

Predicting Global Failure Regimes in Complex Information Networks

Chris Dabrowski, Jim Filliben and Kevin Mills

July 12, 2012 SFI Workshop on Measurement of Complex Networks

Overview of our Past & Ongoing Research – with application to complex information networks, e.g., Internet, Clouds, Grids

OCAVISIODICS

- What is the problem and why is it hard?
- > Four Approaches we are investigating:
 - 1. Sensitivity Analysis + Correlation Analysis & Clustering
 - 2. Combine Markov Models, Graph Analysis & Perturbation Analysis
 - 3. Anti-Optimization + Genetic Algorithm
 - 4. Measuring Key System Properties such as Critical Slowing Down
- Example of Sensitivity Analysis + Correlation Analysis & Clustering applied to a TCP/IP Network Model – closely related to the theme of this topical event: Measurement of Complex Networks

Our Past Research: How can we understand the influence of distributed control algorithms on global system behavior and user experience?

- Mills, Filliben, Cho, Schwartz and Genin, <u>Study of Proposed</u> <u>Internet Congestion Control Mechanisms</u>, **NIST SP 500-282** (2010).
- Mills and Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", *Journal of NIST Research* 116-5, 771-783 (2011).
- Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using only 20 Parameters", *Proceedings of the Winter Simulation Conference* (2010).
- Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", *Proceedings of ASME* (2011).
- Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", *Proceedings of the 4th International Cloud Computing Conference*, IEEE (2011).
- Mills, Filliben and Dabrowski, "Comparing VM-Placement Algorithms for On-Demand Clouds", *Proceedings of IEEE CloudCom*, 91-98 (2011).

For more see: <u>http://www.nist.gov/itl/antd/emergent_behavior.cfm</u>

July 12, 2012 SFI Workshop

http://www.nist.gov/itl/antd/Congestion_Control_Study.cfm

Our Ongoing & Planned Research: How can we help to increase the reliability of complex information systems?

Research Goals: (1) develop design-time methods that system engineers can use to detect existence and causes of costly failure regimes prior to system deployment and (2) develop run-time methods that system managers can use to detect onset of costly failure regimes in deployed systems, prior to collapse.

Research

- > **Ongoing**: investigating
 - a. Sensitivity Analysis + Correlation Analysis & Clustering
 - b. Markov Chain Modeling + Cut-Set Analysis + Perturbation Analysis (MCM+CSA+PA) (e.g., Dabrowski, Hunt and Morrison, "Improving the Efficiency of Markov Chain Analysis of Complex Distributed Systems", NIST IR 7744, 2010).
 - c. Anti-Optimization + Genetic Algorithm (AO+GA)

Planned: investigate run-time methods based on approaches that may provide early warning signals for critical transitions in large systems (e.g., Scheffer et al., "Early-warning signals for critical transitions", NATURE, 461, 53-59, 2009).

National Institute of

Standards and Technology

Problem: Given a complex information network (represented using a simulation model), how can one identify conditions that could cause global system behavior to degenerate, leading to costly system outages?

Determining causality is difficult – in a complex system, global behavior is not easily predictable, even if behavior of the components is understood completely

For example, unexpected collapse in the mitigation probability density function of job completion times in a computing grid was unexplainable without more detailed data and analysis.

See: K. Mills and C. Dabrowski, "Investigating Global Behavior in Computing Grids", <u>Self-Organizing Systems</u>, Lecture Notes in Computer Science, Volume 4124 ISBN 978-3-540-37658-3, pp. 120-136.

July 12, 2012 SFI Workshop

roblem

eason

Size of the search space!!

$$y_1, ..., y_m = f(x_{1|[1,...,k]}, ..., x_{n|[1,...,k]})$$

Model Response Space Model Parameter Space

For example, the NIST *Koala* simulator of IaaS Clouds has about n = 125 parameters with average k = 6.6 values each, which leads to a model **parameter space** of ~10¹⁰⁰ (note that the visible universe has ~10⁸⁰ atoms) and the *Koala* response space ranges from m = 8 to m = 200, depending on the specific responses chosen for analysis (typically $m \approx 45$).

SA2-sm all

(10 dimensions)

v1. V2. v3. v5.

y6, y8, y9, y10,

y11, y13, y14,

y15, y23, y24,

y25. y38

V10, y11, y12,

y13, y14, y15

v16. v18. v19. y20, y21, y26,

y27

V17 (Mem.

Util

y12, y14, y15,

y30, y31, y33.

y34, y35, **y36**

y29. V37

V4

V7 (cluster)

V22 (node)

V28

SA1-large

(8 dimensions

y1. y2. V3. y5.

y6. y7. y8. y9.

y10, y13, y23,

y34, y25, y29,

y30, y32, y33,

y34, y36, y38

y10, y11, y12,

y13, y14, y15

y16, y17, y18,

y19,y20, y21,

¥26. y27

V31 (MS)

¥37

y4

y7. V22

V28

SA2-large

(9 dimensions)

y1, y2, y3, y5,

y6, y8, y9,

V23. y24.

y25. y38

y10, y11,

y12, y13, y14,

y15

y16, y17, y18,

V19. y20. y21

y26, y27

y14. y15. y30.

¥31, y33,

y34. y35

15. 136 (DS)

y29

V4. y37

y7. V22

V28

- Sensitivity Analysis: Determine which parameters most significantly influence model behavior. Reduces parameter search space and identifies conditions under which alternate control algorithms should be compared.
- **Correlation Analysis & Clustering:** Determine response dimension of a model. \geq

Sensitivity

Use correlation analysis and clustering to identify unique behavior dimensions of your model

nalvsis + CAC

See: Mills, Filliben and Dabrowski, "An Efficient Sensitivity Analysis Method for Large Cloud Simulations", Proceedings of the 4th International Cloud Computing Conference, IEEE (2011) and Mills and Filliben, "Comparison of Two Dimension-Reduction Methods for Network Simulation Models", Journal of NIST Research 116-5, 771-783 (2011).

National Institute of Standards and Technology Cut-Set + Perturbation Analysis Netional Institut Standards and Technology

Using simulated failure scenarios in a Markov chain model to predict failures in a Cloud

Example: Markov simulation and perturbation of <u>a minimal s-t cut set</u> of a Markov chain graph:

- Corresponds to software failure scenario involving multiple faults/attacks.
- Simulation identifies threshold beyond which increased failure incidence causes drastic performance collapse

→ Verified in target system being modeled (i.e., Koala, a large-scale simulation of a Cloud)

MULTIDIMENSIONAL ANALYSIS TECHNIQUES

Principal Components Analysis, Clustering, ...

GENETIC ALGORITHM

Growing Collection of Tuples:

Standards and Technol

Genetic Algorithm

{Generation, Individual, Fitness, Parameter 1 value,....Parameter N value} (Generation, Individual, Fitness, Parameter 1 value,...,Parameter N value) {Generation, Individual, Fitness, Parameter 1 value,....Parameter N value} {Generation, Individual, Fitness, Parameter 1 value,...,Parameter N value} {Generation, Individual, Fitness, Parameter 1 value,....Parameter N value}

{Generation, Individual, Fitness, Parameter 1 value, Parameter N value}

owing Down

Sensitivity Analysis + Correlation Analysis & Clustering applied to a TCP/IP Network Model

Example

(using an 11-parameter subset of a 20-parameter model*)

Questions: (1) What responses characterize system behavior? (2) What factors drive system behavior?

$$y_1, ..., y_m = f(x_{1|[1,...,k]}, ..., x_{n|[1,...,k]})$$

Model Response Space Model Parameter Space

In the example that follows, m = 22, n = 11 and k = 2

The approach is general: as we have demonstrated on a TCP/IP model with m = 45, n = 20 and k = 2 and on a Cloud Computing model with m = 38, n = 11 and k = 2 and with m = 45, n = 20 and k = 2

*For a discussion of the full 20-parameter TCP/IP model see: Mills, Schwartz and Yuan, "How to Model a TCP/IP Network using only 20 Parameters", *Proceedings of the Winter Simulation Conference* (2010).

100

8

Directly Connected Access

(including propagation delays & routing paths)

Subset

		Factor	Name	Plus (+1) Setting	Minus (-1) Setting
	-	x1	Propagation Delay Multiplier	2	1
Network Factors		x2 ^[1]	Network Speed Multiplier	1	2
ractors		x3	Buffer Sizing Algorithm	RTTxC	<i>RTTxC</i> /SQRT(<i>n</i>)
	-	x4	Average File Size	100 packets	50 packets
User Factors		x5	Average Think Time	5000 ms	2000 ms
ractors		x6 [1]	Probability User Downloads 10x File	0.01	0.02
	_	x7 ^[1]	Probability of a Fast Host Connection	0.2	0.4
	&	x8	Multiplier for Number of Sources & Receivers per Access Router	3	2
Receiver Factors		x9	Distribution Pattern of Sources	P2P	WEB
	_	x10	Distribution Pattern of Receivers	P2P	WEB
Protocol Factors		x11	Initial TCP Slow-Start Threshold	1.07x10 ⁹ packets	43 packets

rame

^[1] Unfortunately, we coded these settings backwards from the usual convention of higher value for the Plus setting, so care must be taken when interpreting the results for these factors – mainly the network speed factor. Sorry.

16 Responses Characterizing Macroscopic Network Behavior

Response	Name	Definition
y1	# Sending Flows	Active Flows – flows attempting to transfer data
y2	% Sources Sending	Proportion of potential flows that were active: Active Flows/All Sources
y3	# Packets Entering	Data packets entering the network per measurement interval
y4	# Packets Exiting	Data packets leaving the network per measurement interval
y5	Loss Rate	Loss Rate: y4/(y3+y4)
y6	# Flow Completions	Flows Completed per measurement interval
у7	Flow Completion Rate	Flow-Completion Rate: y6/(y6+y1)
y8	# Connection Failures	Connection Failures per measurement interval Global Behavior
y9	Connection Failure Rate	Connection-Failure Rate: y8/(y8+y1)
y10	Retransmission Rate	Retransmission Rate
y11	Average Congestion Window	Congestion Window per Flow
y12	# Window Increases	Window Increases per Flow per measurement interval
y13	# NAKs	Negative Acknowledgments per Flow per measurement interval
y14	# Timeouts	Timeouts per Flow per measurement interval
y15	Average Round-Trip Time	Smoothed Round-Trip Time
y16	Queuing Delay	Relative queuing delay: y15/(x1x41)

+ 6 Responses Characterizing Instantaneous Throughput for Active Flows by Class

Response	Definition		
y17	Average Throughput for Active DD Flows		
y18	Average Throughput for Active DF Flows		
y19	Average Throughput for Active DN Flows	Description of the second	
y20	Average Throughput for Active FF Flows	User Experience	
y21	Average Throughput for Active FN Flows		
y22	Average Throughput for Active NN Flows		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Template for a 2-Level 2^{11-5} Or (OFF) experiment design speci parameter level settings for 64 Balance $\frac{32}{-}$ $\frac{32}{x_i}$ +	fying the combination of
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OFF Benefit #1: Superior Coverage & Robustness as compared with 1-Factor-at-a-Time Designs	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	OFF Design Benefit #2: Minimizes Variation in Effect Estimates	$SD(\widehat{B}_{i}) = \sigma \sqrt{\frac{1}{n1} + \frac{1}{n2}} $
July 12, 2012 SFI Workshop	15	50 100 ¹²⁸ 150 200 250 n1 (with constraint: n1 + n2 = 256)

Exper

ลือ

ment Design

Each response observed under the same 64 combinations of parameter settings

7	¢.	a star	far *	××	Žitar			×	· ·	Sa x xx X	* ×	Å ^X x ^x	ŠŤX X	K	×	K	-				
85	21	*		*** [*]			X	X X		X X X X X	a A A A A A A A A A A A A A A A A A A A	**×*	i i i i i i i i i i i i i i i i i i i i	X	Ϊ. Market			<u>A</u>			
87	98	22	_ *	Jut .	i .			č.	XX Northern	a and the second	ix Aligned and a second	* ^{\$} **		k	k.		di.			A	ý.
84	98	99	19	ja ×	N. AN	x Mark xx	X X	×				* **	ing x x	Å.,	È.			4			Â.
90	93	94	92	12				ž.	× Č		×) ^{***}		Í.	k.	d,	×.	1 [×]		×.	Ú.
-64.	-62.	-60.	-61.	-56.	5	×××		×.	a a the second s	XXXXX	at a f	Ľ.,,,	a karakara karakara karakara karakara karakara				4		ХÅ.	4	1. x
-61.	-59.	-57.	-58.	-53.	99	10	A star	Å.	a start	****		L	y ^x x				1		ž,	4	1.
-87.	-77.	-77.	-75.	-75.	57	54	2	¢.	1	A XX XX XX X	Å ₿¢		XXXX X	P	1	Í!	12			V	1
-81.	-72.	-74.	-74.	-70.	61	59	92	1	Ala	× ×××××	Å.C.*	X A MAX X	XXXX X	X	L, MÅ	ů.	Å	ŵ	ŵ	ĴĴ	Kar
-47.	-49.	-50.	-48.	-48.	88	88	34	36	14	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	. in		xx ^{x x} x Xx x					M		44	
-45.	-46.	-46.	-47.	-40.	92	93	38	46	85	9	x ^x x x¥xxx		*** *	<u>.</u>	×		Ť.	xx X XXX	x *x 2*1 x	Ĩ.	XX X
-49.	-49.	-50.	-46.	-51.	79	76	34	30	93	69	13	X	*** ***		L.,	4					X X X
61	80	82	80	85	-52.	-50.	-52.	-50.	-52.	-41.	-51.	11		Ì.	Í.	×.	×.	× x		á.	Š.
-44.	-43.	-42.	-44.	-37.	89	91	42	53	74	94	54	-36.	8	Î.	Ŷ×	×, ž	ź.	x ^x x ^x	ź.	Ĵ.	Îх.
-41.	-36.	-36.	-37.	-35.	-25.	-26.	50	48	-45.	-33.	-47.	-11.	-25.	15	Contraction of the second	41	4			44	
-37.	-26.	-31.	-26.	-29.	-16.	-18,	49	48	-31.	-25.	-33.	-11.	-18.	70	16		4		14	1	***
-25.	7	2	10	-5.	33	33	26	22	36	24	42	5	24	-26.	27	17	*	** **	*** *	***	₩.
-35.	-14.	-20.	-14.	-27.	12	12	37	38	18	8	26	-7.	9	1	8	38	3	4 4	44	/	¢**
17	47	32	36	31	-13.	-10.	-17.	-4.	-7,	-9.	-5.	31	-9.	-17.	18	47	20	20	1		*
11	43	28	34	26	-7,	-5.	-10.	0	-4,	-5.	1	28	-5.	-19.	21	59	26	98	18		* *
-26.	-5.	-11.	-4.	-19.	-3.	-4.	29	29	4	-7.	13	1	-5.	5	12	33	99	22	27	4	dir.
21	3	0	2	6	-26.	- 2 6.	-13.	-6.	-9.	-15.	-10.	0	-17.	-5,	-2.	-27.	52	-5.	-9.	56	6

Matrix

Red $80 \ge |r| x 100 \le 100$ **Blue** $30 \ge |r| x 100 < 80$ **Green** |r| x 100 < 30

July 12, 2012 SFI Workshop

airwise

Select a threshold for |r| such that correlations above that threshold will be further considered

Istogra

dex-Index Plot

where $|r_{i,i}| > 0.65$ are clustered into mutual correlations

Response in

Behavior

Question 1: What responses characterize system behavior?Answer:As shown below, measuring only 7 of the 22
responses suffices to characterize behavior

Representative Response	Dimension and a Characterizing Measurement
y4	D1 - network throughput in packets/sec measured by average number of packets output per measurement interval
y6	D2 - network throughput in flows/sec measured by average number of flows completed per measurement interval
y10	D3 - packet loss measured by average retransmission rate
y15	D4 - network delay measured by average smoothed round-trip time
y17	D5 - throughput in packets/sec for the most advantaged users measured by average instantaneous throughput for DD flows
y20	D6 - throughput in packets/sec for 2 nd most advantaged users measured by average instantaneous throughput for FF flows
y22	D7 - network congestion measured by average instantaneous throughput for NN flows

National Institute of Standards and Technology Main Effects Analyses National Institute of Standards and Technology Main Effects Analyses

For each response, compare mean at 32 Plus settings with mean at 32 Minus settings and conduct *t*-test to determine statistical significance (response here is TP on **NN** flows)

		x1	x2	x3	x4	x5	x6	x7	x8	x9	x10	x11
y4	Packet TP		_**		+**	_**			+*	+*		
y6	Flow TP		_**		_**	_**			+*	+*		
y10	Packet Loss		+**	_**	+*	_*			+*	+*		
y15	Delay	+**	+*	+**	+*	_*			+*	+*		
y17	DD TP	_**			+**							
y20	FF TP	_**	_**		+*	+*			_*	+**		
y22	NN TP	_*	_**			+*			_*	_**		
Ψ	Net Effect	50	79	29	64	57	0	0	43	50	0	0

- * *p* < 0.05 and ** *p* < 0.01
- - means minus value caused response increase
- + means plus value cause response increase
- please remember that network speed x2 was miscoded, so means higher speed and + lower

$\Psi = 100 \left(|\{y \mid p < 0.01\}| + \frac{1}{2} |\{y \mid p < 0.05\}| \right) / |\{y\}|$

July 12, 2012 SFI Workshop

This chart reveals much about model behavior

- Question 2: What factors drive system behavior?
- Answer: Network speed mainly followed by file size, then by user duty cycle, propagation delay and source distribution, and finally by number of sources.

6 bacters D

Relative Influence	Factors
1	Network Speed
2	File Size
3	User Duty Cycle Propagation Delay Distribution of Sources
4	Number of Sources
5	Buffer Sizing
6	Proportion of Hosts with Fast Attachments Probability of 10x File Sizes Receiver Distribution Initial Slow-Start Threshold

The information generated here can be used in two ways:

e Behavior,

- Compare model behavior to experiences of operational networks, as a validation step.
- 2. Select parameter combinations to explore when asking what if questions, such as what if TCP were replaced by any of 7 competing congestion control algorithms?

For more information see: Mills, Filliben, Cho and Schwartz, "Predicting Macroscopic Dynamics in Large Distributed Systems", *Proceedings of ASME* (2011) July 12, 2012 SFI Workshop

Reviewed our Past & Ongoing Research – with application to complex information networks, e.g., Internet, Clouds, Grids

- Defined the problem underlying our ongoing research and identified two reasons why the problem is difficult
- > Described 4 approaches to address the problem:
 - 1. Sensitivity Analysis + Correlation Analysis & Clustering
 - 2. Combine Markov Models, Graph Analysis & Perturbation Analysis
 - 3. Anti-Optimization + Genetic Algorithm
 - 4. Measuring Key System Properties such as Critical Slowing Down
- Discussed an example of Sensitivity Analysis + Correlation Analysis & Clustering applied to a TCP/IP network model

Suggestions? Ideas?

Question

Contact information about studying Complex Information Systems: {<u>cdabrowski</u>, <u>jfilliben</u>, <u>kmills@nist.gov</u>}

Contact information about Information Visualization: <u>sressler@nist.gov</u>

For more information see: http://www.nist.gov/itl/antd/emergent_behavior.cfmand/orhttp://www.nist.gov/itl/antd/emergent_behavior.cfm