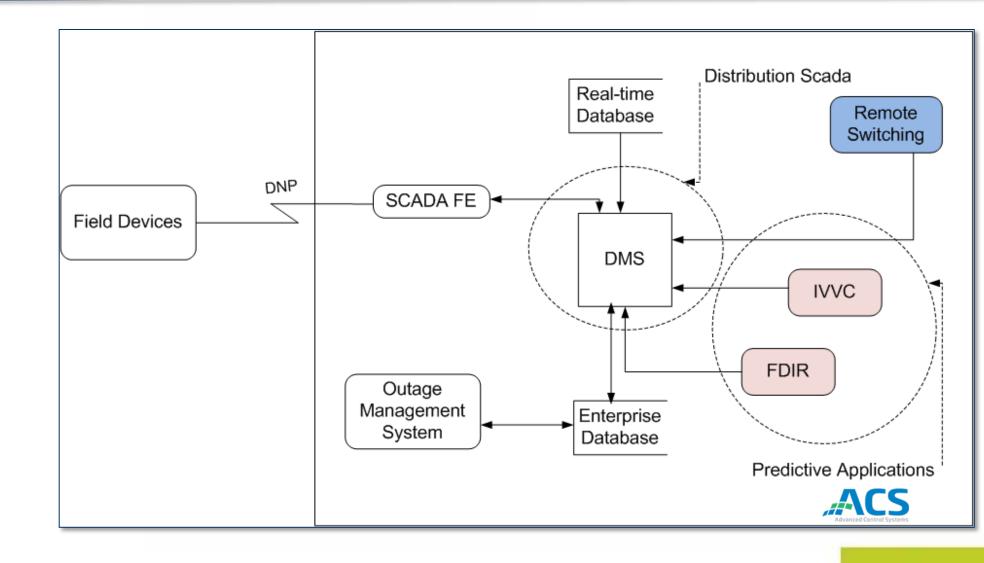
- Tropos Radios
- Fiber Backhaul

Control Software

- Distribution Management System (DMS)
- Fault Detection Interruption Restoration (FDIR)

AVISTA

Integrated Volt Var Compensation (IVVC)


Distribution Equipment

- Switches (S&C) Scada-Mate
- Reclosers (G&W)
- Switch Capacitor Banks (Cooper)
- Individual Phase Regulator (Cooper)

Smart Grid Architecture

Client/Server

- Technology Debt
- Legacy Architecture
- Vendor Eco-System

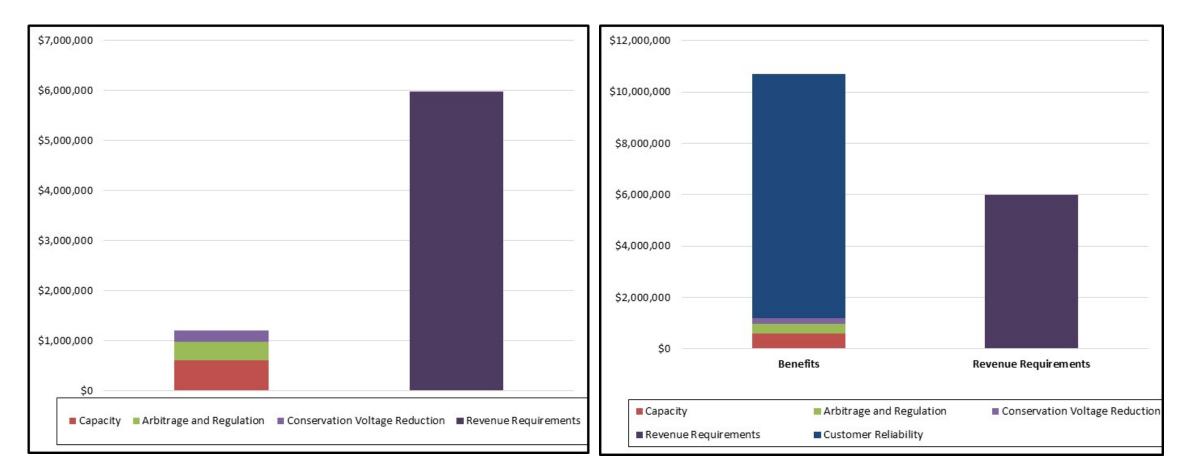
AVISTA

Turner Energy Storage

Utility versus Customer Value

- 1MW 3.2 MWh Battery
- Locate on SEL Manufacturing Campus
- UET Vanadium Flow Battery

Turner Energy Storage


Use Cases

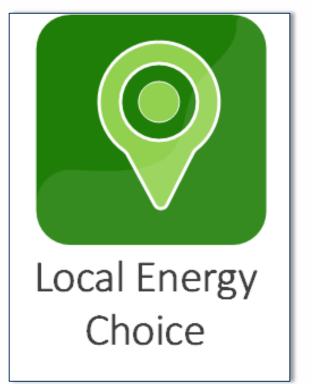
- Ancillary Markets
- Reserve Markets
- Grid Services
- Resiliency Services

Use Case and application as described in PNNL Catalog	Avista	PSE	Sno – MESA1	Sno – MESA2	Sno - Controls Integration
UC1: Energy Shifting					
Energy shifting from peak to off-peak on a daily basis	Y	Y	Y	Y	
System capacity to meet adequacy requirements	Y	Y	Y	Y	
UC2: Provide Grid Flexibility					
Regulation services	Y	Y		Y*	
Load following services	Y	Y		Y*	
Real-world flexibility operation	Y	Y		Y*	
UC3: Improving Distribution Systems Efficiency					
Volt/Var control with local and/or remote information	Y		Y	Y	
Load-shaping service	Y	Y	Y	Y	
Deferment of distribution system upgrade	Y	Y			
UC4: Outage Management of Critical Loads		Y			
UC5: Enhanced Voltage Control					
Volt/Var control with local and/or remote information and during enhanced CVR events	Y				
UC6: Grid-connected and islanded micro-grid operations					
Black Start operation	Y				
Micro-grid operation while grid-connected	Y				
Micro-grid operation in islanded mode	Y				
UC7: Optimal Utilization of Energy Storage	Y	Y			Y

Turner Energy Storage

Voltage Sag Compensation


Base Case vs. Revenue Requirements – Utility Perspective


Benefits vs. Revenue Requirements – Inclusive of Customer Reliability Benefits Develop a roadmap to the future utility business model

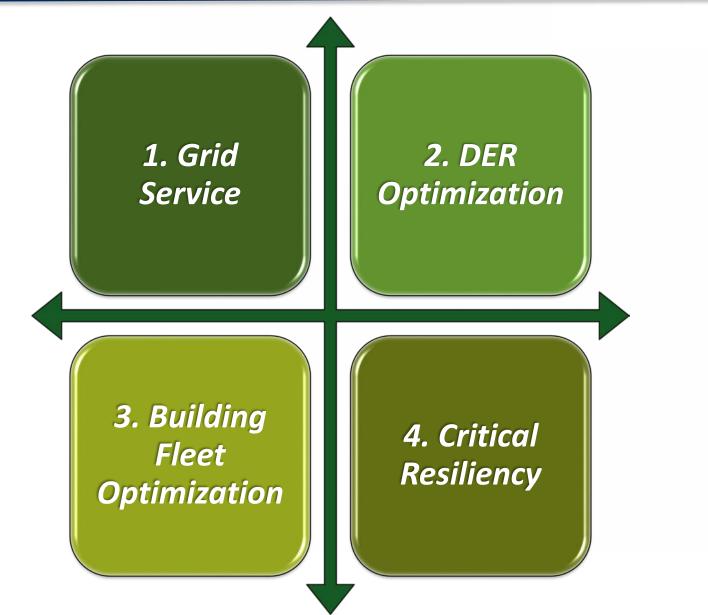


Avista's Road Map / Grid Edge 3

Utility Business Model Road Map

Shared Energy Economy

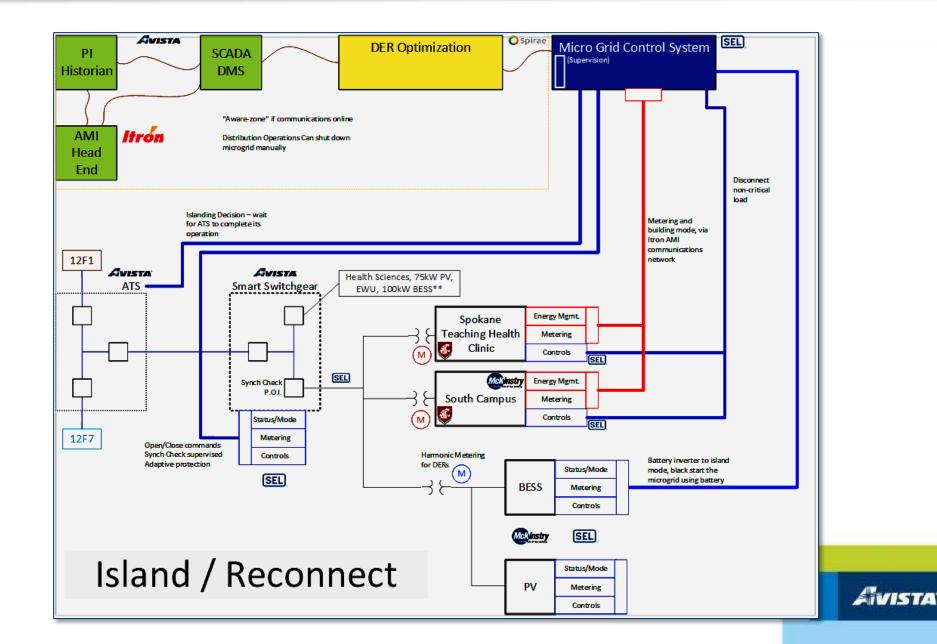
Spokane Udistrict Micro-Transactive


Assets

- Two Roof Top 100 kW Solar Systems
- Two Energy Storage Assets
 - 100 kW and 500 kW
- Two Building Management Systems

Shared Energy Economy/ Valuation

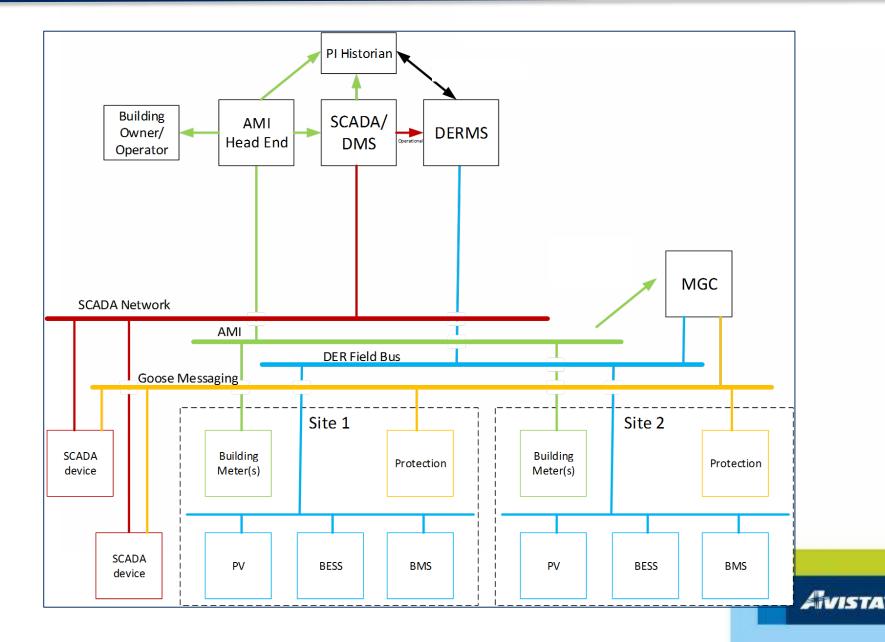
AVISTA

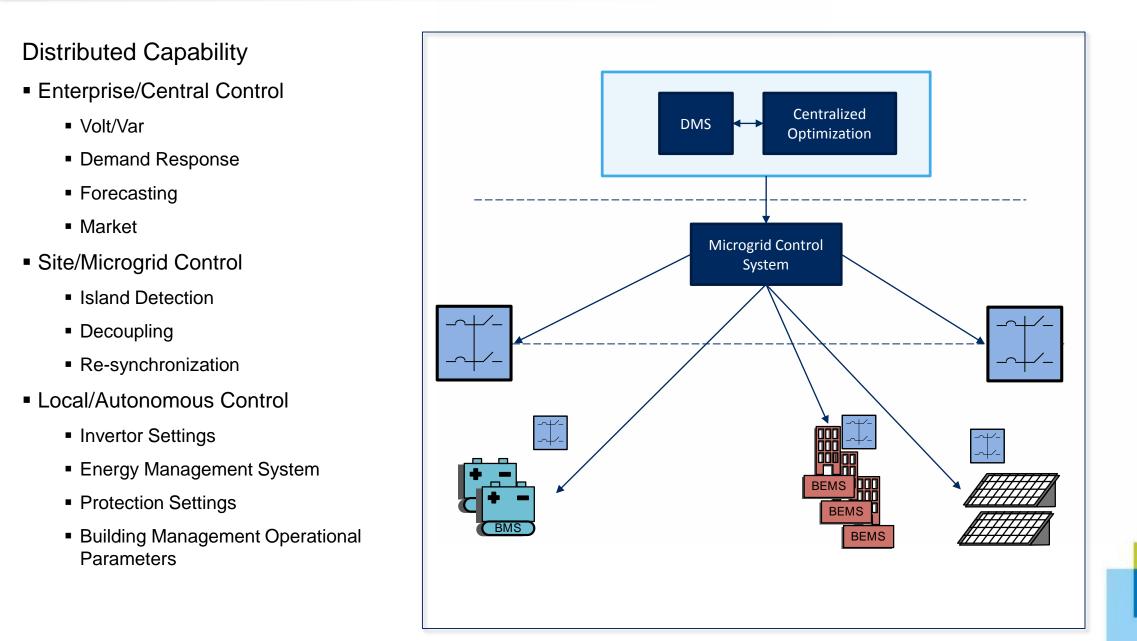

Shared Energy Economy/Interoperability

Multiple Partner Products

- Spirae Business Optimizer
- SEL Microgrid Controller
- McKinstry Building System
- Itron Riva Meter System

Research Partners


- Washington State University
- Pacific Northwest National Lab


Shared Energy Economy/Communication Latency

Distinct Operational Systems

- DER Field Bus Minutes
 - Business Optimizer
- SCADA Network Seconds
 - Distributed Management System
- AMI Network Batched 4 hours
 - Billing/Application Platform
- Goose Messaging Milliseconds
 - Microgrid Controller Platform

Shared Energy Economy/Distributed Applications

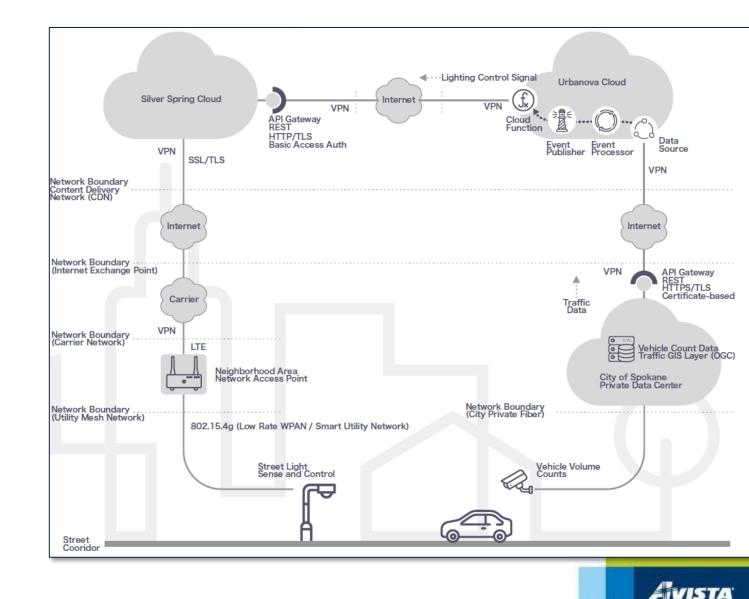
AVISTA

Blurring the line between utility and municipal infrastructure

Avista Smart City - Urbanova

- Benefiting Cities and Citizens
 - Healthier citizens
 - Safer neighborhoods
 - Smarter infrastructure
 - Sustainable Environment
 - Stronger economy

- Partners
 - City of Spokane
 - Avista Utilities
 - University District
 - Itron
 - Washington State University
 - McKinstry
 - Gallup
 - Version
- Urbanova Projects
 - Smart and Connected Streetlights Pilot
 - Shared Energy Economy Model Pilot
 - Gallup People-centered Research



urbanova.org

Avista Smart City Street Light Architecture

Use Case

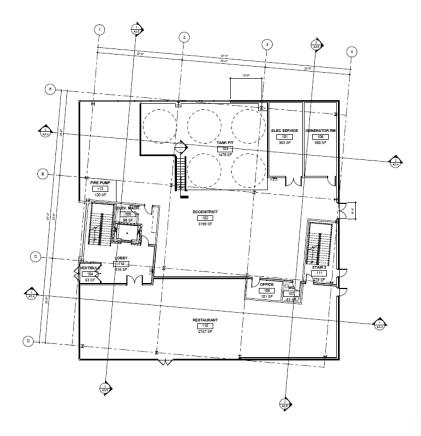
- Adaptive Lighting Based on Traffic Volume
- Leverage Utility Infrastructure for Broader Purpose
 Architecture
- Utility AMI Infrastructure
- Urbanova Platform / Amazon Web Services
- City Internal Traffic Management System

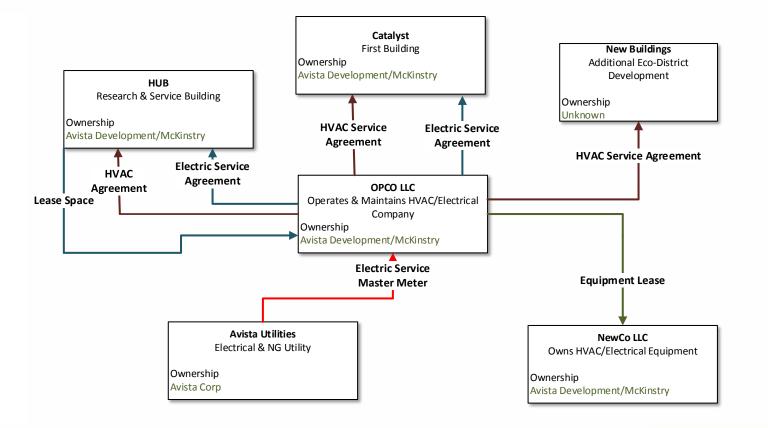
Disrupt the utility business model to ensure fair customer rate reform

Eco-District

Commercial Development

- Eco-District
- Conditioned Environment
- Electric Service
- Self-Generation





Eco-District

Distributed Capability

Enterprise/Central Control

AVISTA

Eco-District

Certification Elements

- Best in Class Building Design
- Energy load offset with on-site and off-site renewables
- Zero energy performance not modeling
- No combustion allowed

Grid Optimal / Grid Opportunities

- Capacity Offsets
- Load Transfer
- Generate Renewable Resource into Load
- Voltage Support
- Phase Balancing

Versus

Grid Optimal

Goal

 Develop a rate mechanism to incentivize developments to be grid optimal without unfairly burdening other customers with the cost of the utility infrastructure

Observation

 The eco-district proforma is a financial model which provides insight on how future performance base rate making might be accomplished

Challenge

- Existing rate structures do not support the business model for the grid of the future
 - Schedule 21 Energy and demand charges Infrastructure costs rolled into consumption charges
 - Schedule 51 Line extension allowances calculated buy energy consumption
 - Schedule 90 Electrical energy efficiency programs Socialized benefits and application
 - Schedule 63 Net metering kW limit on local generation due to cross subsidy
 - Schedule 65 Interconnection standards
 - Schedule 62 PURPA rates 5 year schedule

Opportunity

- To be successful, a special contract would be developed to allow for the developer to obtain economic efficiency, operational flexibility and fair allocation of the utility fixed asset costs
- So, what would this look like?
 - A utility revenue and cost model comparative to the assumptions made in the proforma
 - Unlimited amount of generation behind the meter owned and operated by customer
 - Incentivize the developer to build highly efficient buildings
 - Incentivize the developer to limit utility capacity required to support the development
 - Create a regulatory methodology which can provide a road map for future utility rate reform

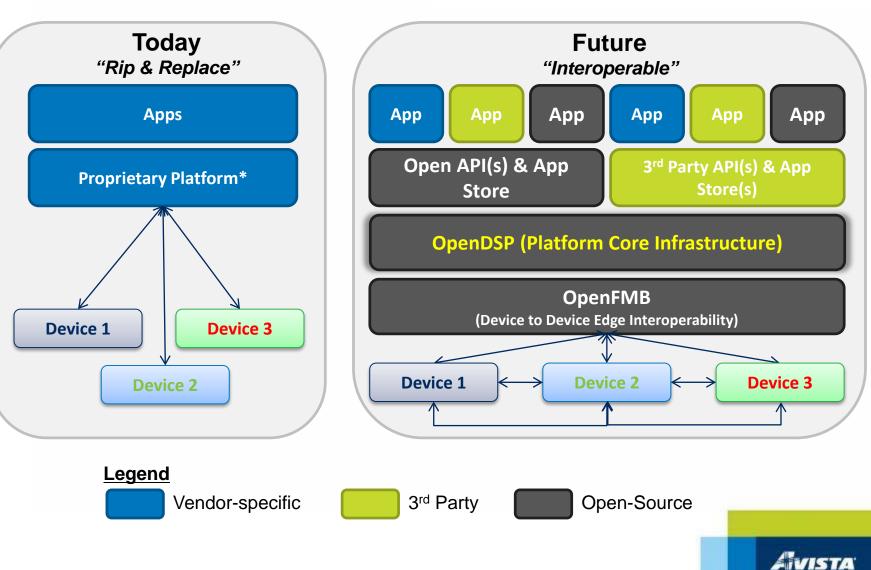
An architecture for our customer OpenDSP

Avista Distribution Management System

Micro-Services Requirements

DISTRIBUTION SCADA	OUTAGE RESTORATION	DISTRIBUTED ENERGY RESOURCES	DISTRIBUTION MANAGEMENT	ECONOMIC OPTIMIZATION
Current System Status	Estimate Restoration Time	Demand Response	Switch Order	Optimal Crew Dispatch
Tagging	Damage Assessment	Distributed Generation	Automatic Generation Control	Optimal DER Dispatch
Alarming	Incident Management	Distributed Strorage	Integrated Volt VAr Control	Optimal Feeder Utilization
Remote Control	Crew Management	Microgrid	Fault Detection Isolation and Restoration	Optimal DER Locational Benefits
	Reliability Reporting	Electric Vehicles	State Estimation	Transactive Markets

Distributed System Platform

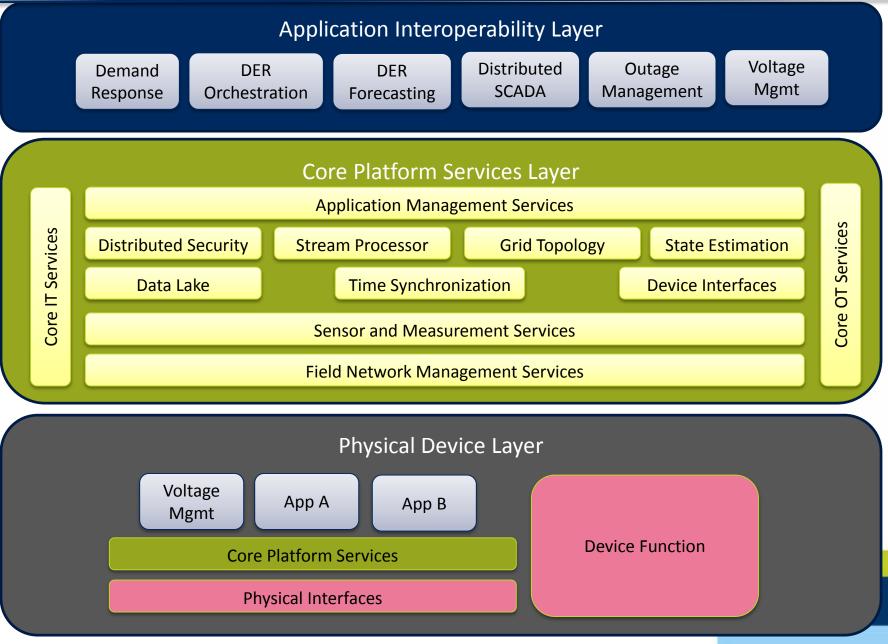


Open Architecture

For a Distribution Management System

Today Platform

- Proprietary
- Silo Solutions
- Integration
- **Future Platform**
- Open Platform Services
- Enables Interoperability
- Establishes Application Eco-System
- Scalable Framework for Vendors



OpenDSP Core Services

Utility Perspective

Core Platform Services Layer

- Application Management Services
 - Distribution and orchestration of distributed Applications
 - Firmware Management
- Sensor and Measurement Services
 - Field Message Bus
 - Device Discovery
- Grid Management Service
 - Topology Awareness
 - State Awareness
 - Content Awareness
 - Simulation Engine
- Core IT Services
 - Stream Processor
 - Big Data
 - Security
 - Time Synchronization

OpenDSP Core Services

Customer Centric

Utility Customers

- Prosumers
- Consumers
- Aggregator
- Eco-Districts
- In Home Service Providers
 - Google
 - Apple
 - Tesla
- Building Management Systems

		Appli	cation Interop	perability Lay	er	
	3 rd Party Aggregation	Peer to Peer Transaction	Prosumer Settlement	Non-Firm Transport	Customer Grid Products	Energy Choice
Core Platform Services Layer						
Physical Device Layer						
Home Home Alexa Nest Core Platform Services Device Function						
Physical Interfaces						

Questions

AVISTA

Grid Modernization & Interoperability – Panel

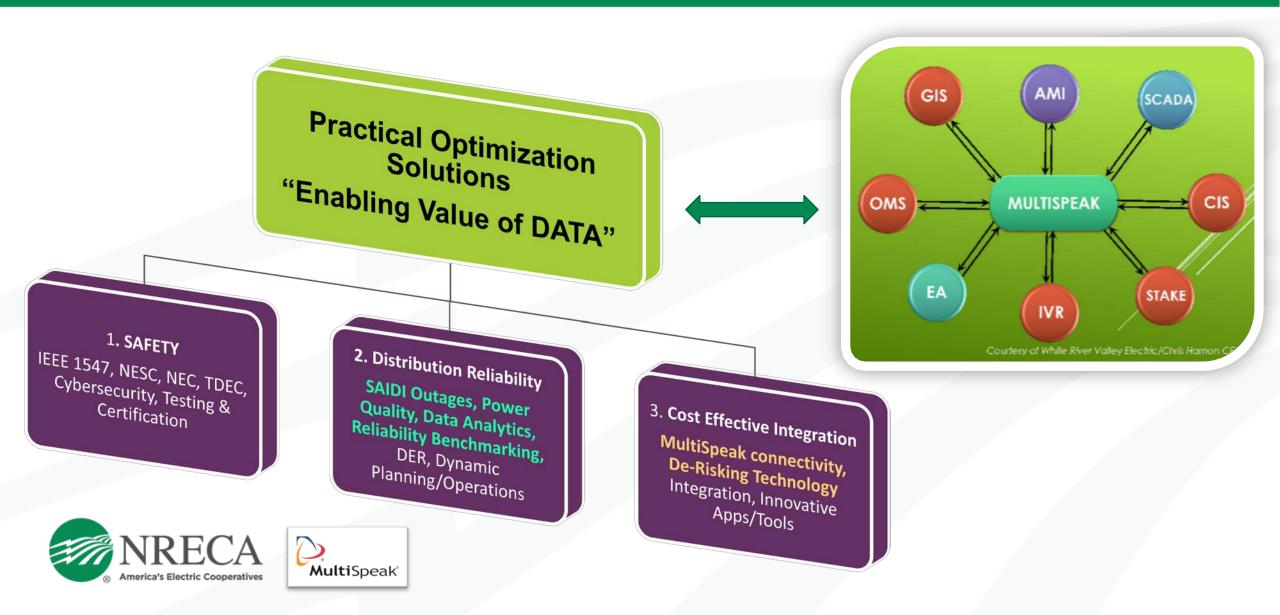
Tuesday	, November 13, 2018			
9:30 am	REGISTRATION			
10:00 am	WELCOME AND WORKSHOP OBJECTIVES Chris Greer, NIST			
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY John Gibson, Avista Utilities			
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY			
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability. Dwayne Bradley Duke Energy Chris Irwin U.S. Department of Energy Joe Peichel Xcel Energy Alvin Razon National Rural Electric Cooperative Association Naza Shelley District of Columbia Public Service Commission MODERATOR: David Wollman, NIST			
12:00 pm	LUNCH			
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY			
	Wade Malcolm, Open Energy Solutions			
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS			
	Avi Gopstein, NIST			
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY			
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability			
3:30 pm	Вгеак			
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY			
	 Risk Profiles—Jeffrey Marron, NIST Interface Categories—Nelson Hastings, NIST Securing Communications—Michael Bartock, NIST 			
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY			
5:00 pm	Adjourn			

NIST smart grid program

Chris Irwin – U.S. Department of Energy

Alvin Razon – NRECA

NIST smart grid program

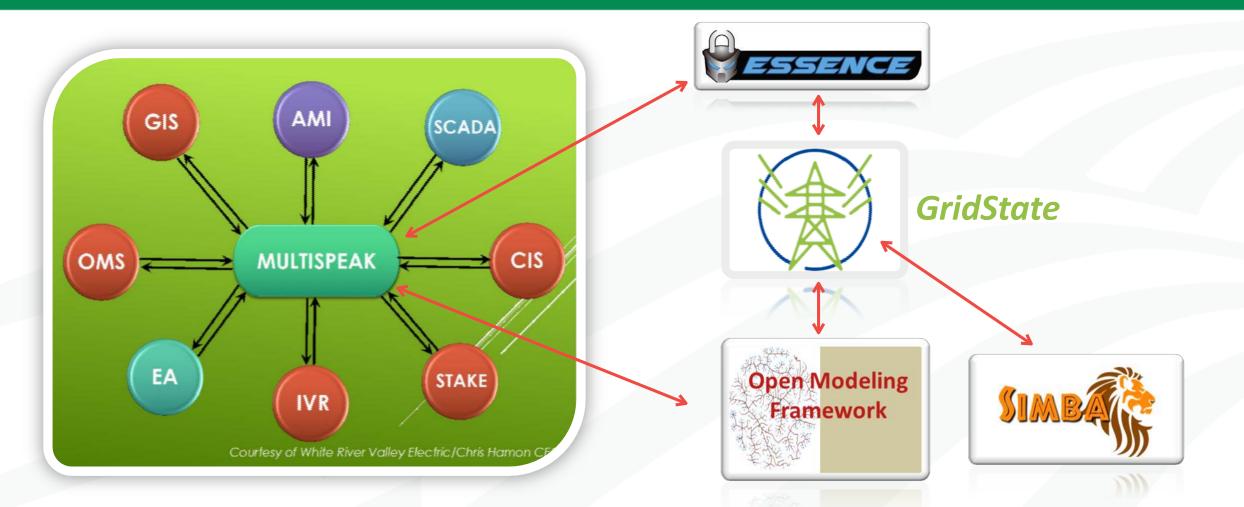


Unlocking the Value of Data Optimizing the Distribution System

<u>Alvin.razon@nreca.coop</u> Senior Director, Distribution Optimization

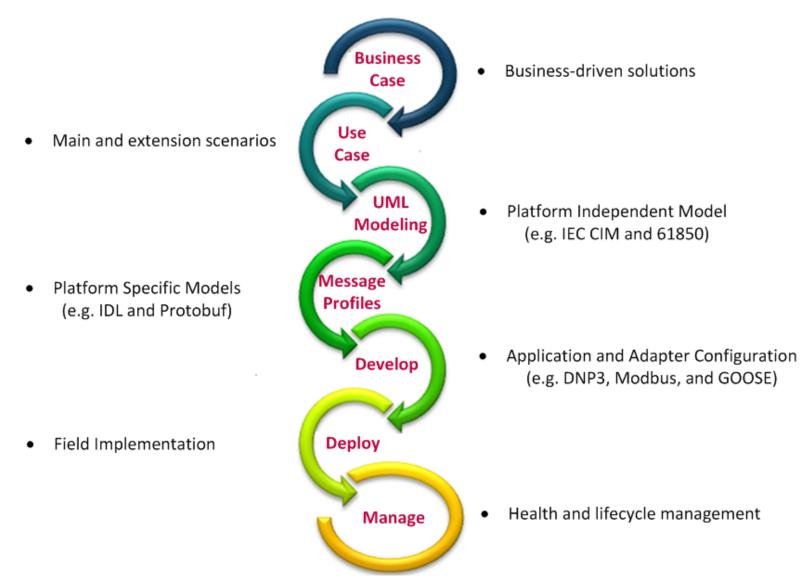
TODAY: NRECA Distribution Optimization (DO) Team

Ecosystem of Solutions

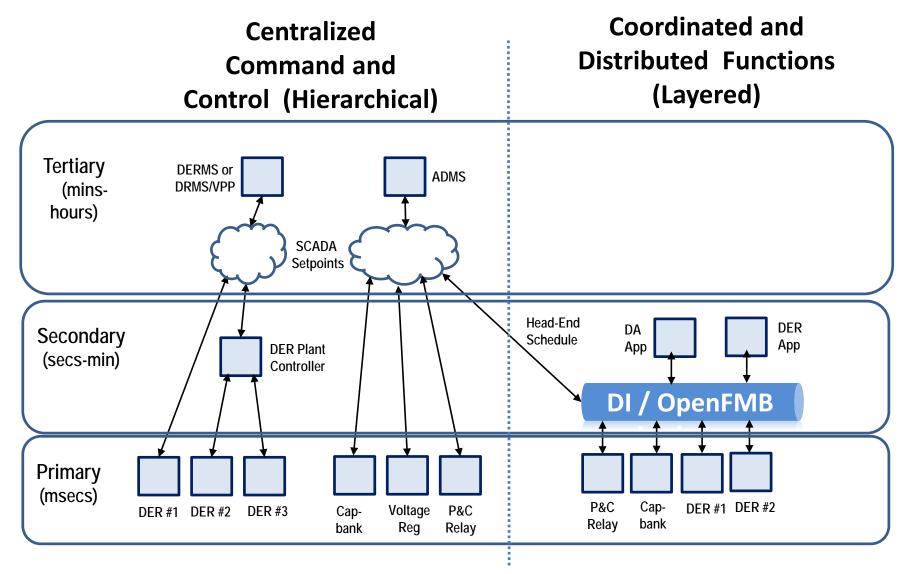

Cyber Security	RFP Templates	Testing & Certification	MultiSpeak Portal
NIST-SGIP	Available Online	V5 Comprehensive Testing	Selection of product solutions
	Step-by-step Help	Function Sets	Use Cases/Best Practices
		Full Profile	Online Testing
		Work Process	Multimedia Training

MultiSpeak Marketplace, MultiSpeak App-Store & More...

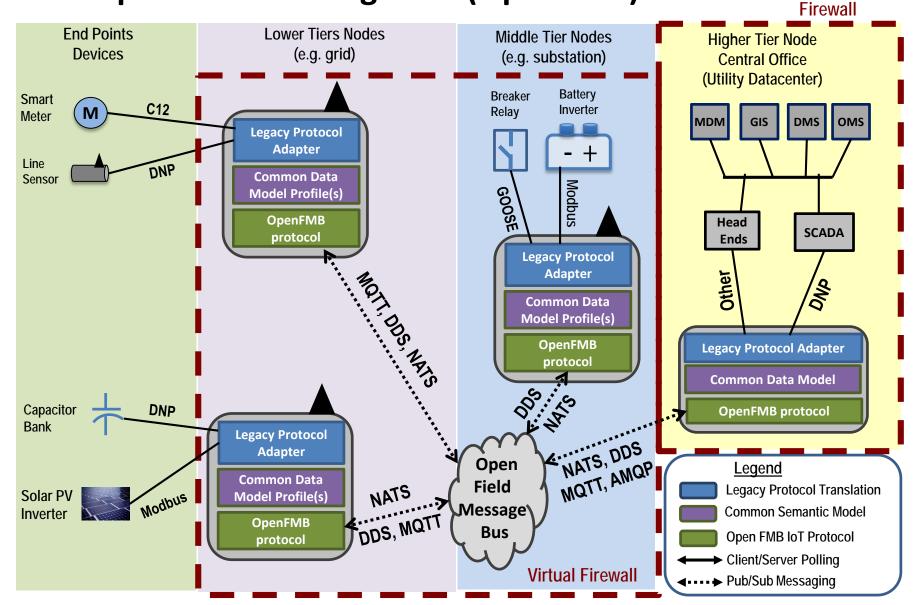
FUTURE "Tomorrow" (DO): Enabling the Electric Utility of the Future


VALUES & BENEFITS: *Reduction of Losses in Capital Expenses, Outage/Restoration Cost, Custom Integration Cost, Cybersecurity and Resiliency*

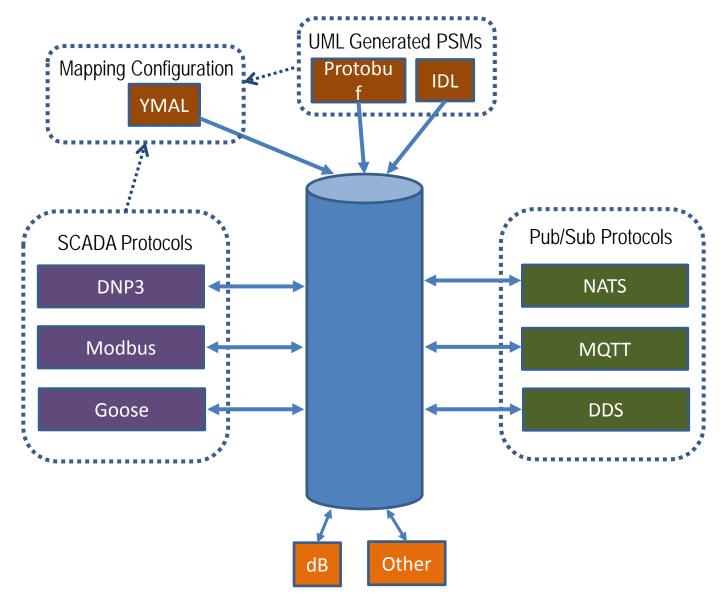
Dwayne Bradley – Duke Energy


NIST smart grid program

OpenFMB Life Cycle Framework



Copyright © 2018 OpenFMB Users Group and UCAlug, All rights reserved.


Copyright © 2018 Duke Energy Corporation All rights reserved.

Open Field Message Bus (OpenFMB) Framework

Copyright © 2018 Duke Energy Corporation All rights reserved.

Protocol Translation: OpenFMB Adapters

Copyright © 2018 Duke Energy and Open Energy Solutions, Inc.. All rights reserved.

Naza Shelley – D.C. Public Service Commission

NIST smart grid program

Customers & the Future Grid A State Regulatory Perspective

THE VIEWS AND OPINIONS EXPRESSED IN THIS PRESENTATION ARE THOSE OF THE PRESENTER AND DO NOT NECESSARILY REFLECT THE OFFICIAL POLICY OR POSITION OF THE DISTRICT OF COLUMBIA PUBLIC SERVICE COMMISSION OR THE DISTRICT GOVERNMENT.

What Customers Want

- Customers are in the driver's seat
- What we are hearing
 - Clean Energy
 - Competition
 - Data Access & Control
- It's industry's job to figure out what customers want
- What's the regulator's job?

A Regulator's Concerns

Customer vs. Prosumer

Data ownership vs. data protection

Reliability

Safety

Cost

A Regulator's Responsibility

- Protect <u>and</u> empower customers
- Reduce/remove regulatory barriers
- Establish a clear/flexible regulatory framework
- Tell stakeholders what you need to make a decision
 - Ask the right questions
 - Put the risk on industry to present solutions to problems
 - Put the burden on industry to justify the solution they present if cost sharing is required for implementation
 - Favor the carrot but be willing to use the stick

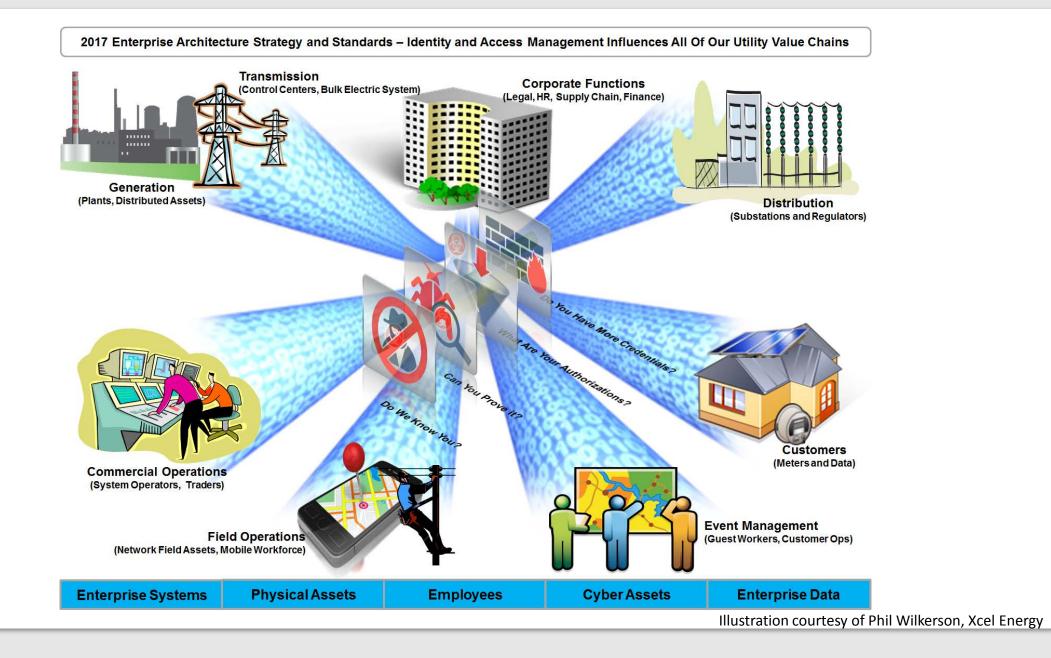
Questions?

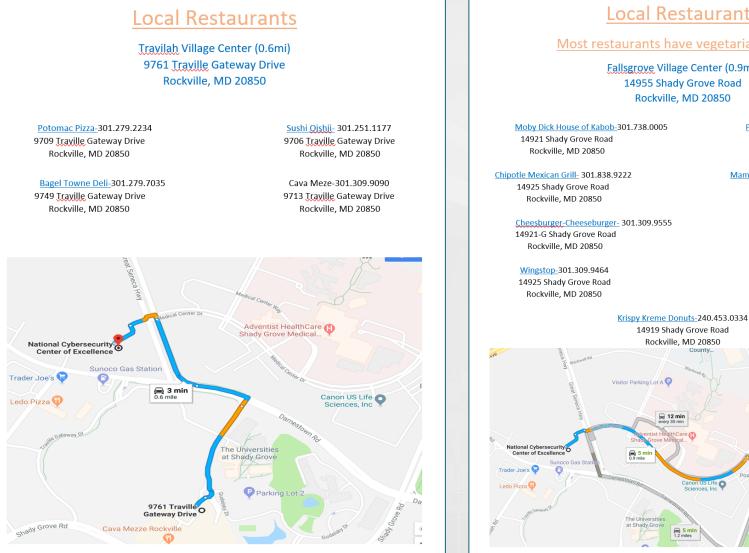
Naza Shelley – Attorney Advisor D.C. Public Service Commission 1325 G. St. NW, Suite 800, Washington, D.C. 20011 nshelley@dcpsc.gov

Joe Peichel – Xcel Energy

NIST smart grid program

Who Do You Trust?


- Certified Identity
- Devices, Organizations and People
- Delegations of Authority



Elon Musk @ @patheuk I'm giving 10 000 Bitcoic (BTC) to all community!

V

Lunch: 12:00-1:15

Local Restaurants

Most restaurants have vegetarian options

Fallsgrove Village Center (0.9mi) 14955 Shady Grove Road Rockville, MD 20850

🚍 12 min

Canon US Life O Sciences, Inc

5 min

Moby Dick House of Kabob-301.738.0005

Panera Bread- 301.545.1874 14929 Shady Grove Road Rockville, MD 20850

Mama Lucia Restaurant-301.762.8805 14921-J Shady Grove Road Rockville, MD 20850

> Taipei Tokyo-301.738.8813 14921-D Shady Grove Road Rockville, MD 20850

> > Starbucks-301.315.0096 14919 Shady Grove Road Rockville, MD 20850

> > > 0

nn 💼

14955 Shady

Afternoon Keynote begins at 1:15pm

grid NIST smart program

Economics of Interoperability – Wade Malcolm

Tuesday	v, November 13, 2018		
9:30 am	REGISTRATION		
10:00 am	WELCOME AND WORKSHOP OBJECTIVES Chris Greer, NIST		
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY John Gibson, Avista Utilities		
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY		
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability. Dwayne Bradley Duke Energy Chris Irwin U.S. Department of Energy		
	Joe PeichelXcel EnergyAlvin RazonNational Rural Electric Cooperative AssociationNaza ShelleyDistrict of Columbia Public Service Commission		
	MODERATOR: David Wollman, NIST		
12:00 pm	LUNCH		
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY		
	Wade Malcolm, Open Energy Solutions		
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS		
	Avi Gopstein, NIST		
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY		
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability		
3:30 pm	ВRЕАК		
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY Risk Profiles—Jeffrey Marron, NIST Interface Categories—Nelson Hastings, NIST Securing Communications—Michael Bartock, NIST 		
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY		
5:00 pm	Adjourn		

NIST smart grid program

The Economics of Interoperability November 13, 2018

Wade P. Malcolm, P.E. Open Energy Solutions Inc.

Why is Interoperability Important?

- Many solutions are not (easily/cheaply) interoperable and are packaged for a single "silo" or ideal for only a single function
- To achieve lower-cost and better performance, an architecture with intelligence "at the edge" is needed
- Multi-function devices should reduce capital and O&M costs
- Standards-based, modular hardware, communications, software and messaging systems will promote interoperability, lower costs, and improve reliability
- Integration and analysis of multiple data sources creates new value based on its timeliness, location, and availability (e.g. close to where things happen)

Getting some context: Four Generations of Interoperability?

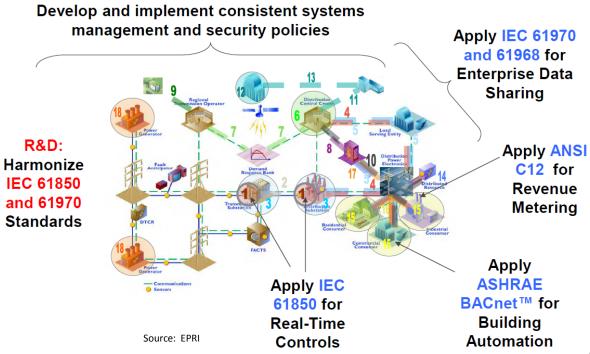
1. Energy Management Systems and SCADA

- Integration Protocols
 - Linking large centralized systems
 - WSCC
 - Others
 - SCADA Protocols

- Benefits
 - Interoperability by definition

2. Automated Meter Reading and **Distribution Automation**

- Profile, Protocols and the OSI Model
 - Utility Communications Architecture
 - IEC61850
 - Common Information Model CIM (IEC61868/70)
 - ICCP / TASE.2


MMS FTAM VT DS	MMS 1988 CMIP	
ACSE ROSE	RTSE	MHS 1984
Connection-orientated P	resentation	1904
Connection-c	prientated Session	
Connection-o	rientated Transport	0 4
Connectionless Netv	vork	ISDN
ES - IS Routing	X.25 Packet	Layer Q.931
LLC (1)	HDLCLAPB	ISDN LAPD
CSMA/ Token Token CD Bus Ring FDDI (8802/3) (8802/4) (8802/5)	V.35 EIA - X.	21 ISDN Interfaces

- Additional Benefits
 - Reduced integration costs
 - Reduced training costs
 - Reduced maintenance and upgrade costs
 - Vendor lock-in avoided
 - Reduced stranded assets
 - "Best of breed" deployments

3. Advanced Metering Infrastructure, Smart Grid and Advanced Distribution Automation

- Architectures
 - GridWise
 - IntelliGrid Architecture
- Systems Engineering
- Use Cases

- Additional Benefits
 - Re-use
 - Multi-function H/W, S/W

4. Distributed Energy Resource Integration, **Resiliency and Transactive Energy**

- Grid Architecture
 - Laminar Coordination Framework
- Distributed Intelligence
- Grid Edge Interoperability
 - Pub/Sub
- Open Field Message Bus (OpenFMB)
- "Open Distributed Systems Platform"(OpenDSP)
- Conformance and Certification

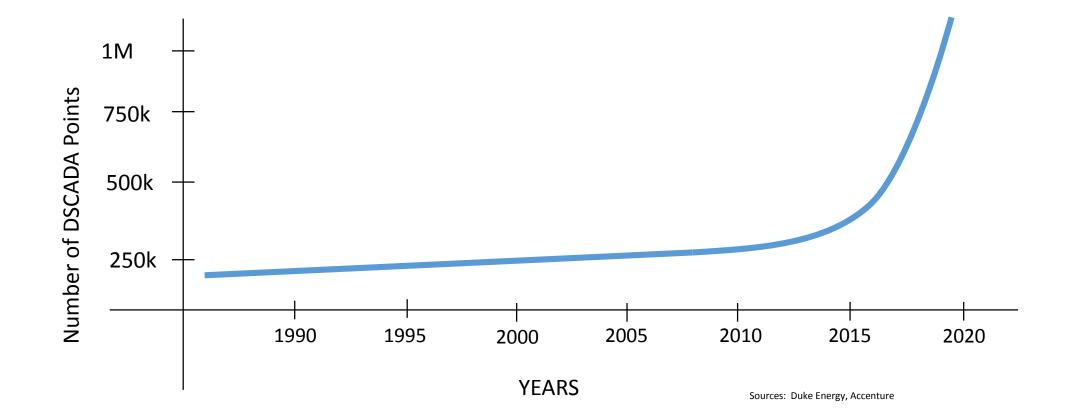
- Additional Benefits
 - Perhaps a necessity?
 - Managed migration
 - Distributed Intelligence Business Model (DIBM)
 - Stacked Benefits

DOE PNNL's Grid Architecture 2.0: Laminar Coordination Framework (LCF)

SEPA's Open Field Message Bus (OpenFMB): Internet of Things (IoT) Interoperability Framework

American Energy Standards Board Retail Gas Quadrant Retail Electric Quadrant del Business Practice Open Field Message Bus (OpenFMB) March 31, 2016 Copyright © 2012-2016 North American Energy Standards Board, Inc. All rights reserved.

PNNL-25480 (Courtesy of JD Taft) Available at http://gridarchitecture.pnnl.gov


Laminar Coordination Framework for ...

- Expect additional intelligent devices on the grid
- Today we have gaps of control and uncoordinated control
- No one vendor provides a true end-to-end solution
- "Local Optimization Inside Global Coordination"

Sources: Adam Smith Institute, PNNL-24044 Grid Architecture, OES Analysis

What Happens When We Outgrow our Centralized Control Systems?

Example – Duke Energy The power of interoperability and distributed intelligence for the future

Distributed intelligence in the electric grid has the potential to significantly increase benefits realization through additional cost savings by:

- Achieving improved operational performance
- Improving system response times
- More effectively managing the scalability associated with field devices
- Driving greater insight for more efficient decision making

Interoperability is important to Duke Energy because of the benefits it creates for customers by giving them value-added services off the electric grid, and the benefits it creates for the company, making disparate systems work well together at a lower cost

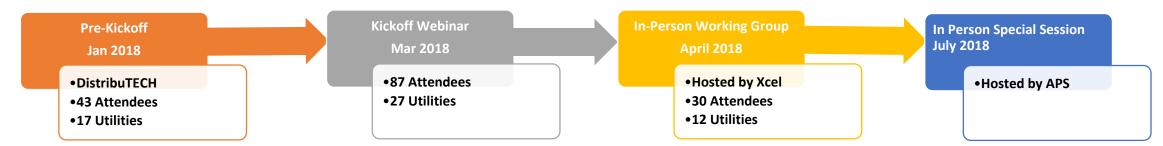
OpenFMB – The Industry Catalyst for Interoperability

- Open Field Message Bus (OpenFMB[™]) is a reference architecture and framework for distributed intelligence
- Leverages existing standards to federate data between field devices and harmonize them with centralized systems
 - IEC Common Information Model (CIM) for semantic data model
 - Internet of Things (IoT) publish/subscribe protocols for peer-to-peer communications
- Allows scaling of operations independently, without a system-wide rollout
 - Flexible integration of renewables and storage with the existing grid
- NAESB's OpenFMB standard was led by utilities and developed by SEPA/SGIP

OpenDSP (Open Distributed Systems Platform) is a collaborative effort led by utilities to develop a real-time operational technology (OT) platform as an extension to the DOE/PNNL DSPx concept

- OpenDSP characteristics
 - Can manage the operation of both utility and customer assets allowing for new service and revenue opportunities
 - Leveraging **distributed intelligence (DI) and grid edge interoperability** facilitating interaction with all vendor equipment and software
 - Delivered as an **Open Source core** with a mix of proprietary and open extensions
 - Built upon other open source applications
- Creating an "Energy Operating System"

What is OpenDSP?


Broad market support to share cost and risk

OpenDSP: Activity and Roadmap

Where we are

• Seeing significant OpenDSP industry engagement and interest

OpenDSP Activity to Date

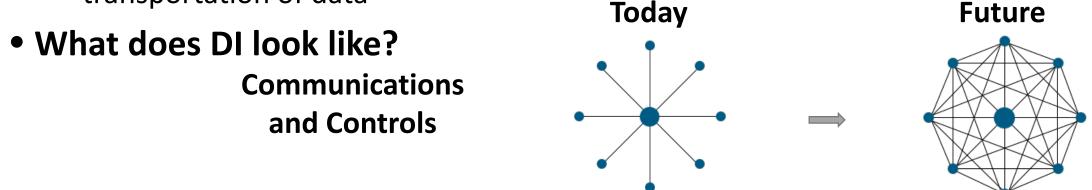
Arizona Public Service, Avista, Consolidated Edison, Duke Energy, Entergy and Xcel Energy have all made contributions to the effort to date

OpenDSP Future: Initial Strategic Development Plan

Distributed Intelligence Functions and Use Cases for DER Integration

Function	Use Case
Voltage Management and Optimization	1. DER Circuit Segment Management
	2. Volt/VAR Management
	3. Solar Smoothing with PV and Advanced Inverter, and Energy Storage
Planning and Engineering	DER Integration and Interconnection
Capacity Management and Optimization	DER Optimization with Utility-Owned Inverter
	DER Optimization with Customer-Owned Inverter
	Demand Response Optimization
	DER Forecasting
Microgrid Management and Optimization	Point of Common Coupling Management of Utility-Owned Microgrid
	Point of Common Coupling Management of Customer-Owned Microgrid
Protection and Safety	Inadvertent Island Detection / Anti-islanding
	Localized Protection Alarms and Events
	Adaptive Protection
Operational Performance Improvement	Remote Device Configuration
	SCADA Point Aggregation
Resiliency & Reliability Improvement	Self Healing-Network, Radial
Market Interactions	Transactive Energy

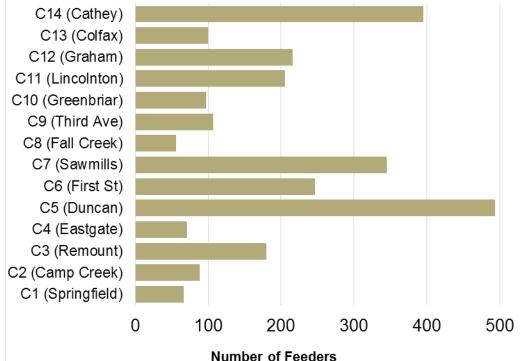
Foundational


for Distributed Coordination

Why OpenDSP? - Duke Energy <->

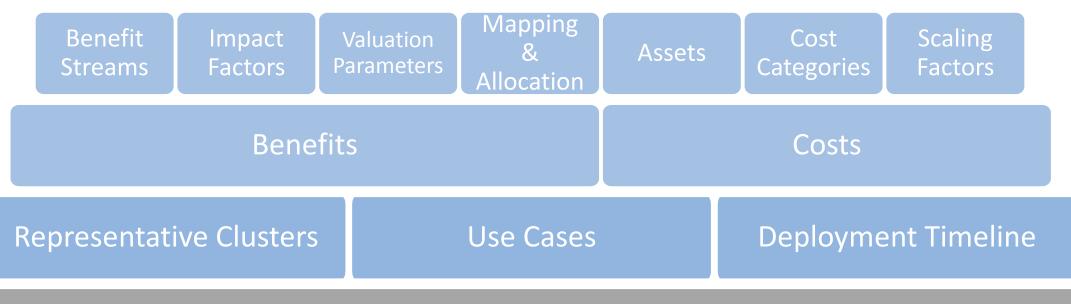
- Increasing DER penetration is forcing a new resiliency approach
- Committed to distributed intelligence and new grid-edge solutions
 - Augmenting existing legacy systems for enhanced functionality and performance
 - Addresses existing scalability and performance limitations
 - Improves cybersecurity of grid devices and telecommunications
- Interoperability emphasis provides additional benefits:
 - Enables greater choice of functionality and suppliers
 - Helps better manage integration efforts
 - Accelerates development and deployment cycles

Distributed Intelligence (DI) As An Emerging Architecture


- DI is an architecture that supports building layered intelligence on the grid
 - DI can occur at many locations, including the headend, node, and grid edge
 - It is a method of optimizing the location a decision is made based on primary needs – sensitivity, timeframe, system updates. It dramatically reduces the transportation of data
 Today

DI represents an opportunity to proactively and efficiently manage grid operations on distribution circuit segments to account for growing DER and microgrid activities

Duke Energy Distributed Intelligence Business Model Project: Objectives


- To quantify the value of DI in a manner that recognized the value created by DI *above the value* created by individual sensors, controls, and equipment.
- Develop a comprehensive and granular theoretical model that applies 22 DI use cases to 2700 feeders in North Carolina using 14 representative circuits.

Duke Energy sought to determine whether using DI to optimize distributed grid infrastructure and operations (as new DER assets come online) ultimately drives value for the customer and the utility 600

DIBM Project Approach

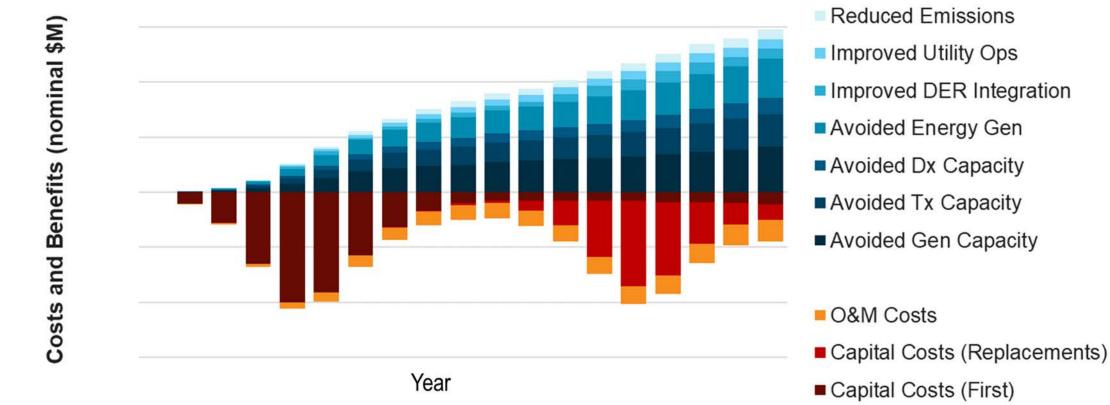
- Navigant's Grid+[™] model was used to support the DIBM development
- DIBM created a comprehensive and highly granular view of DI deployment in North Carolina

Duke Energy Distributed Intelligence Business Model

Navigant Grid+TM

DIBM Use CASE Development

 Use cases were developed and analyzed

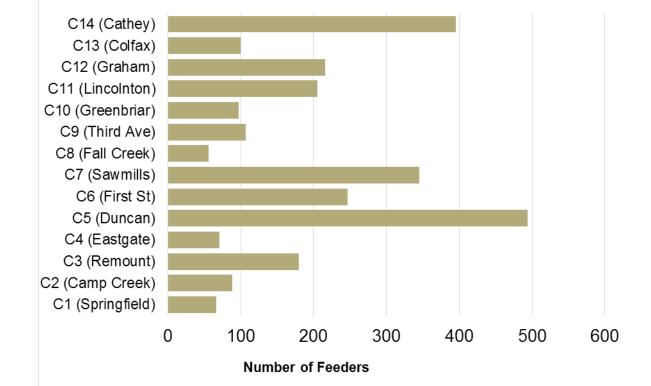

 Model provides granular insights for costs, benefits, scalability, and deployment timelines

 Also facilitates stacked benefits analysis to address system challenges

Use Case	Capacity Management	Voltage Management	DER Management	Utility Operations
DER Circuit Segment Management	✓	✓	✓	✓
Baseload Storage Monitoring/Mgmt.	✓		✓	
Peak Power Management	✓		✓	
DER Forecasting w/ Meters	✓		✓	
DER Forecasting w/ Weather Stations	✓		✓	
DER Optimization (Cust. Inverter)	✓		✓	
DER Optimization (DE Inverter)	✓		✓	
Demand Response Optimization	✓			
PCC Monitoring/Mgmt./Opt. (DE µgrid)	✓	✓	✓	
PCC Monitoring/Mgmt. (Cust. µgrid)	✓	✓	✓	
Volt/VAR Management	✓	✓	✓	✓
Grid Connectivity Discovery				✓
Remote Device Configuration			✓	✓
SCADA Point Aggregation			✓	✓
Enhanced COMS Network Ops. Status				✓
Improve Asset Maint. Practices				✓
Localized Protection Alarms & Events			✓	✓
Self Healing Radial Network			✓	✓
Solar Smoothing		✓	✓	
Solar Smoothing (+Battery)		✓	✓	
Inadvertent Island Detection			✓	
DER Integration & Interconnection			✓	

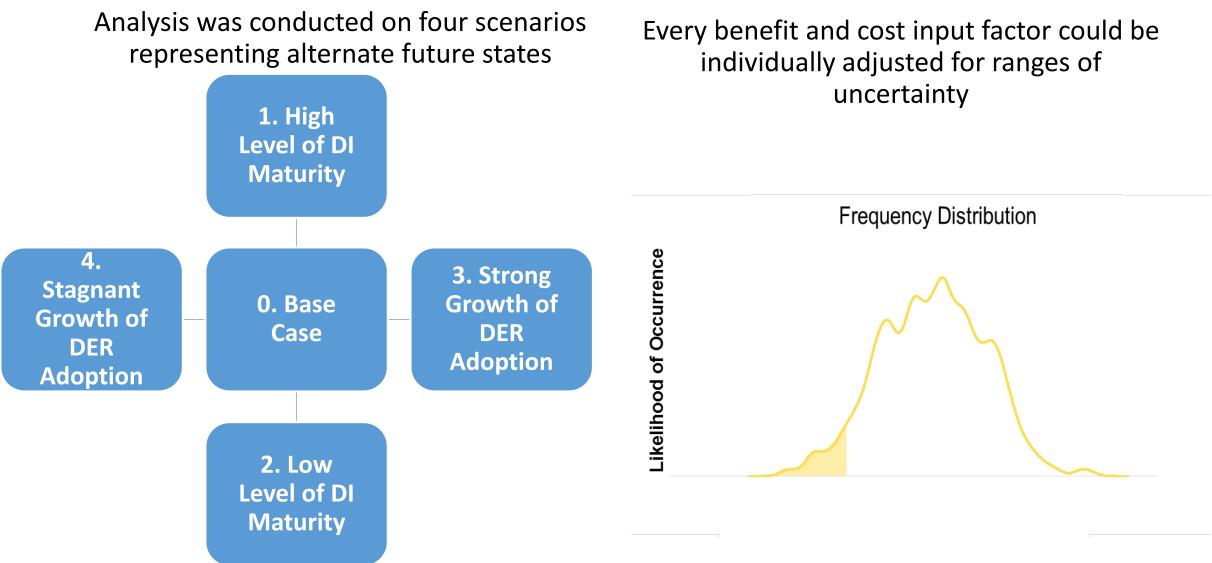
Benefits And Costs Over Deployment Timeframe

Analysis considers benefits and costs accrued over time through a theoretical deployment


Annual DI Costs and Benefits

A Targeted Approach Increases Value

In the early years, an optimal business case should leverage a targeted approach that maximizes system value.


A stronger business case considers:

- Feeder characteristics. Ex: DER penetration, sites, and sizes, as well as customer type and count.
- Segmented installations instead of broad-brush system deployments

Number of Feeders Represented by Feeder Cluster

Scenario And Sensitivity Analysis

DIBM Project Insights

- Assuming a theoretical deployment timeline, the DIBM results informed Duke Energy on the incremental value a DI and OpenFMB enabled solution can unlock
- It reinforced the need for utility and vendor community engagement
- A DI enabled product suite will be critical to future success
- DIBM is available to help other utilities investigate Distributed Intelligence approaches
- A positive outcome was determined along with some specific insights
- Duke Energy is working to make more DIBM related work available in 2019

Conclusion

- Regulation and legislation will still significantly impact how utilities continue to transform
- At some point, traditional control may no longer be a viable option
- The evolution of interoperability has enabled new coordination and control schemes to be able to address future needs economically

Introduction to NIST's Smart Grid Models – Avi Gopstein

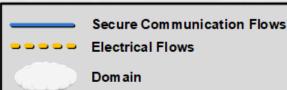
	_	

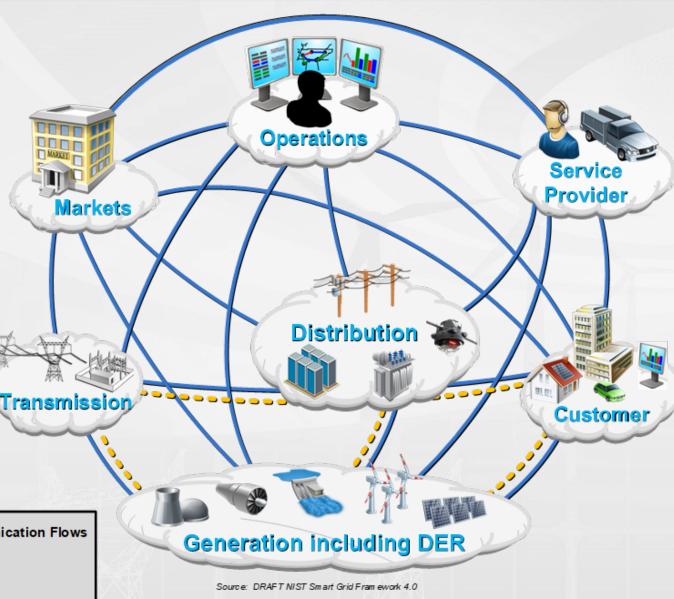
Tuesday	, November 13, 2018					
9:30 am	REGISTRATION					
10:00 am	WELCOME AND WORKSHOP OBJECTIVES Chris Greer, NIST					
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY John Gibson, Avista Utilities					
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY					
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability. Dwayne Bradley Duke Energy Chris Irwin U.S. Department of Energy Joe Peichel Xcel Energy Alvin Razon National Rural Electric Cooperative Association Naza Shelley District of Columbia Public Service Commission MODERATOR: David Wollman, NIST					
12:00 pm	LUNCH					
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY					
	Wade Malcolm, Open Energy Solutions					
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS					
	Avi Gopstein, NIST					
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY					
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability					
3:30 pm	Вгеак					
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY					
	 Risk Profiles—Jeffrey Marron, NIST Interface Categories—Nelson Hastings, NIST Securing Communications—Michael Bartock, NIST 					
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY					
5:00 pm	Adjourn					

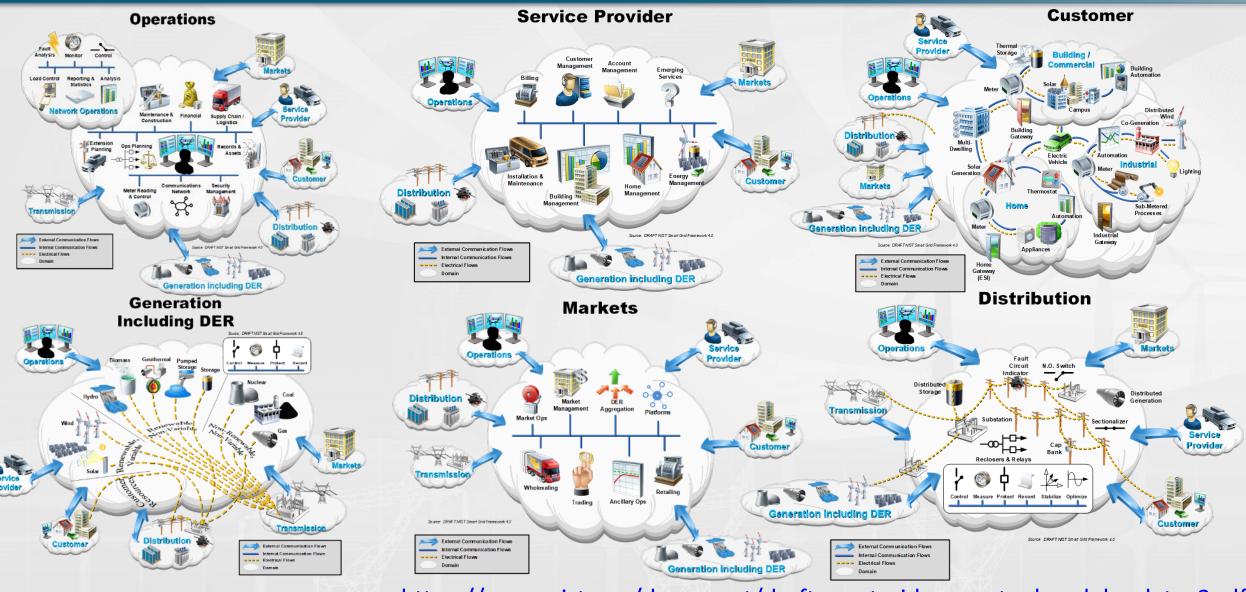
NIST Smart Grid Program

Introduction to NIST's Smart Grid Conceptual Models

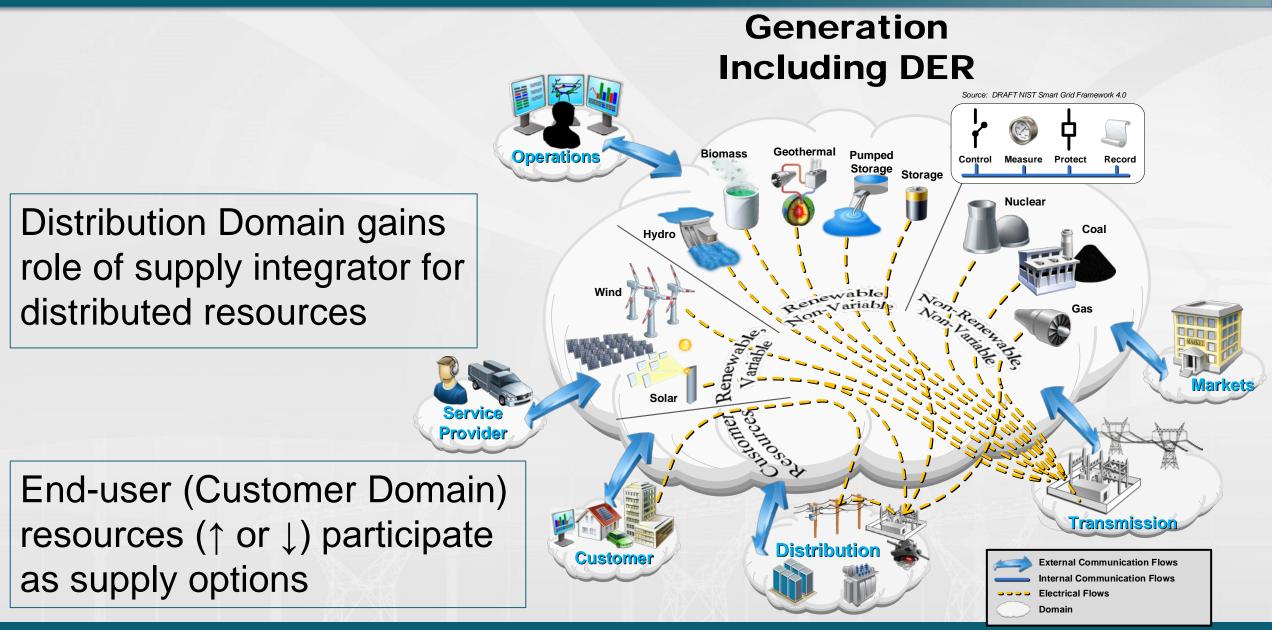
Avi Gopstein


Associate Director & Smart Grid Program Manager National Institute of Standards and Technology U.S. Department of Commerce

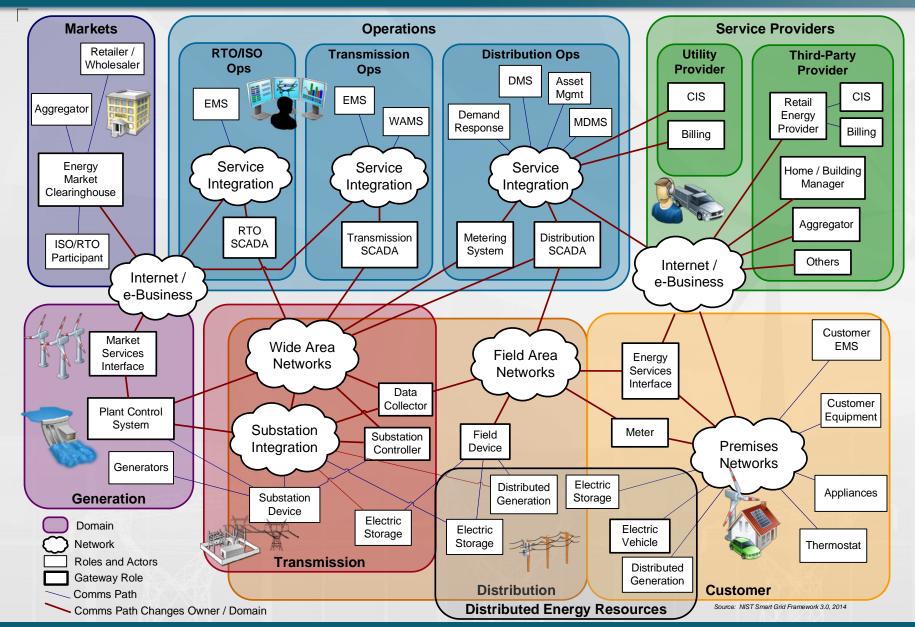

November 13-14, 2018


Smart Grid Conceptual Model (2018, Draft)

- Generation including DER
 - Technology diversity
 - Physical proximity to transmission, distribution + customer domains
- Intelligent distribution system
 - Increasing importance
 - Improved controllability + intelligence
 - Connected to service provider domain (e.g., congestion mitigation)
- Empowered consumers
 - Operations & intelligence enters customer domain
 - Customer diversity incorporated
- Emerging Markets
 - Platforms



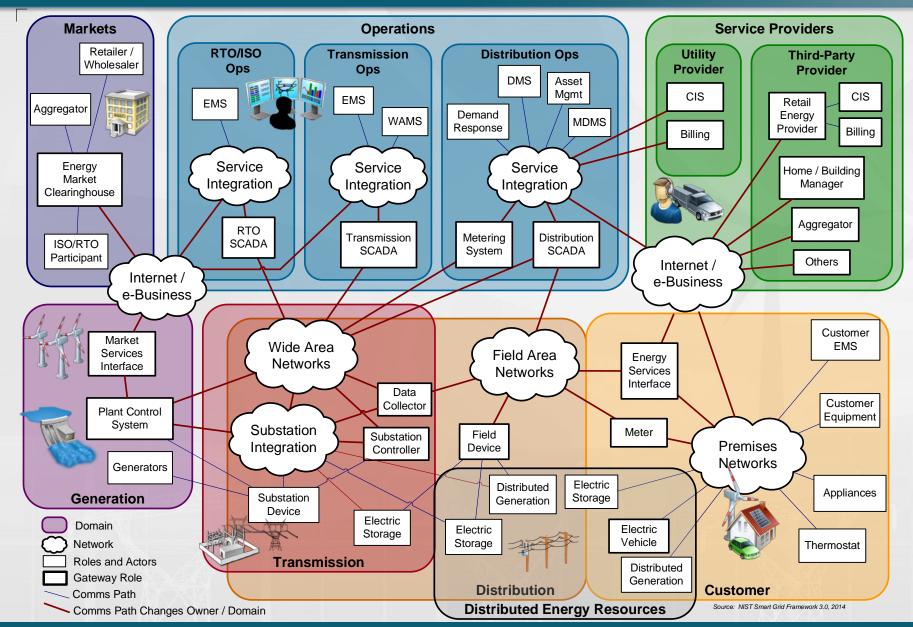
Conceptual Model Domains (2018, Draft)



https://www.nist.gov/document/draftsmartgridconceptualmodelupdatev3pdf

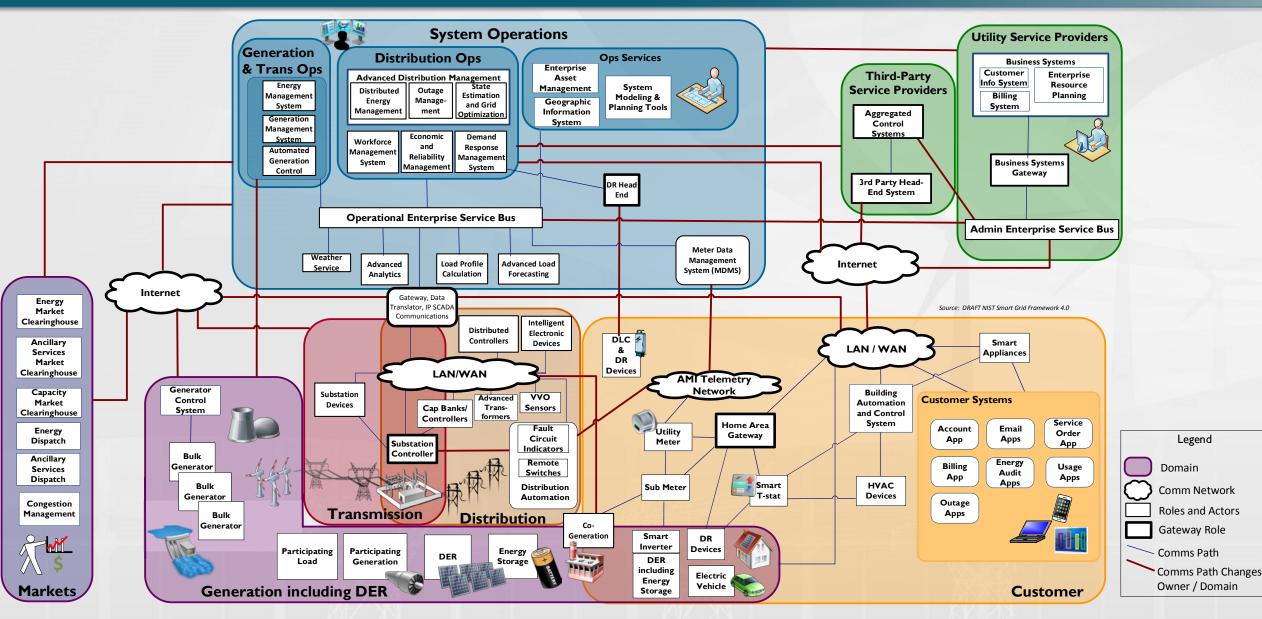
Generation Including DER Domain

Communication Pathways Diagram—Legacy Utility

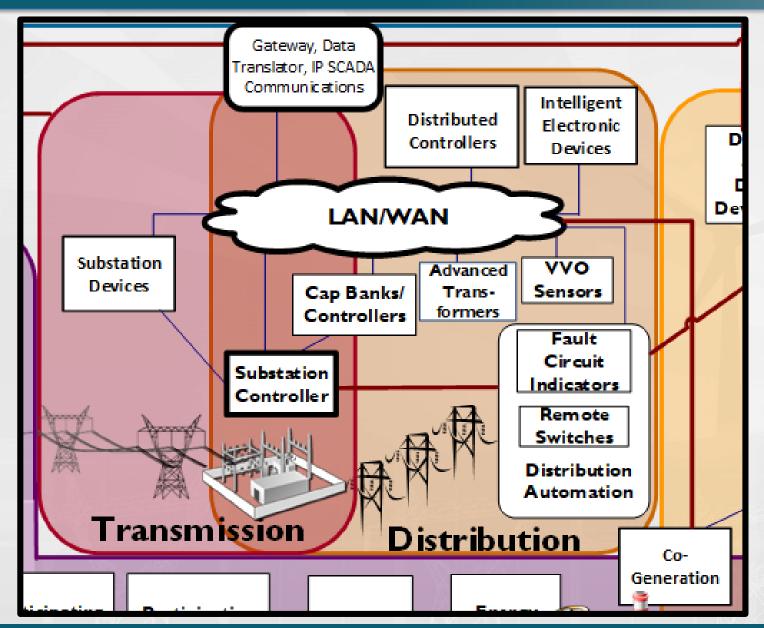


NIST perspective

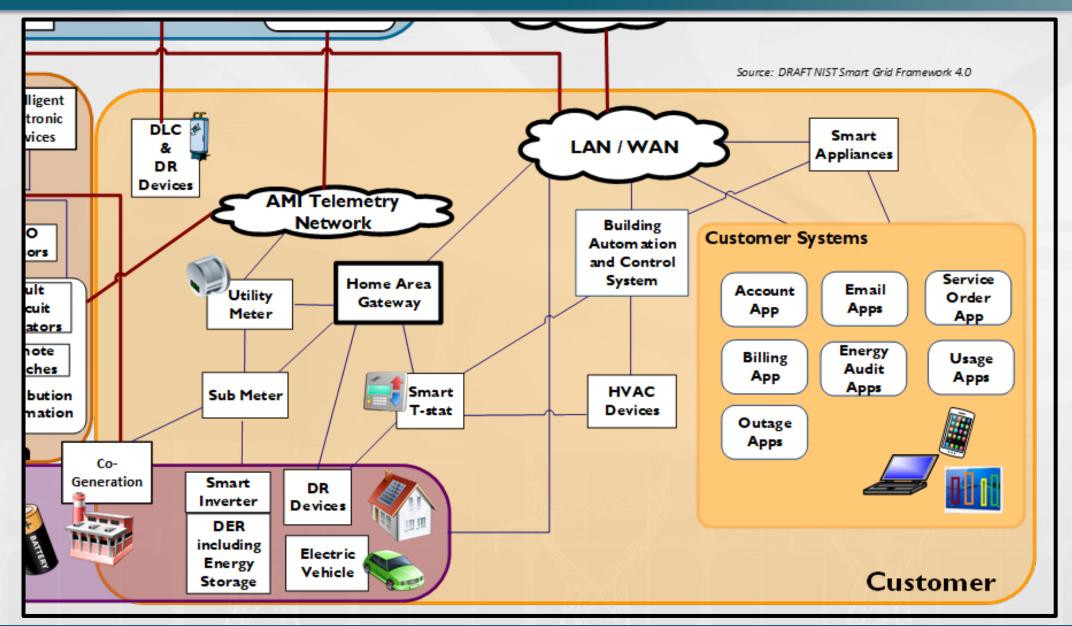
- Grid architectures are changing
 - Driven by technology and policy
- Changes will impact
 - Operations
 - Economics
 - Cybersecurity
 - Testing & Certification
- No single architecture is "correct"
- NIST are not architects

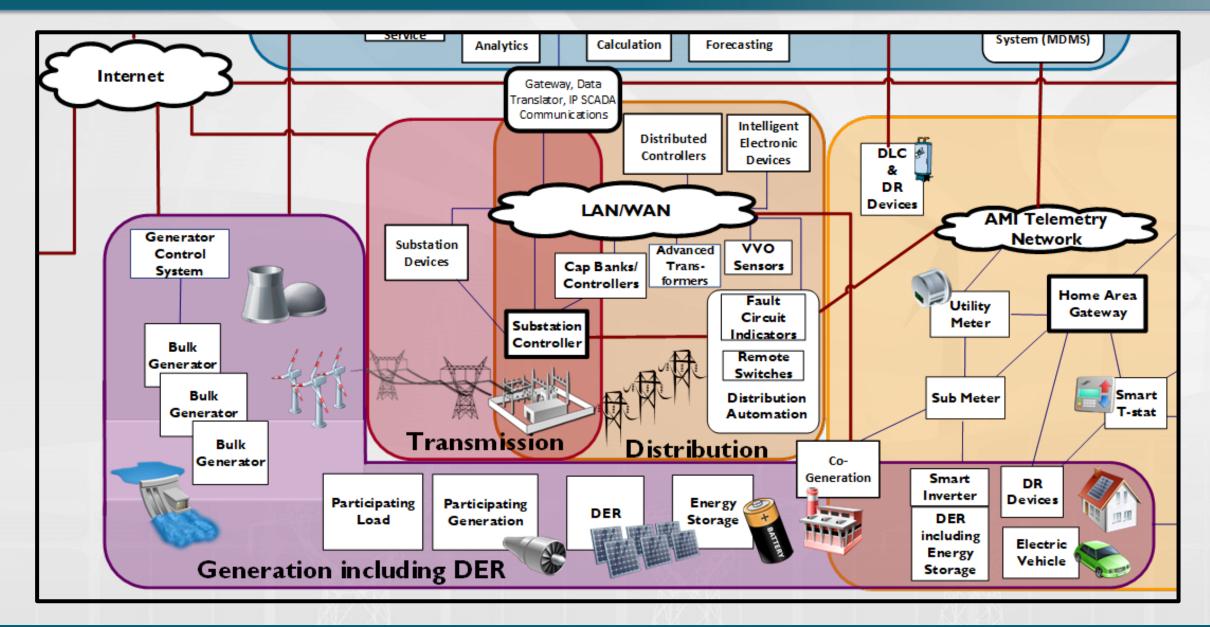

in the Part				1
and the second	1 March	Lug Martin		multing Marshall
2.2.11				
			GRID-	
			MODERNIZATION	
		The Maria Start	CONSORTIUM	
the second		and the second	IS Department of Energy	
			1 Marsh	
		- All	0	
		a fil and		
	and the second s	1.		Carlo Maria Maria
		the state of		the state of the second se
	TECHNIC	AL AREAS / PROJEC	TS / RESOURCES / NE	WS & EVENTS
		/	/ /	
OME » PROJECTS				
Grid Archi				0
				<u><u>R</u></u>
		\$		<u>}</u> Project Lead
Grid Archi		\$ Funding	Technical Area	Project Lead
opic ID	tecture (\$ Funding 3.00 M	Technical Area System Operations, Power	
opic ID	tecture E Duration	•		
ppic ID	tecture Duration ^{3 years}	3.00 M	System Operations, Power Flow, and Control	Jeff Taft, PNNL
e Grid Architecture	tecture Duration 3 years	3.00 M a set of architectural depictions,	System Operations, Power Flow, and Control	Jeff Taft, PNNL
e Grid Architecture extended stakehold	tecture Duration 3 years	3.00 M a set of architectural depictions, issus on grid modernization and t	System Operations, Power Flow, and Control	Jeff Taft, PNNL Related Resources Fact Sheet
e Grid Architecture extended stakehok restments, technolo mmission, regulator	tecture Duration 3 years	3.00 M a set of architectural depictions, isus on grid modernization and to nd new capabilities, products an	System Operations, Power Flow, and Control tools, and skills to the utility industry and p provide a common basis for roadmaps,	Jeff Taft, PNNL Related Resources Fact Sheet Grid Architecture Grid Architecture
e Grid Architecture extended stakehok restments, technolo mmission, regulator	tecture Duration 3 years	3.00 M a set of architectural depictions, isus on grid modernization and to nd new capabilities, products an	System Operations, Power Flow, and Control tools, and skills to the utility industry and p provide a common basis for roadmaps, d services for the modernized grid. Every	Jeff Taft, PNNL Related Resources Fact Sheet Grid Architecture @ Grid Architecture Report
e Grid Architecture extended stakehok estments, technolo mmission, regulator these efforts.	tecture Duration 3 years project objectives are to provide lers to develop a national conser gy and platform developments, a , utility, product and platform ven	3.00 M a set of architectural depictions, isus on grid modernization and to nd new capabilities, products an	System Operations, Power Flow, and Control tools, and skills to the utility industry and p provide a common basis for roadmaps, d services for the modernized grid. Every	Jeff Taft, PNNL Related Resources Fact Sheet Grid Architecture Grid Architecture
e Grid Architecture extended stakehok restments, technolo mmission, regulator these efforts. pected Outcomes i	tecture Duration 3 years project objectives are to provide lers to develop a national conser gy and platform developments, a u, utility, product and platform ven-	3.00 M a set of architectural depictions, issus on grid modernization and t nd new capabilities, products an dor, energy services provider, an	System Operations, Power Flow, and Control tools, and skills to the utility industry and provide a common basis for roadmaps, d services for the modernized grid. Every d integrator understands the importance	Jeff Taft, PNNL Related Resources Fact Sheet Grid Architecture @ Grid Architecture Report
e Grid Architecture extended stakehok restments, technolo mmission, regulator these efforts. pected Outcomes i Build stakeholder o	tecture Duration 3 years project objectives are to provide lers to develop a national conser gy and platform developments, a u, utility, product and platform ven-	3.00 M a set of architectural depictions, issus on grid modernization and t nd new capabilities, products an dor, energy services provider, an	System Operations, Power Flow, and Control tools, and skills to the utility industry and p provide a common basis for roadmaps, d services for the modernized grid. Every	Jeff Taft, PNNL Related Resources Fact Sheet Grid Architecture Grid Architecture Report Glossary of Grid Architecture Term Glossary of Power Systems Terms
e Grid Architecture extended stakehok vestments, technolo mmission, regulator these efforts.	tecture Duration 3 years project objectives are to provide lers to develop a national conser gy and platform developments, a u, utility, product and platform ven-	3.00 M a set of architectural depictions, issus on grid modernization and t nd new capabilities, products an dor, energy services provider, an	System Operations, Power Flow, and Control tools, and skills to the utility industry and provide a common basis for roadmaps, d services for the modernized grid. Every d integrator understands the importance	Jeff Taft, PNNL ▲ Related Resources Fact Sheet Grid Architecture Grid Architecture Report Glossary of Grid Architecture Term

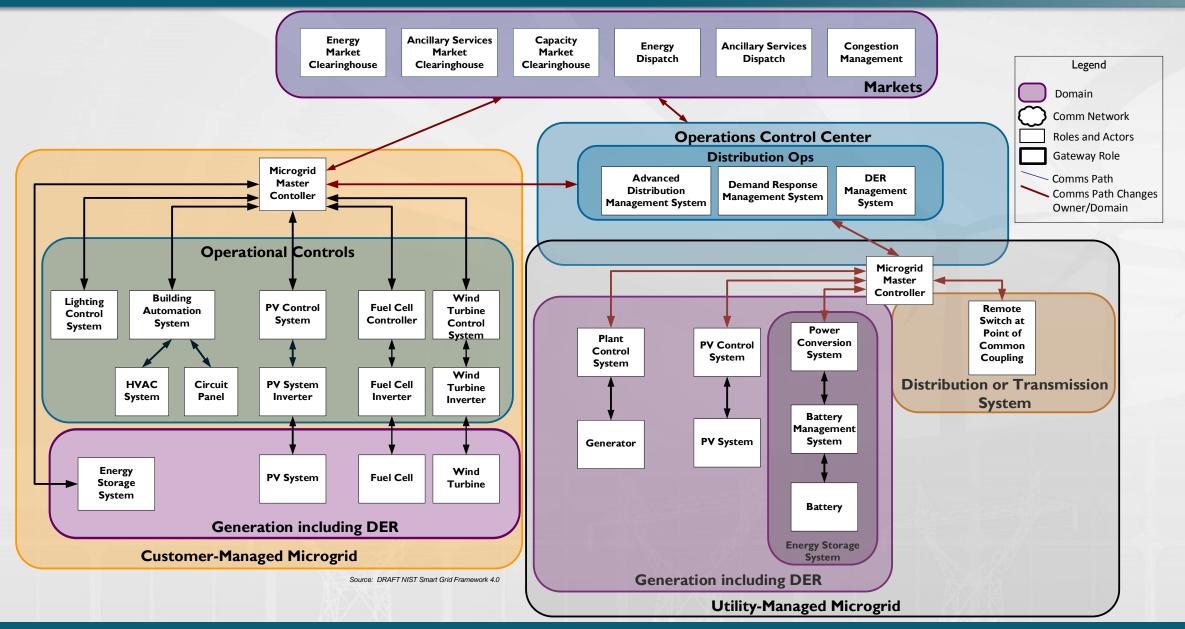
Legacy Communication Pathways Scenario

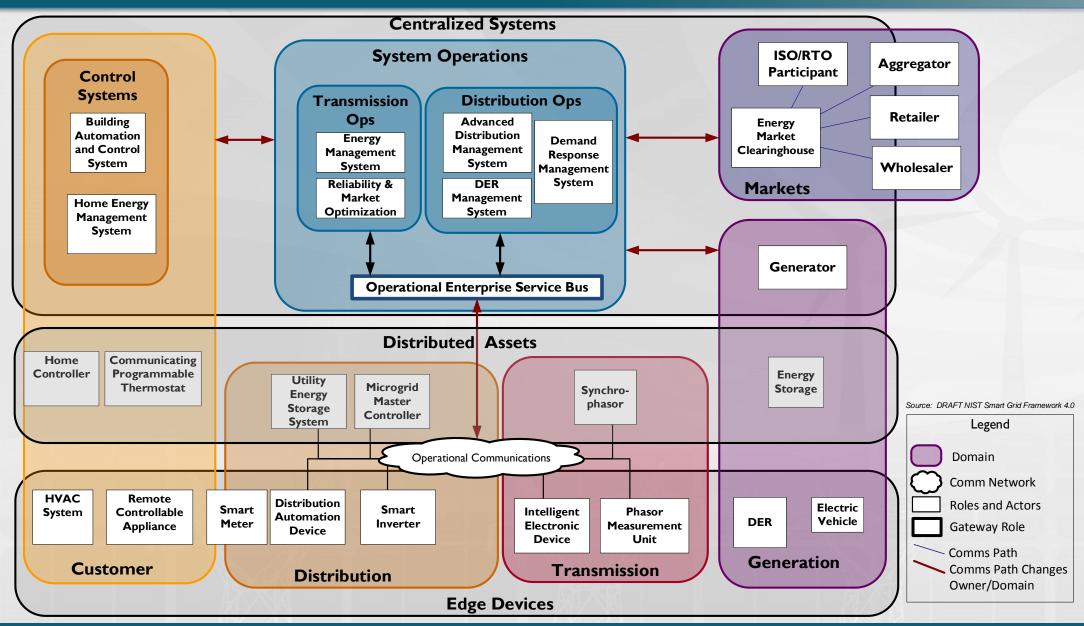


NIST smart grid program


High-DER Communication Pathways Scenario


Detail—Transmission/Distribution substation


Detail—Customer Domain


Detail—Generation Domain

Microgrid Communication Pathways Scenario

Hybrid Utility Communication Pathways Scenario

What does all of this mean for how we operate a modern grid?

Interoperability standards landscape assessment

SEPA/SGIP SG CoS List

leicome Architect	ure View					
			SGIP's S	mart Grid C	atalog of Standards	
atalog of Standards			Ful	List of Standard	is by Entry Number	
Markets Operations						
	RTOISO	Transmission	SGIP Catalog of Standards	Date	SGIP Catalog of Standards	Date
Padral	Frongy	Fromy	1. ANSI C12.1-2008 listed Sept 5 2012	10/15/2014	49. IEC 62351-8-dated 2014-08-21	08/17/20
Wholesaler	Hanagement	Vanagement	2. ANSI C12 18-2006 listed Sept 5 2012	10/15/2014	44. JEC-62541 Parts 1-7 listed Nov 2013	10/15/20
	System	Bystern	 ANSI C12.19-2008 listed Sept 5 2012 	10/15/2014	45. IEEE 1877-dated 2011-02-02	08/17/20
Aggregator		Wide /vea	4. ANSI C12 19-2012-dated 2014-10-07	08/17/2015	46. IFFE 1701	10/15/20
		Veasurement	5. ANSI C12 20-2010 listed Sept 5 2012	10/15/2014	47. IEEE 1815-2010 Inted Dec 31 2011	10/16/20
Erenty Narket		System	 ANSI C12.21-2006 listed Sept 5 2012 	10/15/2014	48. IEEE 1901-2010 listed Jan 31 2013	10/16/20
Cleaning House			 ANSI C12.22-2008 listed Sept 5 2012 	10/15/2014	49. IEEE C37.238	10/16/20
	BORTO	Transmission	 ASHRAE 135-2010 BACnet listed Nov 21 2011 	10/15/2014	50. IEEE C37.239-2010 listed May 4 2012	10/16/20
ISORIO	SCADA	SCADA	 CEA 709 1-C 2014 02-14rev1 CEA 709 2-A 2014 02-14rev1 	10/15/2014 10/15/2014	51. IEEE1001.2-dated 2011-00-021 52. IETF RFC 6272 lated July 7 2011	08/17/20
Participant			10. CEA 709.2 A 2014-02-14rev1 11. CEA-709.3-2014-02-14rev1	10/15/2014	52. TETP RPC 6272 Island July 7 2011 53. TTU-T 6 9960	10/16/20
			12 CCA-709 4-2014-02-14 rev1	10/15/2014	54 ITU-T 6 9972	10/16/201
Distribution System Operator Participant			13 CEA-852 1-2014-02-14 rev1	10/15/2014	 MultiSpeak^a Security VI 0-dated 2013-12-05 	10/16/201
Operator Hanksbart		Д	14. CE4-852-8-2014-02-14rev1	10/15/2014	56. MultiSpeak® V5.0-dated 2013-12-05v1	10/16/200
			15. CEA-CEDIA-CE829- dated 2012-03-01v1	10/15/2014	57. NAE55 REG 19	10/16/201
			16 IEC 15067 3-dated 2012-11-05	08/17/2015	58. NAE55 REQ 21	10/16/201
			17. IEC_60820-6-503 listed Sept 5 2012	10/15/2014	59. NAESS REQ 22	10/16/201
Communication			18. IEC 60870-6-702-1998 listed Sept 5 2012	10/15/2014	60. NEMA 9G-AMI 1	10/16/201
			19. IEC 60870-6-802	10/15/2014	61. NISTIR 7628 listed Sept 5 2012	10/16/200
			20. IEC_61850-1	10/15/2014	62. NISTIR 7761 listed July 7 2011	10/16/200
			21. IEC 61850-10	10/15/2014	 NISTIR 7761-dated 2013092081 	10/16/200
			22. IEC 61850-2	10/15/2014	64. NISTIR 7862	10/16/201
			23. IEC 61850-3	10/15/2014	 NISTIR 7943-dated 20140615 	8/17/201
			24. ICC 61850-4 25. IEC 61850-5	10/15/2014	66 OASIS CMIX listed Dec 31 2013 67. OASIS WS	10/16/201
Generation	Transmi	ission	25. IEC 61850 5 26. IEC 61850 6	10/15/2014 10/15/2014	68. CASIS Encrey Interce	10/16/201
			26. IEC 61850-6 27. IEC 61850-7-1	10/15/2014	 Cocisi Strengy Interop Cocin ADR-2 Da-dated 2012-08-17-sh 	10/16/20
	80	states) D	28 11C 51850-7-2	10/15/2014	70 OpenADR-2 0b-dated 2012-08-17rev2	10/16/201
		toler Col	29. IEC 61850-7-5	10/15/2014	71. SAE J1772-2010 listed July 7 2011	10/16/201
			30. IEC 61850-7-4	10/15/2014	72. SAE J2836 Use Cases (1-3) listed July 7 2011	10/16/200
Variet Servi			31. IEC 61850-7-410	10/15/2014	73. SAE J2847-1 listed Oct 14 2011	10/16/201
INGTRO			52. IEC 61850-7-420	10/15/2014	74. 5EP2 0-dated 2013-12-02 update	10/16/200
			55. IEC 61850-8-1	10/15/2014	75. SG AMI-1	10/16/200
			54. IEC 61850-00-5	10/15/2014	76. SGIP 2011-0008-1	10/16/200
			35. IEC 61850-9-2	10/15/2014	77. ANSI/ASHRAE/NEMA Standard # 201p (FSGIM)	03/01/201
			36 IEC 62351-1 87, IEC 62351-2	10/15/2014 10/15/2014	78. ANSI/CTA-2045 79. ITU-T 0.0908	03/01/201
			57. IEC 62351-2 38. IEC 62351-3	10/15/2014	70. TIG-T 0.9008 80. NAESB RM0.26	03/01/201
Plant Control	Generators		58. IEC 62351-5 39. IEC 62351-4	10/15/2014	 NAESS HMC 26 NEMA Standards Publication 96-IPRM 1-2016 	03/01/200
System		statos E	40 100 52351-5	10/15/2014	 NEWA standards Publication SS IPAM 1 2018 	05/01/201
		TALE SI				
			41. 100 62351-6	10/15/2014		

Identified SG Standard List of NIST Framework R3.0

This publication is available free of charge from http://dx.doi.org/10.6028/NIST.SP.1108r3

NIST Framework and Roadmap for

Open Automated Demand 2.0

DASIS WS-Calendar (Communic NISTIR 7761v1, NIST Guidelines

IEC 62351-1

IEC 62351-2

IEC 62351-3 TCP/IP

NISTIR 7862 - Guideline for the Imple

NIST SG Framework V3.0-2014 SG Lis

ANSI C12.1-2008

ANSI C12 18-200

ANSI C12 19,200

ANSI C12 20-201

IEC61850-2

IEC61850-3

IEC61850-4

IEC61850-3

IEC61850-4

IEC61850-7-

IEC61850-7-

IEC61850-7-3 IEC61850-7-4

IEC61850-7-4 IEC61850-7-410 IEC61850-7-420 IEC61850-8-1 IEC61850-9-2 IEC61850-90-5 IEC61850-90-5

IEC 61968/61970 st IEEE 1815 (DNP3)-2012 IEEE C37.118.1-2011 IEEE C37.118.2-2011 IEEE C37.238 - 2011 PTP

IEEE 1588 PTP IEEE 1901-2010 (ISP) and ITU-T G.95

IEEE C37.239-2010 COMFED IEEE 1547 Suite

ANSI C12.20.2010 ANSI C12.21.2006 ANSI/ASHRAE 135-2012 ANSI/CEA.709 and CEA.82.21 LON Pro IEC 60870-6-030 TASE2.2010 IEC 60870-6-030 TASE2.2010 IEC 60870-6-2082 TASE2.20bject model IEC 61850-1 IEC 61850-1

NIST Special Publication 1108r3

Standards, Release 3.0

Open Geospatial Consortium(OGC) Geography Markup Language (GML)

OASIS Energy Interoperation (EI) OASIS EMIX (Energy Market Information eXchange) Smart Energy Profile 2.0 (Device communication and information model) RPC 627.2 IP-based SG network

SAE J1775: SAE IBenix Velikis and Ping inshjedit literiter, Veliki Gondarbo, Usarge G SAE J25361: Use Case & Commanization Diressee Ping av Verliss and the Ubity Gold SAE J25361: Use Case & Commanization Diressee Ping av Verliss, and the Ubity Gold SGTCC Interspendingly Process Relevance Manual (JPRM) v101 SGTCC Unterspending Ping Strateging Internet Ping Strateging and Strateging Security Pingle for Advanced Meeting Inframeruter, v10, 2009 DIS, NCS, Cating G Correll Systems Security, recommendations for standard developer

IEC 61851: Electric vehicle conductive charging system - Part 1: General requirem

BE C 623-3 TCP/H EC 623-4 Security for MAS EC 623-4 Security for MAS EC 623-4 Security for MAS EC 623-5 Security for EC 6180 EC 6233-7 end s-cond information account (BLAC) experiments EC 6231-4 specific rule based access count (BLAC) experiments EC 6231-4 specific rule based access count (BLAC) experiments EC 6231-4 specific rule based access count (BLAC) EC 6235-7 and 6-200 for access count (BLAC) EC 6235-7 and

adelines for Assessing Wireless Standards for SG application

National Institute of dards and Technology


Smart Grid Interoperability

MultiSpeak NAISB REQ18, WEQ19-2010 NAISB REQ-21 Brergy Services Provider Interface (ESPI) NAISB REQ-22 NEMA Smuer Grid Standards Publication SG-AMI 1-2009 OPC-UA

. DpenHAN AE J1772: SAE Electric Vehicle and Plug in Hybrid Ele

DHS Cyber Security Procurement Lannuage for Control Systems

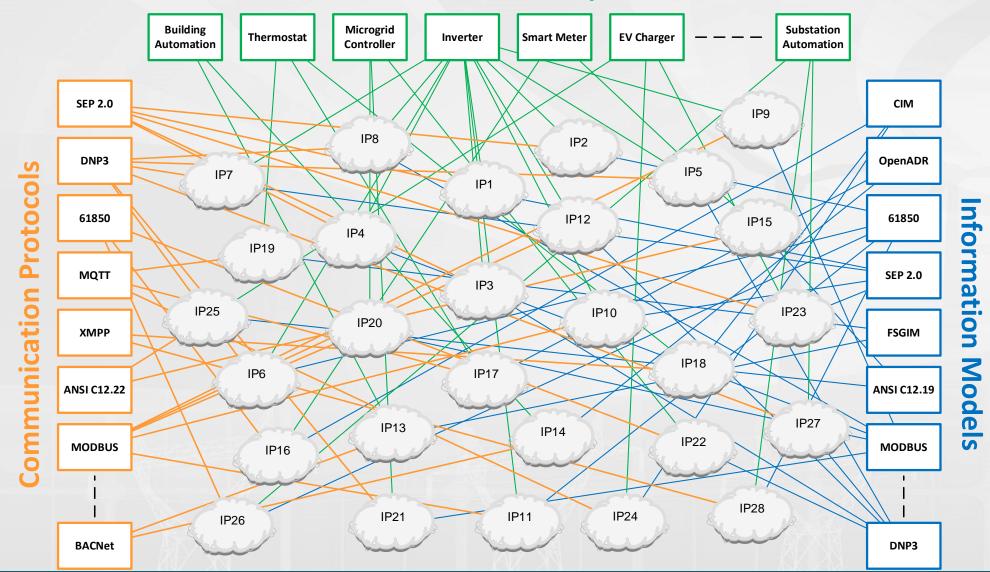
DSO Priority List

Source: http://www.gridstandardsmap.com/

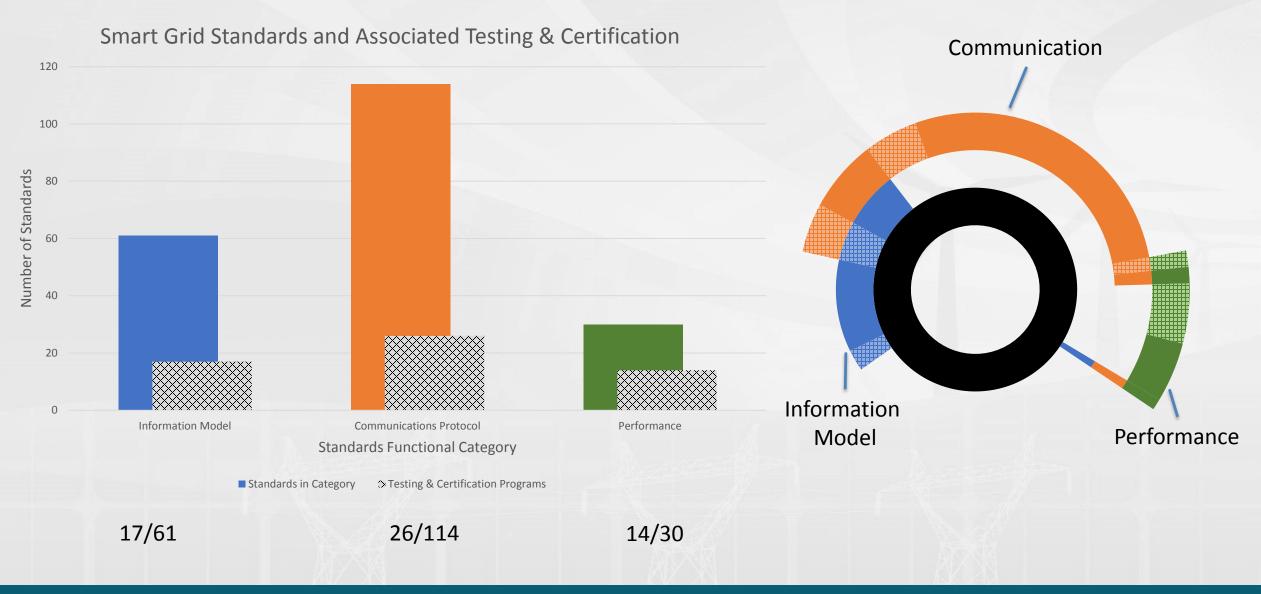
New Standards:

- New Standards
- New versions of old standards

Smart Grid Standards for **Evaluation (244 Standards)**

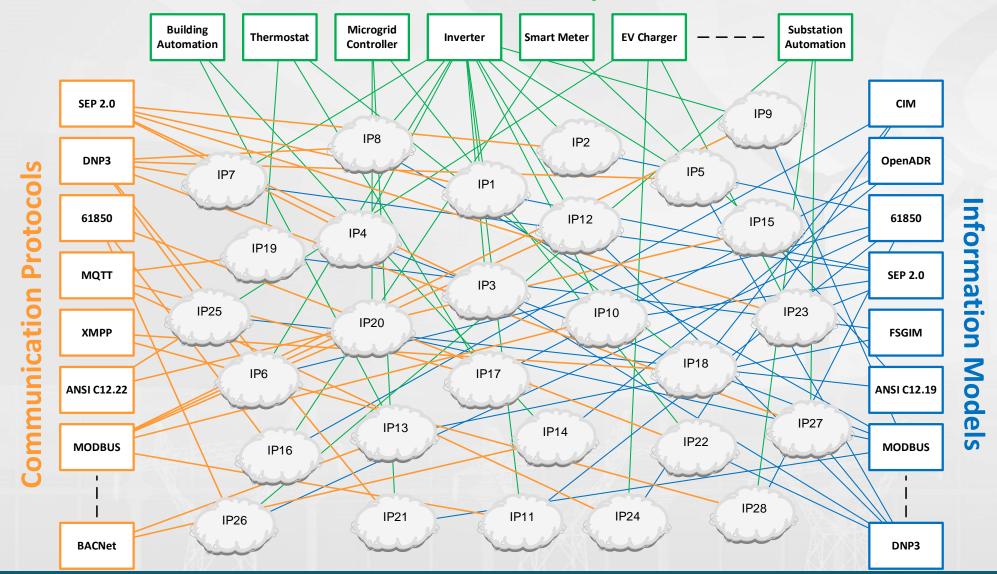

releases-final-version-smart-grid-framework-update-30

Source:

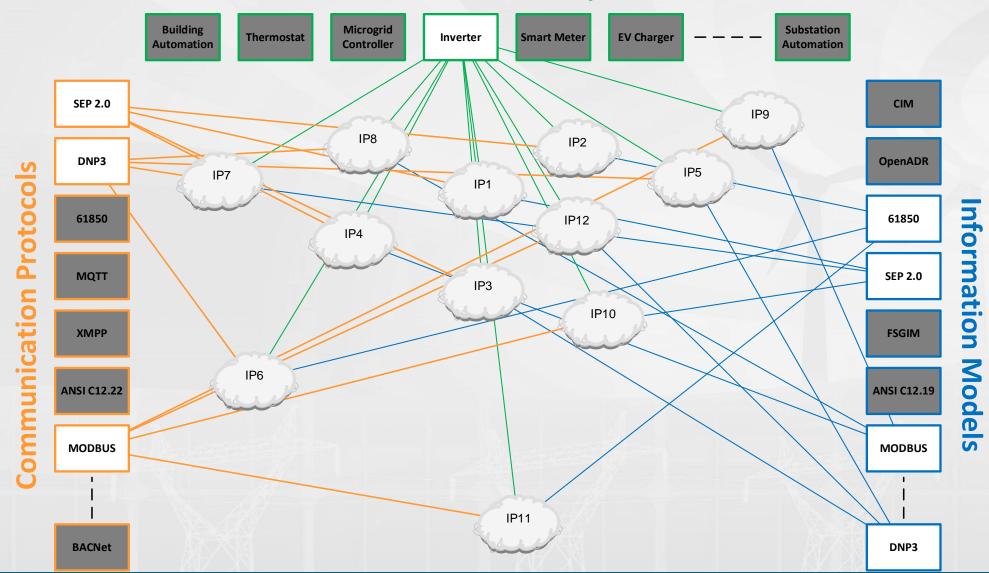

https://www.edsoforsmartgrids.eu/wpcontent/uploads/public/DSO-Priorities-Smart-Gird-Standardisation.pdf

Interoperability Profile: Illustrative Landscape

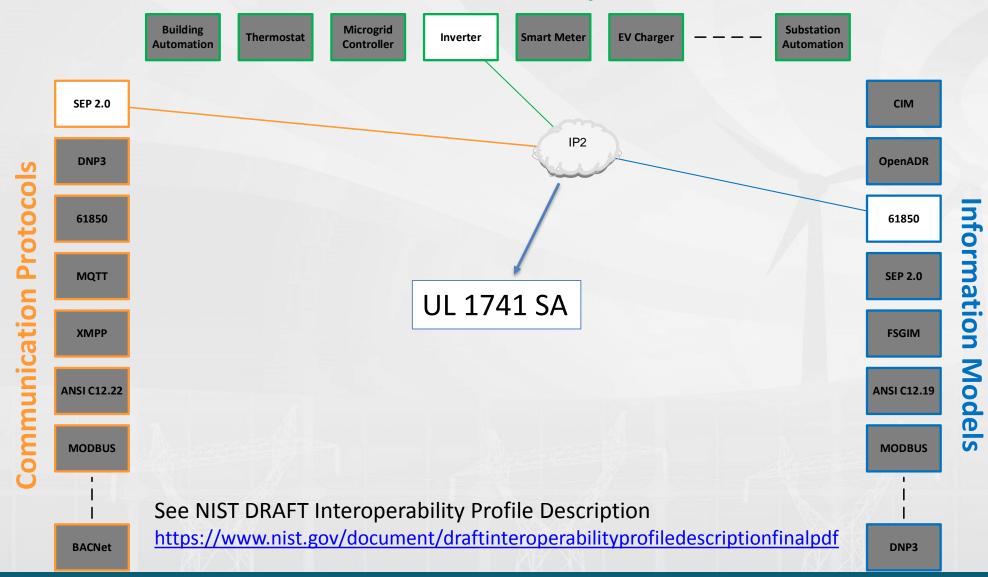
Hardware Functional Requirements



Interoperability landscape assessment


Interoperability Profile: Illustrative Landscape

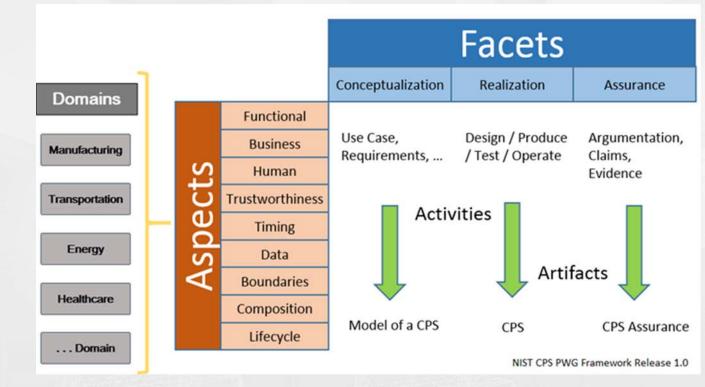
Hardware Functional Requirements


Interoperability Profile: IEEE 1547 Case Study

Hardware Functional Requirements

Interoperability Profile: California Rule 21 Case Study

Hardware Functional Requirements



The CPS Framework—A Tool to Understand the Smart Grid

Jargon surrounds the electrical grid:

- Intelligence moving to the edge
- Data tsunami
- Grid architecture
- Cloud / fog computing
- Smart grid
- Microgrid vs backup power

The cyber-physical systems (CPS) framework provides a vocabulary of energy sector semantics, or ontology, through evaluation of CPS framework aspects and concerns

CPS Aspects and Concerns

Functional

- Actuation
- Communication
- Controllability
- Functionality
- Manageability
- Measurability
- Monitorability
- Performance
- Physical
- Physical Context
- Sensing
- States
- **Uncertainty**

Timing

- Logical Time
- Synchronization
- **Time Awareness**
- Time Interval & Latency

Business

- Cost
- Enterprise
- Environment
- Policy
- Quality
- Regulatory Time to Market
- Utility
- Human
 - Human Factors
 - Usability
- Boundaries
 - **Behavioral**
 - Networkability

Responsibility

- **Trustworthiness**
 - Privacy
 - Reliability
 - Resilience
 - Safety
 - Security

Composition •

- Adaptability
- Complexity
- Constructivity
- Discoverability

Data •

- **Data Semantics**
- Identity
 - **Operations on Data**
 - Relationship
 - between Data
- **Data Velocity**
 - **Data Volume**

Lifecycle

- Deployability
- Disposability
- Engineerability
- Maintainability
- Operability _
- Procureability
- Producibility

NIST g r i d s m a r t program

- *INTELLIGENCE*
- (Illustrative relationships only)

Description of CPS Concerns for the Smart Grid

Aspect	Concern	Description	Grid Context for CPS Concern	Grid CPS Concern Description	Architecture Significance
Functional	Controllability	Ability of a CPS to control	Controllability requires the	Ability to control grid	Coordination of sensing and processing functions to produce
Functional		Ability of a CPS to control a property of a physical thing. There are many challenges to implementing control systems with CPS including the non- determinism of cyber systems, the uncertainty of location, time and observations or actions, their reliability and security, and complexity. Concerns related to the ability to modify a CPS or its function, if necessary.	 Controllability requires the condonation of sensing, processing and acting Multiple inputs are needed to make control decisions Most grid control systems and hardware were not designed to accommodate large numbers of DERs. More dynamic monitoring and control to respond to the dynamic network 	• Ability to control grid properties (sense, process and change); e.g., intentionally <u>change a</u> phenomenon / property	 Coordination of sensing and processing functions to produce accurate control signals. Architectures needs to support control applications that input and evaluate multiple optimization factors including carbon usage and market prices Architecture needs to support use of group commands (e.g. DNP3 settings groups) and third-party aggregator control of DERs Architecture support of faster input of sensor data from traditional SCADA devices and newer devices including phasor measurement units (PMUs)
Functional	Functionality	Concerns related to the function that a CPS provides	 The constant evolution of the power system creates new grid functions. Grid control functionality has expanded to include management of generation assets which require different functionality e.g. diverse generation assets require additional control functionality including distributed assets. 	• Ability to provide grid functions e.g. control functions, sensing functions, service-related functions.	 Innovative grid technology needed to facilitate Power Markets, DERs, Microgrids, Electric Vehicles, etc. Architecture needs to support management of DERs constraints that differ from older types of generation.
Functional	Manageability	Concerns related to the management of CPS function.	• Need the ability to manage change across multiple devices at different grid levels.	• Ability to manage change internally and externally to the grid at the cyber-physical boundary e.g. digital <u>equipment and</u> actuators affected by EMC	• Communication topology views and key externally visible properties for multi-tier distribution communications needed <u>for</u> <u>system</u> control, substations, field operations, and Transmission/Distribution integration ⁷⁴

Cybersecurity Threats: Increasing and Diversifying

າ & Energy	
alizatior	
IEA 2017, Digit	
Source: I	

Table 6.1 Open source information regarding cyber-attacks affecting energy infrastructure

initastructure					
Incident	Description (from open-source information)				
Shamoon 1 and 2 (Saudi Arabia, 2012 and 2016)	"Shamoon 1" virus carried out cyber-sabotage and destroyed over 30 000 computers at Saudi Aramco. There was no direct impact on oil production, but the company was forced to revert to traditional paper and telephone trading for several weeks. Qatari natural gas company, RasGas, was also impacted. The virus was set to execute after working hours in order to minimise detection. "Shamoon 2" virus targeted similar vulnerabilities and was used to overwrite parts of computer hard discs.				
Western Ukraine power grid (2015)	The first confirmed cyber-attack specifically against an electricity network. Attackers accessed substations' supervisory control and data acquisition (SCADA) and firmware with a combination of malware, personnel credentials obtained by means of email phishing, and Denial of Service (DoS) to prevent customers from obtaining call centre information about the blackout. Investigators concluded that a large well-co-ordinated team had prepared the attack over several months.				
The Mirai Botnet (2016)	"Mirai" malware exploited low security in connected smart devices, such as cameras, to use a botnet (a network of devices under simultaneous command by the attacker to overload the victim by continuously sending data) to deliver the largest DoS attack to date. This attack did not target or impact energy infrastructure, but illustrates the vulnerability of the Internet of Things (IoT).				
Industroyer/ Crash Override (Ukraine, December 2016 – reported May 2017)	A second brief but significant attack on the Ukrainian electricity system, thought to have been a test run for malware "Industroyer" (also known as "Crash Override"). This versatile malware enables attackers to view, block, control or destroy grid control equipment such as circuit breakers. Its design suggests expert knowledge of several standardised industrial communication protocols widely used to control infrastructure – not only electricity grids – throughout Europe, Asia and the Middle East. This was an example of a cyber intrusion into the control systems of critical infrastructure.				
Nuclear plant spear phishing attack (2017)	This incident occurred in the United States. It used targeted email messages containing fake Microsoft Word résumés for engineering jobs, potentially exposing recipients' credentials for the control engineering network. The hackers also compromised legitimate external websites that they knew their victims frequented (known as a watering hole attack).				
WannaCry (2017)	"WannaCry" ransomware hit hundreds of thousands of computers in thousands of organisations in some 150 countries, taking advantage of an access point in Microsoft operating systems for which some users had failed to install the secure update (or "patch"). These attacks did not target energy infrastructure, but several energy companies reported problems. In the People's Republic of China (hereafter, "China"), over 20 000 China National Petroleum Corporation (CNPC) petrol stations went offline.				

Function Unique Identifier	Function	Category Unique Identifier	Category		
		ID.AM	Asset Management		
		ID.BE	Business Environment Governance		
ID	Identify	ID.GV			
		ID.RA	Risk Assessment		
		ID.RM	Risk Management Strategy		
		PR.AC	Access Control		
		PR.AT	Awareness and Training		
PR	Protect	PR.DS	Data Security		
		PR.IP	Information Protection Processes and Procedures		
		PR.MA	Maintenance		
		PR.PT	Protective Technology		
	Detect	DE.AE	Anomalies and Events		
DE		DE.CM	Security Continuous Monitoring		
		DE.DP	Detection Processes		
		RS.RP	Response Planning		
		RS.CO	Communications		
RS	Respond	RS.AN	Analysis		
		RS.MI	Mitigation		
		RS.IM	Improvements		
		RC.RP	Recovery Planning		
RC	Recover	RC.IM	Improvements		
		RC.CO	Communications		

NIST Cybersecurity Framework Identifiers

CPS Aspects and Concerns

Functional

- Actuation
- Communication
- Controllability
- Functionality
- Manageability
- Measurability
- Monitorability
- Performance
- Physical
- **Physical Context**
- Sensing
- States
- Uncertainty

Timing

- Logical Time
- Synchronization
- **Time Awareness**
- Time Interval & Latency

Business

- Cost
- Enterprise
- Environment
- Policy
- Quality
- Regulatory
- Time to Market
- Utility
- Human
 - Human Factors
 - Usability

Boundaries

- **Behavioral**
- Networkability Responsibility

- **Trustworthiness**
 - Privacy
 - Reliability
 - Resilience
 - Safety
 - Security
- Composition

•

- Adaptability
- Complexity
- Constructivity
- Discoverability

Data •

- **Data Semantics**
- Identity _
- **Operations on Data** _
- Relationship _ between Data
- **Data Velocity** _
- Data Volume _
- Lifecycle
 - Deployability
 - Disposability
 - Engineerability
 - Maintainability
 - Operability
 - Procureability
 - Producibility

- Which concerns are
- most important to you?

NIST g r i d s m a r t <u>pr</u>ogram

Break: 3:30-3:45

9:30 am	REGISTRATION					
10:00 am	WELCOME AND WORKSHOP OBJECTIVES					
	Chris Greer, NIST					
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY					
	John Gibson, Avista Utilities					
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY					
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability.					
	Dwayne Bradley Duke Energy					
	Chris Irwin U.S. Department of Energy					
	Joe Peichel Xcel Energy					
	Alvin Razon National Rural Electric Cooperative Association					
	Naza Shelley District of Columbia Public Service Commission					
	MODERATOR: David Wollman, NIST					
12:00 pm	LUNCH					
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY					
	Wade Malcolm, Open Energy Solutions					
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS					
	Avi Gopstein, NIST					
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY					
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability					
3:30 pm	BREAK					
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY					
	Risk Profiles—Jeffrey Marron, NIST					
	 Interface Categories—Nelson Hastings, NIST 					
	Securing Communications—Michael Bartock, NIST					
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY					
5:00 pm	Adjourn					

Key Themes for Cybersecurity & Grid Interoperability

• Speakers:

- Jeff Marron
- Nelson Hastings
- Mike Bartock
- Limited Q&A:
 - Write down your questions
 - Breakout discussions tomorrow (pick two!)

Tuesday	v, November 13, 2018			
9:30 am	REGISTRATION			
10:00 am	WELCOME AND WORKSHOP OBJECTIVES Chris Greer, NIST			
10:15 am	KEYNOTE: GRID MODERNIZATION AND THE CASE FOR INTEROPERABILITY John Gibson, Avista Utilities			
11:00 am	PANEL SESSION: GRID MODERNIZATION AND INTEROPERABILITY			
	Panelists discuss some of the opportunities, challenges, and technologies at the nexus of grid modernization and interoperability. Dwayne Bradley Duke Energy Chris Irwin U.S. Department of Energy Joe Peichel Xcel Energy Abige Descrete Network Electric Composition Accessition			
	Alvin Razon National Rural Electric Cooperative Association Naza Shelley District of Columbia Public Service Commission MODERATOR: David Wollman, NIST			
12:00 pm	LUNCH			
1:15 pm	KEYNOTE: THE ECONOMICS OF INTEROPERABILITY Wade Malcolm, Open Energy Solutions			
2:00 pm	PLENARY: INTRODUCTION TO NIST'S SMART GRID CONCEPTUAL MODELS			
	Avi Gopstein, NIST			
2:30 pm	INTERACTIVE DISCUSSION: MAJOR CONCERNS FOR SMART GRID INTEROPERABILITY			
	Participants will identify and give perspectives on important Smart Grid Conceptual Model, and key Aspects and Concerns related to grid modernization and interoperability			
3:30 pm	Break			
3:45 pm	PLENARY: THREE KEY THEMES FOR CYBERSECURITY AND GRID INTEROPERABILITY Risk Profiles—Jeffrey Marron, NIST Interface Categories—Nelson Hastings, NIST Securing Communications—Michael Bartock, NIST 			
4:45 pm	WRAP UP AND CHARGE FOR NEXT DAY			
5:00 pm	Adjourn			



Cybersecurity Framework Smart Grid Profile

November 2018

The Cybersecurity Framework

- The Basics
 - Created by industry, academia and government participants in response to U.S. Executive Order, Improving Critical Infrastructure Cybersecurity
 - Based on workshops, led by NIST, and other outreach to gather input and best practices for improving cybersecurity
 - NIST Cybersecurity Framework (CSF) design:
 - Flexible
 - Leverages existing approaches, standards, practices
 - Internationally applicable
 - Focused on risk management vs checklist

The Cybersecurity Framework

Three Primary Components

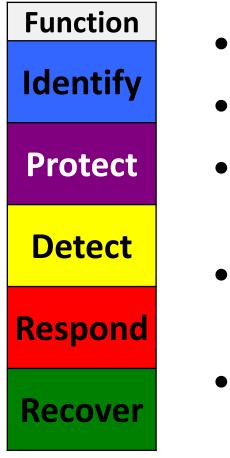
Implementation Tiers

A qualitative measure of organizational cybersecurity risk management practices

Core

Desired cybersecurity outcomes organized in a hierarchy and aligned to more detailed guidance and controls

Profiles


Alignment of an organization's requirements and objectives, risk appetite and resources **using** the desired outcomes of the Framework Core

The Framework Core

Establishes a Common Language

- Describes desired outcomes
- Understandable by everyone
- Applies to any type of risk management
- Defines the entire breadth of cybersecurity
- Spans both prevention and reaction

NIST CYBER

127

Core A Catalog of Cybersecurity Outcomes

	Function	Category
	Identify	Asset Management
What processes and		Business Environment
assets need		Governance
protection?		Risk Assessment
protection.		Risk Management Strategy
		Supply Chain Risk Management ^{1.1}
		Identity Management, Authentication and
		Access Control ^{1.1}
		Awareness and Training
What safeguards are	Protect	Data Security
available?		Information Protection Processes & Procedures
		Maintenance
		Protective Technology
What techniques can	Detect	Anomalies and Events
•		Security Continuous Monitoring
identify incidents?		Detection Processes
		Response Planning
What techniques can	Respond	Communications
contain impacts of		Analysis
incidents?		Mitigation
		Improvements
What techniques can		Recovery Planning
•	Recover	Improvements
restore capabilities?		Communications

An Excerpt from the Framework Core The Connected Path of Framework Outcomes

Function Subcategory **Informative References** Category PR.AC-6: Identities are proofed and bound **CIS CSC**, 16 **PROTECT (PR) Identity Management**, to credentials and asserted in interactions Authentication and Access **COBIT 5** DSS05.04, DSS05.05, DSS05.07, Control (PR.AC): Access to DSS06.03 ISA 62443-2-1:2009 4.3.3.2.2, 4.3.3.5.2, 4.3.3.7.2, physical and logical assets and associated facilities is limited to 4.3.3.7.4 authorized users, processes, and **ISA 62443-3-3:2013** SR 1.1, SR 1.2, SR 1.4, SR devices, and is managed 1.5, SR 1.9, SR 2.1 consistent with the assessed risk ISO/IEC 27001:2013, A.7.1.1, A.9.2.1 of unauthorized access to NIST SP 800-53 Rev. 4 AC-1, AC-2, AC-3, ACauthorized activities and 16, AC-19, AC-24, IA-1, IA-2, IA-4, IA-5, IA-8, transactions. PE-2, PS-3 **PR.AC-7:** Users, devices, and other assets CIS CSC 1, 12, 15, 16 are authenticated (e.g., single-factor, multi-COBIT 5 DSS05.04, DSS05.10, DSS06.10 factor) commensurate with the risk of the ISA 62443-2-1:2009 4.3.3.6.1, 4.3.3.6.2, 4.3.3.6.3, transaction (e.g., individuals' security and 4.3.3.6.4, 4.3.3.6.5, 4.3.3.6.6, 4.3.3.6.7, 4.3.3.6.8, privacy risks and other organizational 4.3.3.6.9 risks) ISA 62443-3-3:2013 SR 1.1, SR 1.2, SR 1.5, SR 1.7, SR 1.8, SR 1.9, SR 1.10 ISO/IEC 27001:2013 A.9.2.1, A.9.2.4, A.9.3.1, A.9.4.2, A.9.4.3, A.18.1.4 NIST SP 800-53 Rev. 4 AC-7, AC-8, AC-9, AC-11, AC-12, AC-14, IA-1, IA-2, IA-3, IA-4, IA-5, IA-8, IA-9, IA-10, IA-11

5 Functions

23 Categories

108 Subcategories

6 Informative References

CYBER

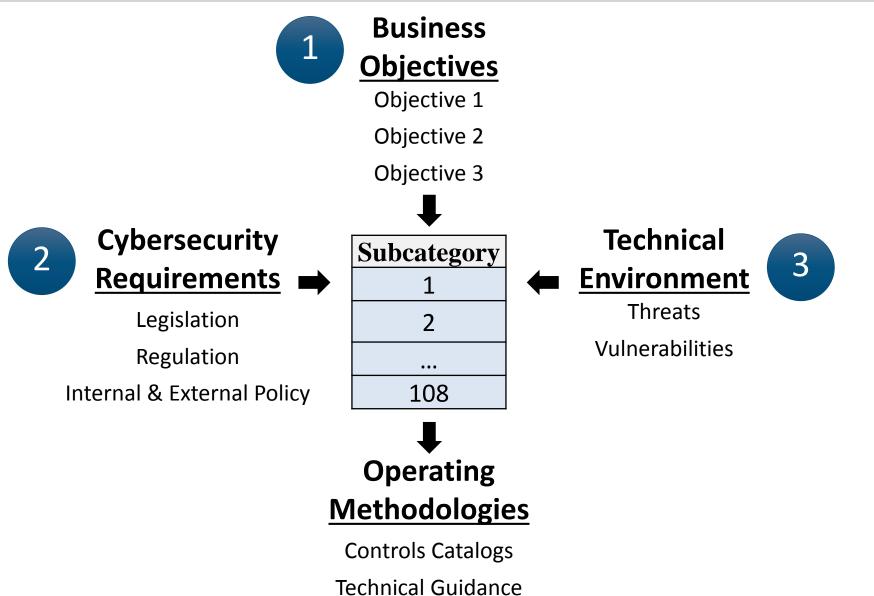
Risk-Based Decision Making

Expressed Using Cybersecurity Framework Profiles

Risk-Based Approach - recognizing that each organization's business objectives, cybersecurity requirements, and technical environments create unique cybersecurity priorities.

Profile – an expression of priorities using the outcomes within the Cybersecurity Framework Core

- A customization of the Core for a given sector, subsector, or organization
- A fusion of business/mission logic and cybersecurity outcomes
- An alignment of cybersecurity requirements with operational methodologies
- A basis for assessment and expressing target state
- A decision support tool for cybersecurity risk management



Profile Foundational Information

A Profile Can be Created from Three Types of Information

Smart Grid Profile – Our Approach

- Identified high-level business objectives for a high-DER environment
 - Business requirements include regulatory requirements and cybersecurity requirements
 - Reviewed relevant literature (PNNL smart grid architecture documentation, NIST publications, etc.)
 - Interviewed industry experts (i.e., power system owners operators, electric power industry think tanks)
- High-level business objectives:
 - Maintain safety
 - Maintain power system reliability
 - Maintain power system resilience
 - Support grid modernization

NST CYBER

Smart Grid Profile – Our Approach, continued

- Prioritized Subcategory outcomes:
 - Analyzed Cybersecurity Framework Core Subcategories in relation to identified business objectives
 - Does each Subcategory **directly** assist power system owners/operators in achieving the business objectives
 - Highlighted relevant Subcategories
- Provided further **considerations** for implementation:
 - Described the rationale for the selection of each Subcategory
 - Provided implementation considerations for power system owners/operators (e.g., challenges that they may encounter as they seek to achieve cybersecurity outcomes)

An Excerpt from the Smart Grid Profile

Table 2 IDENTIFY Smart Grid Profile

		Maintain Safety	Maintain Reliability+E13	Maintain Resilience	Support Grid Modernization	Considerations for Power System Owners/Operators
	Category		Subcategories			
		ID.AM-1	ID.AM-1	ID.AM-1	ID.AM-1	Knowing hardware assets is critical for maintaining safety, reliability, and resilience, as well as facilitating the transition to the modern grid. Legacy and modernized assets need to be known and understood. As modernized grids become more distributed, power system owners/operators need to be accountable for all distributed assets that they own.
ID	Asset Management	ID.AM-2	ID.AM-2	ID.AM-2	ID.AM-2	Knowing software assets is critical for maintaining reliability, and resilience, as well as facilitating the transition to the modern grid. Legacy and modernized assets need to be known and understood. This especially applies to modernized assets because the sophisticated logic that they execute is driven by software.

Smart Grid Profile – Questions

NIST CYBER

The high-level business objectives defined in the Smart Grid Risk Profile apply generally to all grid architectures. However, cybersecurity and risk considerations for each architecture can differ.

- What considerations are unique to different grid architectures?
 - Or perhaps unique to specific Functions/Categories (e.g., asset management, maintaining inventory for non-grid devices, etc.) from the Cybersecurity Framework
 - Or perhaps to varied owner/operator perspectives (e.g., merchant transmission owner, cooperative utility, microgrid joint venture between utility and developer, etc.).

Smart Grid Profile – Questions, continued

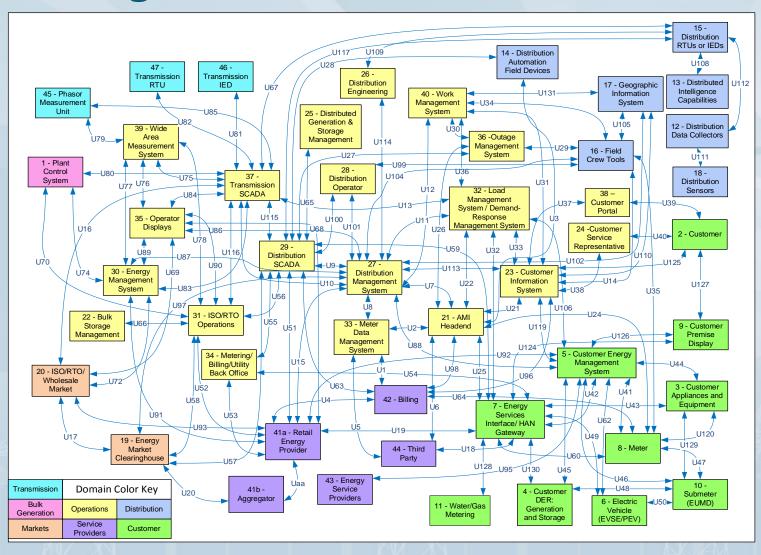
- Do you see value in creating additional Risk Profiles to address these considerations, and at what cross-section (e.g., architecture, service level, Functions/Categories, frequency regulation, voltage support within DER, etc.)? If so, Why?
- Is the current risk Profile useful to stakeholders other than power system owners/operators? Should we explore Risk Profiles from the perspective of other smart grid stakeholders, e.g., technology vendors, and why?

NIST Smart Grid Program

Logical Interface Categories Assessment

Nelson Hastings

Electronics Engineer Applied Cybersecurity Division Information Technology Laboratory

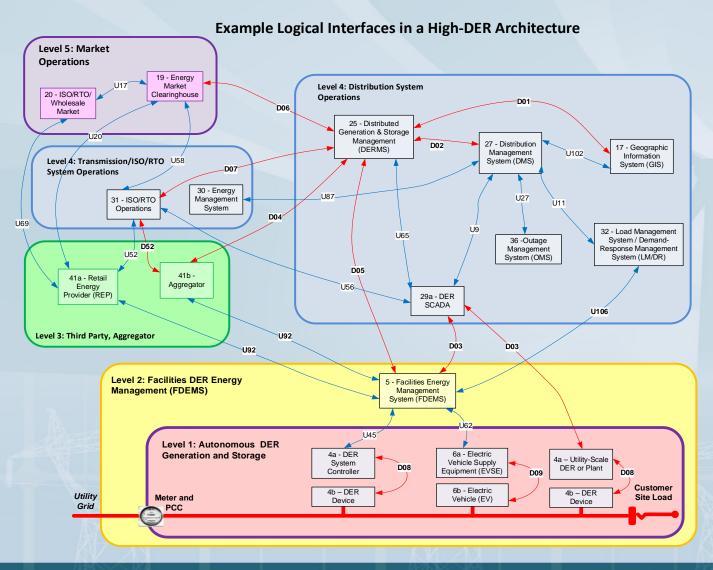

Agenda

- Background
- NISTIR 7628 Logical Interface Reference Model
- High-DER Architecture and New Logical Interfaces
- Potential Security Requirements for New Logical Interfaces
- Q&A

- What are the cybersecurity implications of a High Distributed Energy Rersouce (DER) architecture?
- A High-DER architecture will introduce new logicial interfaces
- What are the cybersecurity implications associated with the newly introducted logicial interfaces?

NISTIR 7628 Logical Interface Reference Model -"Spaghetti Diagram"

Logical Interface Categories - Sample

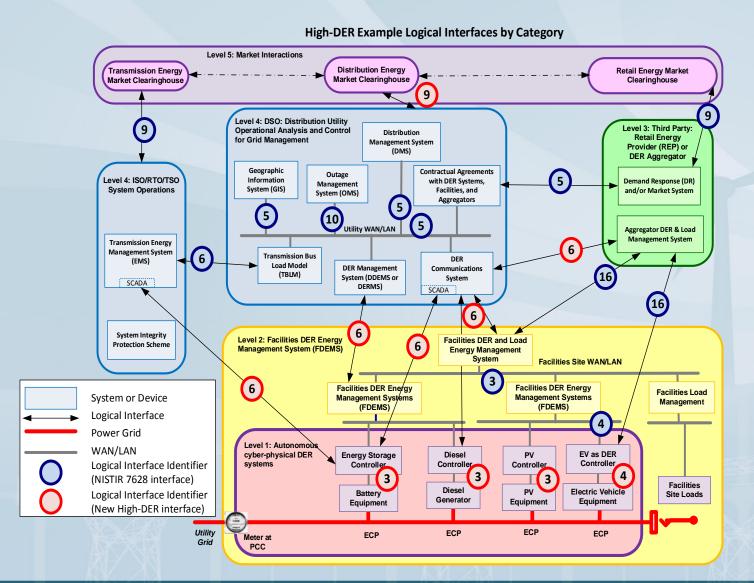

Control System and Equipment

- High Availability, Compute/bandwidth constraints
- No High Availability, Compute/bandwidth constraints
- High Availability, No compute/bandwidth constraints (3)
- No High Availability, No compute/bandwidth constraints (4)
- Control systems
 - Intra-organizational (5)
 - Inter-organizational (6)
- Back office systems
 - Under common management authority
 - Without common management authority
- B2B connections
 - Financial/Market transactions (9)

High-DER Architecture Description

- Extensive Distributed Energy Resource (DER) penetration on distribution feeder (~1000 DERs)
- DERs involve active management of supply and load
 - Four quadrant inverters
 - Demand-response
 - Electric Vehicle (EV)
 - Battery systems
- Extensive distribution automation beyond current practice
- Reconfigurable system topologies

High DER Architecture – New Logical Interfaces Example


High-DER Architecture – New Logical Interfaces Example

- Distributed Generation and Storage Management → Distributed Energy Resource Management System (DERMS)
 - New interfaces between the DER devices and DER system controllers
 - New external interface to Distribution System Operations
- Customer Energy Management System → Facilities DER Energy Management System (FDEMS)
 - Three new external interfaces with the Distribution System Operations
- Distribution System Operations
 - New external interfaces to Market Operations, Transmission/ISO/RTO System Operations, and Third Party Aggregator
 - Two new internal interfaces from the DERMS to the Geographic Information System (GIS) and Distribution Management System (DMS)

New Logical Interfaces to NISTIR 7628 Logical Interface Categories

NISTIR 7628 Logical Interface Category (LIC)	NISTIR 7628 LIC Descriptions	New interfaces for High-DER Architecture
3	Control System and Equipment, High Availability	D8
4	Control System and Equipment, No High Availability	D9
5	Control Systems, Intra-organizational	D1, D2
6	Control Systems, Inter-organizational	D3, D4, D5, D7, D52
9	B2B Connections, Financial/Market transactions	D6

High-DER Architecture: Logical Interface Categories

Potential Security Requirements for New Logical Interfaces

- New interfaces D3, D4, D5, D7, and D52 map to NISTIR 7628 LIC
- Security requirements for NISTIR 7628 LIC 6:
 - SG.AC-14: Permitted Actions without Identification orAuthentication
 - SG.IA-04: User Identification and Authentication
 - SG.SC-05: Denial-of-service protection
 - SG.SC-06: Resource Priority
 - SG.SC-07: Boundry Protection
 - SG.SC-08: Communication Integrity
 - SG.SI-07: Software and Information Integrity

NIST Smart Grid Program

Securing Communications

Mike Bartock

IT Specialist Computer Security Division Information Technology Laboratory

Agenda

- Background
- Publish Subscribe Communications
 - Brokered
 - Brokerless
- Wrap Up
- Q&A

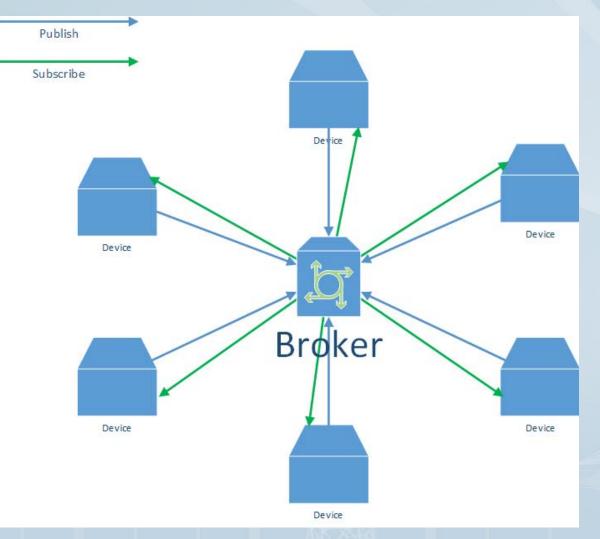
Background

- Participated in the SEPA OpenFMB Cybersecurity Task Force
- Performed a security review of NAESB RMQ.26 and corresponding OpenFMB CTF output
- Publish and Subscribe communications are required by OpenFMB

Motivations

- As recently as 2011, publish and subscribe communications were not being considered within grid architectures¹
- Publish and subscribe communications provide "improved scalability with regard to the number of communication partners, and ease of application development"²

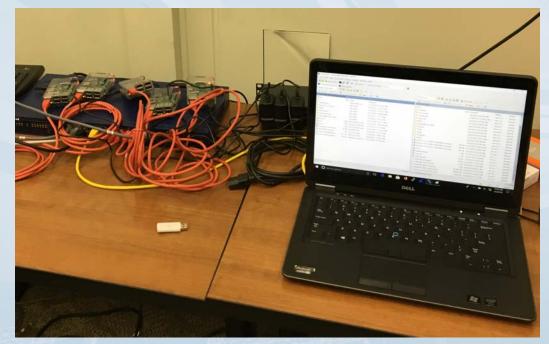
¹Wayne Weng, Yi Xu, Mohit Khanna. A survey on the communication architectures in smart grid. https://doi.org/10.1016/j.comnet.2011.07.010. July 5, 2011 ²Michael Hoefling, et. al. Integration of IEEE C37.118 and Publish/Subscribe Communication. <u>https://ieeexplore.ieee.org/document/7248414</u>. June 8, 2015


Publish and Subscribe Communications

- Messages are associated with topics
- Topics have hierarchical structure
 - Ex. topic1/topic2/.../topicN
- Published messages must have a topic
 - Ex. topic1/topic2/.../topicX/"Message Text"
- Devices subscribe to specific topics, and receive messages published to that topic

Pub/Sub Example

- Device A subscribes to topic devices/Information
- Device B publishes message "I am Device B" to topic devices/Information
- Device A receives message devices/Information/"I am Device B"


Brokered Pub/Sub Communications

Cons
Centralized broker adds extra hops/time for messages to be sent and received
Difficulty in getting new/specialized devices registered
Single point of failure if broker goes down
Device registry with access rules could become very complex

OpenFMB PoC Implementation

- Raspberry Pi 2 900MHz quad-core ARM Cortex-A7 CPU
- Ubuntu Linux Operating System
- OpenSSL Crypto Library
- Mosquitto MQTT Broker and Client
- Java Simulation of Grid Devices
- Netgear GS724Tv4 24-Port Gigabit Smart Managed Pro Switch
- Laptops: Windows 10

OpenFMB PoC Implementation Outcomes

MOTT TLS1 2.pcapng

1255 83.180548

F	. E	thernet													
	<u>F</u> ile	<u>E</u> di	t <u>V</u> iew	<u>G</u> o	<u>Capture</u>	<u>A</u> nalyze	<u>S</u> ta	tistics	Telephony	<u>W</u> ire	less <u>T</u>	ools	<u>H</u> elp		
(ß	0		2 🖸 🕅	< ب		₹		⊕, ⊝,	€,]				
	t	cp.port	== 8883 &&	ip.add	r == 192.168.1	.0.202									
N	lo.		Time		Source			Destinat	ion		Length	Info			
		2657	32.51323	3	192.168.	10.202		192.1	58.10.20	5	1514	Cont	inuation	Data	
		2837	34.52178	1	192.168.	10.202		192.10	58.10.20	5	1514	Cont	inuation	Data	
		2863	34.52413	4	192.168.	10.202		192.1	58.10.20	5	1514	Cont	inuation	Data	
		3042	36.53232	5	192.168.	10.202		192.10	58.10.20	5	1514	Cont	inuation	Data	
		3068	36.53447	7	192.168.	10.202		192.1	58.10.20	5	1514	Cont	inuation	Data	
Π		3351	38.54272	7	192.168.	10.202		192.1	58.10.20	5	1514	Cont	inuation	Data	
		3379	38.54521	4	192.168.	10.202		192.10	58.10.20	5	1514	Cont	inuation	Data	
		3566	40.55349	9	192.168.	10.202		192.1	58.10.20	5	1514	Cont	inuation	Data	
		3594	40.55561	9	192.168.	10.202		192.1	58.10.20	5	1514	Cont	inuation	Data	
H			10 56106		100 100			100 4		-		<u> </u>			

*Ethernet

Frame 3068: 1514 bytes on wire (12112 bits), 1514 bytes captured (12112 bits) on interface 0 Ethernet II, Src: Raspberr 9e:86:ac (b8:27:eb:9e:86:ac), Dst: Raspberr f0:04:91 (b8:27:eb:f0:04:91) Internet Protocol Version 4, Src: 192.168.10.202, Dst: 192.168.10.205

Transmission Control Protocol. Src Port: 54504. Dst Port: 8883. Sea: 80415. Ack: 3. Len: 1448

04e0	74	61	6d	70	3e	32	30	31	38	2d	30	33	2d	31	33	54	tamp>201 8-03-13T	
04f0	31	33	3a	30	32	3a	35	39	2e	32	35	32	5a	3c	2f	6e	13:02:59 .252Z <th></th>	
0500	73	31	32	3a	74	69	6d	65	73	74	61	6d	70	3e	3c	6e	s12:time stamp> <n< th=""><th></th></n<>	
0510	73	31	32	3a	76	61	6c	75	65	3e	3c	2f	6e	73	31	32	s12:valu e> <th></th>	
0520	3a	76	61	6c	75	65	3e	3c	6e	73	32	3a	69	73	43	68	:value>< ns2:isCh	
0530	61	72	67	69	6e	67	3e	74	72	75	65	3c	2f	6e	73	32	arging>t rue <th></th>	
0540	3a	69	73	43	68	61	72	67	69	6e	67	3e	3c	6e	73	32	:isCharg ing> <ns2< th=""><th></th></ns2<>	
0550	3a	69	73	43	6f	6e	6e	65	63	74	65	64	3e	74	72	75	:isConne cted>tru	
0560	65	3c	2f	6e	73	32	3a	69	73	43	6f	6e	6e	65	63	74	e <th></th>	
0570	65	64	3e	3c	6e	73	32	3a	6d	6f	64	65	3e	4d	61	69	ed> <ns2: mode="">Mai</ns2:>	
0580	6e	74	61	69	6e	20	4d	69	6e	69	6d	75	6d	20	42	61	ntain Mi nimum Ba	
0590	74	74	65	72	79	20	53	6f	43	3c	2f	6e	73	32	3a	6d	ttery So C <th></th>	
05a0	6f	64	65	3e	3c	6e	73	32	3a	73	74	61	74	65	4f	66	ode> <ns2 :stateof<="" th=""><th></th></ns2>	
05b0	43	68	61	72	67	65	3e	35	30	2e	30	3c	2f	6e	73	32	Charge>5 0.0 <th></th>	
05c0	3a	73	74	61	74	65	4f	66	43	68	61	72	67	65	3e	3c	:stateOf Charge><	
05d0	2f	6e	73	32	3a	42	61	74	74	65	72	79	53	74	61	74	/ns2:Bat teryStat	

File	Edi	it View	Go	Capture	Analyze	Statistics	Telephony	Wireless	Tools	Help
				🖹 🎑 🔍	،	2		⊕ੑ⊖ੑੑੑ		
	(ip.src =	== 192.168	3.10.205	ip.dst == 192	2.168.10.20	5) && tcp.port =	== 8883			
No.		Time		Source		Destina	ation	Proto	col	Length
	1239	83.110	081	192.168.	10.205	192.3	168.10.202	TCP		74
	1240	83.110	569	192.168.	10.202	192.3	L68.10.205	TCP		6(
	1241	83.110	571	192.168.	10.202	192.3	168.10.205	TCP		60
	1246	83.113	555	192.168.	10.202	192.3	168.10.205	TLS	v1.2	37:
	1247	83.113	557	192.168.	10.202	192.3	168.10.205	TCP		37:
	1248	83.113	918	192.168.	10.205	192.3	168.10.202	TCP		6(
	1249	83.113	920	192.168.	10.205	192.3	168.10.202	TCP		60
	1250	83.180	241	192.168.	10.205	192.3	168.10.202	TLS	v1.2	1514
	1251	83.180	244	192.168.	10.205	192.3	168.10.202	TCP		1514
	1252	83.180	252	192.168.	10.205	192.3	168.10.202	TLS	v1.2	77:
	1253	83.180	257	192.168.	10.205	192.3	168.10.202	TCP		77:
	1254	83.180	547	192.168.	10.202	192.3	168.10.205	TCP		66

Frame 1246: 371 bytes on wire (2968 bits), 371 bytes captured (2968 bits) on in Ethernet II, Src: Raspberr_9e:86:ac (b8:27:eb:9e:86:ac), Dst: Raspberr_f0:04:91 > Internet Protocol Version 4, Src: 192.168.10.202, Dst: 192.168.10.205 > Transmission Control Protocol, Src Port: 51244, Dst Port: 8883, Seq: 1, Ack: 1, Secure Sockets Layer

192.168.10.205

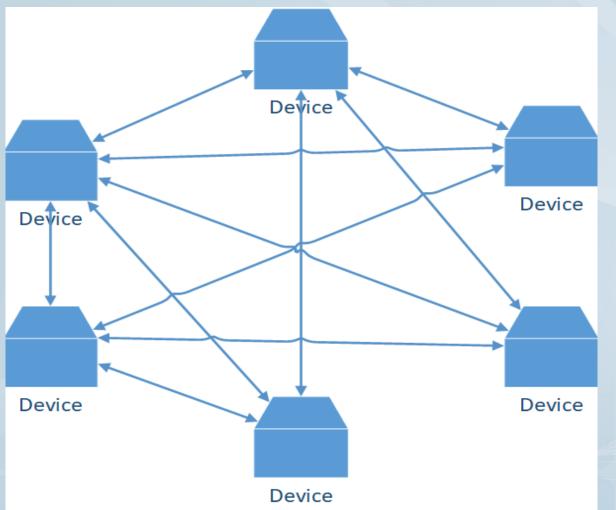
192.168.10.202

TCP

0000	b8	27	eb	f0	04	91	b8	27	eb	9e	86	ac	0 8	00	45	00	.'E.
0010	01	65	d8	90	40	00	40	0 6	са	1a	c0	a8	0a	са	c0	a8	.e@.@
0020	0a	cd	c8	2c	22	b3	bb	8f	fd	d4	48	9c	5b	5b	80	18	,"H.[[
0030	00	e5	a4	9a	00	00	01	01	08	0a	02	59	25	5e	03	b8	Y%^
0040	72	54	16	03	01	01	2c	01	00	01	28	03	03	97	ee	be	rT,(
0050	7f	3f	6c	d8	02	1d	21	c8	08	0f	02	e3	ce	54	e8	8e	.?1!T
0060	bc	f7	64	41	cb	d4	27	0e	4a	f4	79	bc	ef	00	00	aa	dA'. J.y
0070	c0	30	c0	2c	c0	28	c0	24	c0	14	c0	0a	00	a5	00	a3	.0.,.(.\$
0080	00	a1	00	9f	00	6b	00	6a	00	69	00	68	00	39	00	38	k.j .i.h.9.8
0090	00	37	00	36	00	88	00	87	00	86	00	85	c0	32	c0	2e	.7.62
00a0	c0	2a	c0	26	c0	0f	c0	05	00	9d	00	3d	00	35	00	84	.*.&=.5

OpenFMB PoC Implementation Outcomes

Preliminary Performance Results


MQTT_{Init} --> MQTT_{SUBACK}

Authentication / Encryption	None	TLS 1.2
None	.002855	.108071
Username & Password	.003223	.108458
X509 Certificate	N/A	.201232

MQTT_{PUB} --> MQTT_{SUB RECV}

Authentication / Encryption	None	TLS 1.2
None	.003242	.109013
Username & Password	.003216	.108034
X509 Certificate	N/A	.186208

Brokerless Pub/Sub Communications

Pros	Cons
Direct device to device communication	Increases computations on devices
Device can be updated dynamically per device	Possibly no standard way to manage devices/message access list
Distributed messaging enables resiliency if any device fails	No guarantee messages are received by all intended devices
Simple message access rules on each device	Difficulty logging and aggregating messages

Communications Security Considerations

- Other communication methods applicable to Smart Grid?
- What to do with legacy equipment?
- How to handle device identity and authentication?
- Acceptable performance overhead due to security implementation?
- What are commonly used pub/sub protocols?
- Are devices supporting pub/sub protocols natively?

Day 1: Adjourn

- Tomorrow begins at 8:45am
- Keynote by Ron Ross begins at 9:00am!
- Cybersecurity panel at 9:30
- 3x2 breakout structure
 - Morning breakout sessions repeat in the afternoon
 - Pick your favorite two topics and dive in deep!
- Tomorrow's close will be 4pm

8:30 am	REGISTRATION							
8:45 am	WELCOME AND OBJECTIVES							
9:00 am	KEYNOTE: CYBERSECURITY OF COMPLEX SYSTEMS							
	Ron Ross, NIST							
9:30 am	PANEL SESSION: CYBERSECURITY AND GRID MODERNIZATION							
	Panelists discuss some of the cybersecurity challenges and practices emerging from grid modernization with a focus on device and domain communication pathways and interoperability.							
	Carol Hawk U.S. Department of Energy							
	David Lawrence Duke Energy							
	Michael Murray BlackRidge Technology Candace Suh-Lee Electric Power Research Institute							
	MODERATOR: Elizabeth Sisley, Calm Sunrise Consulting							
10:30 am	BREAK							
10:45 am	PARALLEL BREAKOUT SESSIONS							
	Breakout sessions repeat during the afternoon. Participants can join discussions in two different topics.							
	 Learning from other Sensor Networks: Translating and Linking Logical Interface Categories Risk Profiles for Grid Architectures and Services Securing New Communications Architectures: Brokered vs. Brokerless Cybersecurity 							
12:15 pm	LUNCH							
1:30 pm	PARALLEL BREAKOUT SESSIONS							
	Breakout sessions repeated from the morning. Participants are asked to join a different topic.							
	 Learning from other Sensor Networks: Translating and Linking Logical Interface Categories Risk Profiles for Grid Architectures and Services Securing New Communications Architectures: Brokered vs. Brokerless Cybersecurity 							
3:00 pm	BREAK							
3:15 pm	REPORT OUT PANEL							
3:45 pm	NEXT STEPS							
4:00 pm	ADJOURN							