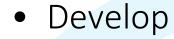
Technology Transfer

Paul Zielinski

Director, Technology Partnerships Office

Goal of U.S. Technology Transfer: Availability and Use of Innovations


Government

- Research/Invent
- Regulate

- Public benefit
- Consumer

- Market
- Sell
- Requires private capital

Government Sponsored Transfer Technology

- Large investment in mission focused research, including basic research ~ \$140 billion
- Missions range from space flight at NASA, defense industries, energy production, health care and many others
- Useful as an economic engine for innovation and growth of new businesses
- We consider an expansive view of technology transfer
 - Patenting/Licensing
 - Technical publications
 - Collaborations formal and informal
 - Public Domain software

Timeline

1947 -E.O. 10096 recognizes national labs as economic asset 1980 -Stevenson-Wydler Act and Bayh Dole Act create technology transfer mission and

set rules for federal IP

1986 -

Federal Technology Transfer Act creates CRADAs and FLC

1982 -Small Business Innovation Development Act creates SBIR

1987 -E.O 12591 Expands Bayh-Dole, requirements for international CRADA and license 1995 -Technology Transfer and Advancement Act enhanced IP in CRADAs

2007 America COMPETES
Act eliminates
Technology
Administration within
DOC and function
assigned to NIST

2000 -

Technology Transfer Commercialization Act Rules for exclusive licensing and creates reporting requirement

2011 -America Invents Act modified US patent process

Statutory Drivers

- Intellectual Property
 - Bayh-Dole Act 35 USC 200 et seq., Stevenson-Wydler Act/Federal Technology Transfer Act/Technology Transfer Commercialization Act 15 USC 3710 et seq.
 - 37 CFR 404, 501; 15 CFR 17
 - Executive Orders 10096 and 12591
- Collaborations
 - Federal Technology Transfer Act 15 USC 3710a
 - NIST Organic Act 15 USC 272(c)(7)
 - OMB Circular A-25
- SBIR
 - Small Business Innovation Development Act (P.L. 97-219)
 - Small Business R&D Enhancement Act of 1992
 - Series of reauthorizations
- Cross-agency Leadership
 - DOO 30-2A
 - NSTC L2M Subcommittee
 - OMB Circular A-11
 - 15 USC 3710 e through g

Policy Leadership

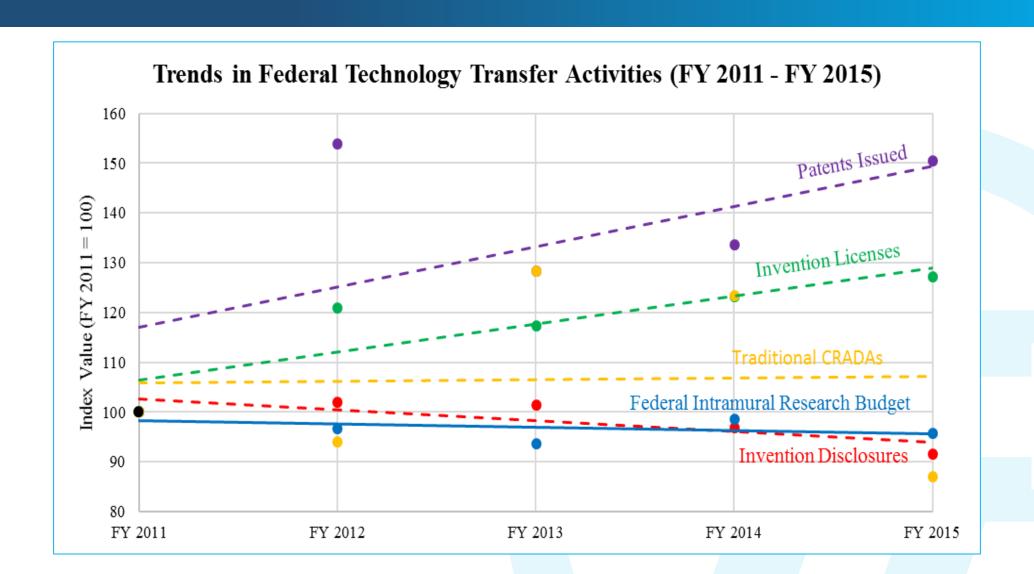
- As part of the Department of Commerce, NIST has a unique role in promoting and reporting on the overall strength of federal efforts
- Policy coordination, promulgation of technology transfer regulation
- Interagency Workgroup for Technology Transfer (11 agencies) and Interagency Workgroup for Bayh-Dole
- Annual reports for the President, the Congress, and OMB on utilization of technology transfer by DOC and across all agencies
- Support Lab-to-Market NSTC Subcommittee/Appropriation
- NIST has a statutory role as the "Host Agency" for the Federal Laboratory Consortium for Technology Transfer

Technology Transfer Reports

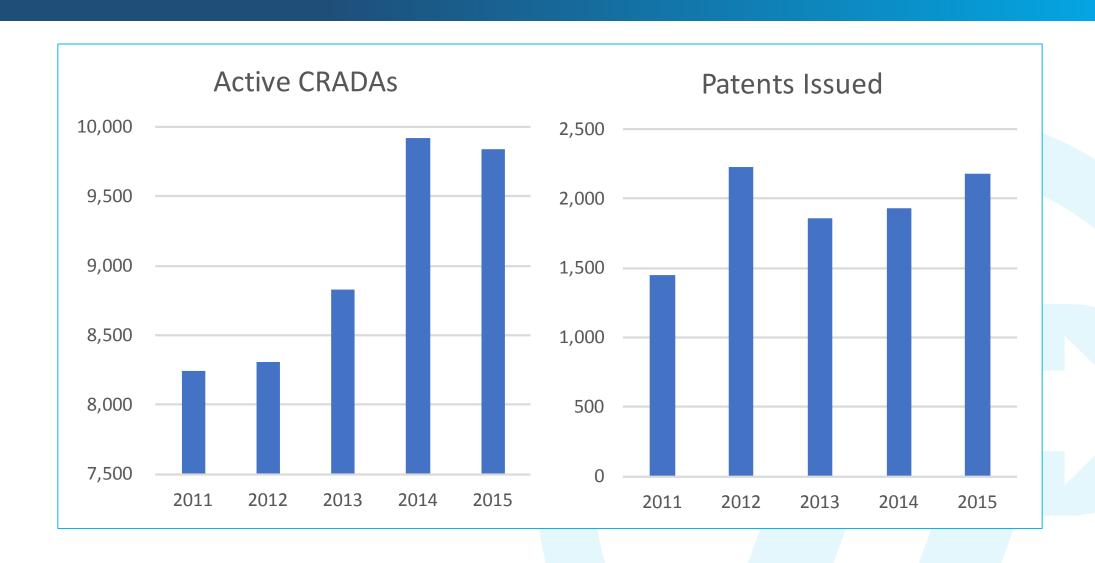
- Annual Report to OMB on DOC Technology Transfer
- Includes NIST, NOAA, ITS

- Annual Report to President and Congress on Federal Laboratory Technology Transfer (FY 2014)
- Produced by NIST through the Interagency Workgroup for Technology Transfer

Return on Investment: Public vs. Private Sectors


Private Sector

- Basic Science vs. Applied Research
- Invention vs. Innovation
- Market vs Non-Market
 Mechanisms
- Return on Investment: Profit,
 Net Benefits


Public Sector

- Basic Science vs. Applied Research
- Intramural vs. Extramural Projects
- Invention vs. Innovation
- Market vs. Non-market Mechanisms
- Return on Investment: Mission
 Statement, Agency Objectives

Trend Assessment

US Lab Patent and CRADA Trends

Inventions: an Integral Part of NIST Research

MML: Adam Fleisher; David Long; Joe Hodges

Invention: Spectrometer capable of carbon 14 quantitative analysis (biological v. geological origin of fuel source)

Large, but not as large as existing facilities elsewhere.

Invention disclosed to NIST; NIST files patent application

Company seeks NIST to reduce size, ruggedize instrument.

\$2M proposed CRADA with research license: exclusive commercial license

PML: Jay Hendricks, Greg Strouse, Jacob Ricker, Doug Olson, Greg Scace, et al.

Invention: Photonic Pressure Sensor. Can replace existing pressure calibration devices, and provide high-accuracy laboratory measurements

Invention disclosed to NIST; NIST obtains patent

Company seeks to reduce size and cost. \$150k proposed CRADA with research license; commercial license under negotiation

Companies Working with NIST in FY 2016

	Small Companies ^(a)	StartupCompanies ^(b)	Other ^(c)	Total ^(d)
NIST Licenses	14	3	33	50
Traditional CRADAs	58	18	19	95
Non Traditional CRADAs				
Calibrations	205	18	419	642
NVLAP	588	0	0	588
MTA	12	2	5	19
SBIR Phase I	12			12
SBIR Phase II	7			7
NIST Labs				
CNST	2	2		4
PML	17	7	3	27
Facility Users				
CNST				2,856
NCNR				2,536
Standard Reference Data				13,494
Standard Reference Mater	rials			31,983
Total	915	50	479	52,313

-) Small companies (less than 500 employees) that have been in existence for more than 5 years.
- (b) Startup or Young companies that have been in existence for less than five years.
- (c) Includes large companies, foreign companies, government enterprises, and academic institutions.
- (d) In progress.

Return on Investment: Measuring Performance

Microeconomic Approach – Performance at the Project Level

Costs vs Benefits

Performance Measures: Discounted Cash Flow, Net Present Value, Internal Rate of Return,

Cost/Benefit Ratios

Summary of NIST Impact Studies

	SRR	BCR
Number of Studies Reporting	g 13	16
Min	n 27%	4
Max	1056%	249
Mear	254%	46
Std Dev	327%	69
cial Rate of Return Median	n 154%	9

SRR = Soci

BCR = Benefit to Cost Ratio

Return on Investment: Measuring Performance

Macroeconomic Approach – Performance at the Agency Level

Models: Simulation Models, Input/Output Models,

Performance Measures: Changes in Revenues, Output, Productivity, Employment, etc.

	DoD	Navy	
DoD	CRADAs and	CRADAs and	
Licenses	Licenses	nses Licenses	
Study	Study	Study	
2000-2011	2000-2011	2009	
483	361	101	
\$36,300	\$2,935,000	\$545	
\$17,400	\$1,553,000	n.a	
163,067	17,818	2,630	
\$10,600	\$1,049,000	n.a	
\$3,700	\$331,000	\$62	
	Licenses Study 2000-2011 483 \$36,300 \$17,400 163,067 \$10,600	DoD Licenses StudyCRADAs and Licenses Study2000-2011 4832000-2011 2000-2011 361\$36,300 \$17,400 \$1,553,000 163,067 \$10,600\$1,553,000 17,818 \$10,600	

Return on Investment: Measuring Performance

Problems in Measuring Performance

- Data Availability especially proprietary data on economic and social benefits
- Timing of Impact Impacts that happen outside of the government may take years to develop
- Isolating the economic value of Federal contributions to collaborative research: CRADAs involving both extramural and intramural research.
- Costly Research

Summary

- Technology transfer remains grounded in economic competitiveness
- NIST has a significant role in technology transfer through the Department of Commerce
- It is an evolving process
- Measuring success is difficult but important

Completed Economic Studies

- FY16 DOC Tech Transfer Report (Sept 2017)
- FY14 Federal Tech Transfer Report (Oct 2016)
- Construction Grants Assessment (Aug 2016)
- Advanced Manufacturing Opportunities (Oct 2016)
- 1790 Patent Analysis (Oct 2016)
- FY17 NIST Footprint Study (Oct 2017)

Ongoing Economic Studies

Grants/Contracts

- Materials Genome Study (3/18)
- Federal Tech Transfer Study (7/18)
- GPS Study (8/18)
- Advanced Encryption Standard Study (8/18)

TPO Effort

- NIST Customer Demographics: CRADA, License, Calibrations (11/17)
- NIST High Impact Patents (1/18)
- NIST Post-Doc Study (2/18)
- Federal ORTA/TTO Study (4/18)
- SBIR Economic Analysis (12/18)